Tìm tất cả các giá trị thực của tham số để hàm số
có hai cực trị?
Ta có:
Để hàm số đã cho có hai cực trị thì có hai nghiệm phân biệt
Vậy với thì hàm số
có hai cực trị.
Cùng nhau thử sức với bài kiểm tra 15 phút Toán 12 Kết nối tri thức Chương 1 Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số nhé!
Tìm tất cả các giá trị thực của tham số để hàm số
có hai cực trị?
Ta có:
Để hàm số đã cho có hai cực trị thì có hai nghiệm phân biệt
Vậy với thì hàm số
có hai cực trị.
Cho hàm số có đạo hàm
. Tìm số điểm cực đại của hàm số đã cho.
Ta có:
Ta có bảng xét dấu:
Suy ra hàm số có một điểm cực đại.
Cho hàm số xác định trên
và có bảng biến thiên như sau:
Số giá trị nguyên của tham số để phương trình
có ba nghiệm phân biệt là:
Phương trình là phương trình hoành độ giao điểm của hai đồ thị
và đường thẳng
Để phương trình có ba nghiệm phân biệt khi và chỉ khi
có ba giao điểm
Mà
Vậy có 2 giá trị nguyên của tham số m thỏa mãn điều kiện đề bài.
Cho đồ thị hàm số như hình vẽ:
Hàm số đồng biến trên khoảng:
Ta có:
