Đề kiểm tra 15 phút Chương 1 Ứng dụng đạo hàm để khảo sát hàm số CTST

Mô tả thêm: Bài kiểm tra 15 phút Ứng dụng đạo hàm để khảo sát hàm số của chúng tôi gồm 4 mức độ được thay đổi ngẫu nhiên, giúp bạn đọc rèn luyện củng cố kiến thức tốt hơn.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Số dân số của một thị trấn sau t năm kể từ năm 1970 được ước tính bởi công thức f(t) = \frac{26t + 10}{t + 5} (f(t) được tính bằng nghìn người). Biết rằng đạo hàm của hàm số f(t) biểu thị tốc độ gia tăng dân số của thị trấn ( đơn vị là nghìn người/ năm). Vào năm nào thì tốc độ gia tăng dân số là \frac{2}{15} nghìn người/ năm?

    Ta có f'(t) = \frac{{120}}{{{{\left( {t + 5} ight)}^2}}},t \geqslant 0

    Lại có

    f'(t) = \frac{2}{{15}} \Leftrightarrow \frac{{120}}{{{{\left( {t + 5} ight)}^2}}} = \frac{2}{{15}}

    \Leftrightarrow (t + 5)^{2} = 900
\Leftrightarrow t = 25\ do\ t \geq 0)

    Vậy dự báo vào năm 1995 thì tốc độ gia tăng dân số là \frac{2}{15} nghìn người/ năm.

  • Câu 2: Nhận biết

    Cho hàm số y = \frac{ax + b}{cx + d};(ad
- bc eq 0;ac eq 0) có đồ thị như hình vẽ:

    Tìm đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số đó?

    Dựa vào đồ thị hàm số, đường tiệm cận đứng của đồ thị hàm số đã cho là x = 1 và đường tiệm cận ngang là y = 1

  • Câu 3: Vận dụng

    Cho hàm số y =f(x) có đồ thị của hàm số y =f'(x) như hình vẽ:

    Xác định khoảng đồng biến của hàm số y =f\left( |3 - x| ight)?

    Ta có: y = f\left( |3 - x| ight) =\left\{ \begin{matrix}f(3 - x)\ \ khi\ x \leq 3 \\f(x - 3)\ \ khi\ x > 3 \\\end{matrix} ight.

    y' = \left\{ \begin{matrix}- f'(3 - x)\ \ khi\ x \leq 3 \\f'(x - 3)\ \ khi\ x > 3 \\\end{matrix} ight.

    Với x < 3 \Rightarrow y' = -f'(3 - x) > 0

    \Leftrightarrow f'(3 - x) < 0\Leftrightarrow \left\lbrack \begin{matrix}3 - x < - 1 \\1 < 3 - x < 4 \\\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}x > 4 \\- 1 < x < 2 \\\end{matrix} ight.

    Kết hợp với điều kiện x < 3 ta có: - 1 < x < 2

    Với x > 3 \Rightarrow y' =f'(x - 3) > 0

    \Leftrightarrow f'(3 - x) > 0\Leftrightarrow \left\lbrack \begin{matrix}3 - x > 4 \\- 1 < 3 - x < 1 \\\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}x > 7 \\2 < x < 4 \\\end{matrix} ight.

    Kết hợp với điều kiện x > 3 ta có: \left\lbrack \begin{matrix}x > 7 \\3 < x < 4 \\\end{matrix} ight.

    Vậy hàm số y = f\left( |3 - x|ight) đồng biến trên mỗi khoảng (- 1;2),(3;4),(7; + \infty)

  • Câu 4: Vận dụng

    Sau khi phát hiện một bệnh dịch, các chuyên gia y tế ước tính số người nhiễm bệnh kể từ ngày xuất hiện bệnh nhân đầu tiên đến ngày thứ tf(t) = 4t^{3} - \frac{t^{4}}{2}(người). Nếu xem f'(t) là tốc độ truyền bệnh (người/ngày) tại thời điểm t. Tốc độ truyền bệnh sẽ lớn nhất vào ngày thứ mấy?

    Đáp án: Ngày thứ 4||tư

    Đáp án là:

    Sau khi phát hiện một bệnh dịch, các chuyên gia y tế ước tính số người nhiễm bệnh kể từ ngày xuất hiện bệnh nhân đầu tiên đến ngày thứ tf(t) = 4t^{3} - \frac{t^{4}}{2}(người). Nếu xem f'(t) là tốc độ truyền bệnh (người/ngày) tại thời điểm t. Tốc độ truyền bệnh sẽ lớn nhất vào ngày thứ mấy?

    Đáp án: Ngày thứ 4||tư

    Điều kiện t \geq 0.

    Ta có g(t) = f'(t) = 12t^{2} -
2t^{3}, g'(t) = 24t -
6t^{2}, g'(t) = 0
\Leftrightarrow \left\lbrack \begin{matrix}
t = 0 \\
t = 4 \\
\end{matrix} ight..

    Bảng biến thiên:

    Vậy tốc độ truyền bệnh lớn nhất vào ngày thứ 4.

    Đáp số: 4.

  • Câu 5: Nhận biết

    Cho hàm số f(x) có bảng biến thiên như sau:

    Hàm số đã cho nghịch biến trên khoảng nào trong các khoảng cho dưới đây?

    Dựa vào bảng biến thiên ta thấy hàm số đã cho nghịch biến trên khoảng ( - 1;1).

  • Câu 6: Nhận biết

    Tìm giá trị nhỏ nhất a của hàm số y = x^{4} - x^{2} + 13 trên đoạn \lbrack - 2;3brack?

    Hàm số đã cho liên tục trên \lbrack -
2;3brack

    Ta có: y' = 4x^{3} - 2x = 0\Leftrightarrow \left\lbrack \begin{matrix}x = 0 \\x = \dfrac{1}{\sqrt{2}} \\x = - \dfrac{1}{\sqrt{2}} \\\end{matrix} ight.

    Khi đó: \left\{ \begin{matrix}y( - 2) = 25;y\left( \pm \dfrac{1}{\sqrt{2}} ight) = \dfrac{51}{4} \\y(0) = 13;y(3) = 85 \\\end{matrix} ight.

    Vậy giá trị nhỏ nhất của hàm số là a =
\frac{51}{4}.

  • Câu 7: Nhận biết

    Cho hình vẽ:

    Đồ thị trong hình đã cho là đồ thị của hàm số nào?

    Từ đồ thị ta thấy đây là đồ thị hàm số bậc ba có dạng y = ax^{3} + bx^{2} + cx + d với a > 0 và đồ thị hàm số đi qua điểm (2; - 3) nên hàm số tương ứng với đồ thị trong hình vẽ đã cho là y = x^{3} -3x^{2} + 1.

  • Câu 8: Thông hiểu

    Cho hàm số y = f(x) xác định trên \mathbb{R} và có đồ thị của hàm số y = f'(x) như hình vẽ:

    Hàm số y = f(1 - 2x) đạt cực tiểu tại:

    Đặt g(x) = f(1 - 2x) \Rightarrow
g'(x) = - 2f'(1 - 2x) = 0

    \Rightarrow g'(x) = 0
\Leftrightarrow - 2f'(1 - 2x) = 0

    \Leftrightarrow \left\lbrack\begin{matrix}1 - 2x = - 1 \\1 - 2x = 0 \\1 - 2x = 2 \\\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}x = 1 \\x = \dfrac{1}{2} \\x = - \dfrac{1}{2} \\\end{matrix} ight.

    Ta có bảng biến thiên

    Ta xét bằng cách thay số

    Với x = 2 \Rightarrow g'(2) = -
2f'( - 3) < 0

    Với x = \frac{3}{4} \Rightarrow
g'\left( \frac{3}{4} ight) = - 2f'\left( - \frac{1}{2} ight)
> 0

    Với x = \frac{1}{4} \Rightarrow
g'\left( \frac{1}{4} ight) = - 2f'\left( \frac{1}{2} ight)
< 0

    Với x = - 1 \Rightarrow g'( - 1) = -
2f'(3) > 0

    Vậy hàm số đạt cực tiểu tại x =
\frac{1}{2}

  • Câu 9: Thông hiểu

    Một chất điểm chuyển động theo phương trình S(t) = - t^{3} + 12t^{2} - 30t + 10 trong đó t được tính bằng giây và S được tính bằng mét. Thời gian để vận tốc của chất điểm đạt giá trị lớn nhất là:

    Ta có: v(t) = S'(t) = - 3t^{2} + 24t
- 30 = - 3(t - 4)^{2} + 18 \leq 18

    Khi đó \max v(t) = 18 \Leftrightarrow t =
4(s)

  • Câu 10: Nhận biết

    Cho hàm số y = f(x) có đạo hàm f'(x) = (3x - 1)(x + 3) trên \mathbb{R}. Tìm số điểm cực trị của hàm số y = f(x)?

    Ta có: f'(x) = 0 \Leftrightarrow\left\lbrack \begin{matrix}x = - 3 \\x = \dfrac{1}{3} \\\end{matrix} ight.

    f'(x) có hai nghiệm đơn nên hàm số y = f(x) có hai điểm cực trị.

  • Câu 11: Thông hiểu

    Số các giá trị nguyên của tham số m để đồ thị hàm số y = \frac{1}{x^{2} - 2mx + 2m^{2} - 4m -
12} có ba đường tiệm cận bằng:

    Ta có:

    \lim_{x ightarrow \pm \infty}f(x) =
\lim_{x ightarrow \pm \infty}\frac{1}{x^{2} - 2mx + 2m^{2} - 4m - 12}
= 0 nên y = 0 là tiệm cận ngang của đồ thị hàm số

    Theo yêu cầu bài toán ta suy ra x^{2} -
2mx + 2m^{2} - 4m - 12 = 0 có hai nghiệm phân biệt

    \Leftrightarrow \Delta' > 0
\Leftrightarrow m^{2} - \left( 2m^{2} - m - 12 ight) >
0

    \Leftrightarrow - m^{2} + 4m + 12 > 0
\Leftrightarrow - 2 < m < 6

    m\mathbb{\in Z \Rightarrow}m \in
\left\{ - 1;0;1;2;3;4;5 ight\}

    Vậy có 7 giá trị nguyên của tham số m thỏa mãn yêu cầu đề bài.

  • Câu 12: Thông hiểu

    Cho hàm số y = f(x) = \frac{x^{2} + 4x -
1}{x - 1} có đồ thị là (C). Xét tính đúng sai của các khẳng định sau:

    a) Số khoảng đồng biến và nghịch biến của hàm số là bằng nhau. Đúng||Sai

    b) Hàm số y = f(x) đạt cực đại tại điểm có toạ độ (−1; 2). Đúng||Sai

    c) Đường thẳng x = 1 là đường tiệm cận đứng của đồ thị hàm số y = f(x). Đúng||Sai

    d) Phương trình đường tiệm cận xiên của đồ thị hàm số y = f(x)y
= 2x + 5. Sai||Đúng

    Đáp án là:

    Cho hàm số y = f(x) = \frac{x^{2} + 4x -
1}{x - 1} có đồ thị là (C). Xét tính đúng sai của các khẳng định sau:

    a) Số khoảng đồng biến và nghịch biến của hàm số là bằng nhau. Đúng||Sai

    b) Hàm số y = f(x) đạt cực đại tại điểm có toạ độ (−1; 2). Đúng||Sai

    c) Đường thẳng x = 1 là đường tiệm cận đứng của đồ thị hàm số y = f(x). Đúng||Sai

    d) Phương trình đường tiệm cận xiên của đồ thị hàm số y = f(x)y
= 2x + 5. Sai||Đúng

    Hàm số y = f(x) = \frac{x^{2} + 4x - 1}{x
- 1} có tập xác định D\mathbb{=
R}\backslash\left\{ 1 ight\}

    Ta có: y' = \frac{x^{2} - 2x - 3}{(x
- 1)^{2}} = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = - 1 \\
x = 3 \\
\end{matrix} ight.

    Bảng biến thiên

    a) Đúng: Hàm số đồng biến trên các khoảng (−∞; -1) và (3;+∞) và nghịch biến trên các khoảng (−1;1) và (1;3) .

    b) Đúng: Đồ thị hàm số đạt cực đại tại điểm (−1;2)

    c) Đúng: Xét \lim_{x ightarrow 1^{-}}y
= - \infty;\lim_{x ightarrow 1^{+}}y = + \infty nên đường thẳng x = 1 là tiệm cận đứng của đồ thị hàm số y = f(x) = \frac{x^{2} + 4x - 1}{x -
1}.

    d) Sai: Xét \lim_{x ightarrow
\infty}\left\lbrack y - (x + 5) ightbrack = \lim_{x ightarrow
\infty}\left\lbrack \frac{4}{x - 1} ightbrack = 0 nên đường thẳng y = x + 5 là tiệm cận xiên của đồ thị hàm số y = f(x) = \frac{x^{2} + 4x - 1}{x -
1}.

  • Câu 13: Nhận biết

    Cho hàm số f(x) có bảng biến thiên như sau:

    Hàm số đã cho nghịch biến trên khoảng nào trong các khoảng sau:

    Do f'(x) < 0\forall x \in ( -
1;3) nên hàm số f(x) nghịch biến trên khoảng ( -
1;3).

  • Câu 14: Nhận biết

    Hai đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số y = \frac{2x - 5}{4 - x} cắt nhau tại điểm M. Xác định tọa độ điểm M?

    Đồ thị hàm số y = \frac{2x - 5}{4 -
x} có đường tiệm cận đứng x =
4 và đường tiệm cận ngang y = -
2. Do đó giao điểm của hai đường tiệm cận là M(4; - 2).

  • Câu 15: Nhận biết

    Cho hàm số y = \frac{3x - 1}{x +
2} có đồ thị kí hiệu là (H). Tìm điểm thuộc (H)?

    Ta thấy x = - 1 \Rightarrow y = \frac{3.(
- 1) - 1}{( - 1) + 2} = - 4 \Rightarrow ( - 1; - 4) \in (H)

  • Câu 16: Nhận biết

    Đồ thị hàm số y = f(x) được biểu diễn bởi hình vẽ:

    Điểm cực tiểu của hàm số đã cho là:

    Quan sát đồ thị của hàm số ta thấy hàm số có điểm cực tiểu là x = 2.

  • Câu 17: Thông hiểu

    Số các giá trị nguyên của tham số m để hàm số y
= \frac{1}{3}x^{3} - x^{2} - 3x + 2m + 7 có giá trị nhỏ nhất trên đoạn \lbrack 2;4brack thuộc khoảng ( - 5;8) là:

    Xét hàm số y = \frac{1}{3}x^{3} - x^{2} -
3x + 2m + 7 trên \lbrack
2;4brack ta có:

    y' = x^{2} - 2x - 3 \Rightarrow
y' = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = - 1 \\
x = 3 \\
\end{matrix} ight.

    \Rightarrow \left\{ \begin{matrix}y(2) = - \dfrac{1}{3} + 2m \\y(4) = \dfrac{1}{3} + 2m \\y(3) = - 2 + 2m \\\end{matrix} ight.\  \Rightarrow \min_{\lbrack 2;4brack}y = - 2 + 2m\in ( - 5;8)

    \Leftrightarrow - 5 < - 2 + 2m < 8
\Leftrightarrow - 3 < 2m < 10 \Leftrightarrow - \frac{3}{2} < m
< 5

    m\mathbb{\in Z \Rightarrow}m \in
\left\{ - 1;0;1;2;3;4 ight\}

    Vậy có tất cả 6 giá trị nguyên của tham số m thỏa mãn yêu cầu.

  • Câu 18: Thông hiểu

    Cho hàm số f(x) có bảng xét dấu f'(x) như sau:

    Hàm số y = f(2x + 1) nghịch biến trên khoảng nào dưới đây?

    Ta có:

    y' = \left\lbrack f(2x + 1)
ightbrack' = 2f'(2x + 1) < 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
2x + 1 < - 3 \\
- 1 < 2x + 1 < 1 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x < - 2 \\
- 1 < x < 0 \\
\end{matrix} ight.

    Vậy khoảng nghịch biến của hàm số y =
f(2x + 1) là: ( - 1;0)

  • Câu 19: Vận dụng

    Tìm tất cả các giá trị của tham số m để hàm số nghịch biến trên khoảng (-1; +∞)

    Ta có: y' = 2mx - \left( {m + 6} ight). Theo yêu cầu bài toán ta có:

    y' \leqslant 0;\forall x \in \left( { - 1; + \infty } ight)

    => 2mx - \left( {m + 6} ight) \leqslant 0 \Leftrightarrow m \leqslant \frac{6}{{2x - 1}}

    Xét hàm số g\left( x ight) = \frac{6}{{2x - 1}},x \in \left( { - 1; + \infty } ight)

    Ta có bảng biến thiên như sau:

    Tìm m để hàm số nghịch biến trên khoảng

    Vậy - 2 \leqslant m \leqslant 0

  • Câu 20: Vận dụng cao

    Gọi S là tập hợp chứa tất cả các giá trị thực của tham số m để hàm số y = f\left( x ight) = \left| {{x^2} - 3mx + 1} ight| + 4x có điểm cực đại với giá trị cực đại tương ứng nằm trong khoảng (3; 4) và đồng thời thỏa mãn 10m là số nguyên. Số phần tử của tập hợp S là:

    Xét phương trình {m^3} - 3mx + 1 = 0;\left( * ight) \Rightarrow \Delta ' = {m^2} - 1

    Nếu \Delta ' = {m^2} - 1 \leqslant 0 thì hàm số y = f\left( x ight) = {x^2} - 2mx + 1 + 4x = {x^2} - 2\left( {m - 2} ight)x + 1 không có điểm cực đại.

    Nếu \Delta ' = {m^2} - 1 > 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {m <  - 1} \\   {m > 1} \end{array}} ight. thì phương trình (*) có hai nghiệm phân biệt là \left[ {\begin{array}{*{20}{c}}  {{x_1} = m - \sqrt {{m^2} - 1} } \\   {{x_2} = m + \sqrt {{m^2} - 1} } \end{array}} ight.

    Với \left[ {\begin{array}{*{20}{c}}  {x \leqslant {x_1}} \\   {x \geqslant {x_2}} \end{array}} ight. thì y = f\left( x ight) = {x^2} - 2mx + 1 + 4x = {x^2} - 2\left( {m - 2} ight)x + 1 không có điểm cực đại.

    Với {x_1} < x < {x_2} thì y =  - {x^2} + 2mx - 1 + 4x =  - {x^2} + 2\left( {m + 2} ight)x - 1

    Hàm số này đạt cực đại tại x = m + 2 và giá trị cực đại là {y_{cd}} = {m^2} + 4m + 3

    Vậy điều kiện để hàm số có cực đại là:

    \begin{matrix}  \left\{ {\begin{array}{*{20}{c}}  {{x_1} < x = m + 2 < {x_2}} \\   {3 < {m^2} + 4m + 3 < 4} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {m - \sqrt {{m^2} - 1}  < m + 2 < m + \sqrt {{m^2} - 1} } \\   {0 < {m^2} + 4m < 1} \end{array}} ight. \hfill \\   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {\sqrt {{m^2} - 1}  > 2} \\   \begin{gathered}  {m^2} + 4m - 1 < 0 \hfill \\  {m^2} + 4m > 0 \hfill \\ \end{gathered}  \end{array}} ight. \Leftrightarrow \left\{ \begin{gathered}   - 2 - \sqrt 5  < m <  - 2 + \sqrt 5  \hfill \\  \begin{array}{*{20}{c}}  {\left[ {\begin{array}{*{20}{c}}  {m <  - \sqrt 5 } \\   {m > \sqrt 5 } \end{array}} ight.} \\   {\left[ {\begin{array}{*{20}{c}}  {m <  - 4} \\   {m > 0} \end{array}} ight.} \end{array} \hfill \\ \end{gathered}  ight. \Leftrightarrow  - 2 - \sqrt 5  < m <  - 4 \hfill \\ \end{matrix}

    Do 10m là số nguyên nên có hai giá trị thỏa mãn là m =  - \frac{{42}}{{10}};m =  - \frac{{41}}{{10}}

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 1 Ứng dụng đạo hàm để khảo sát hàm số CTST Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 2 lượt xem
Sắp xếp theo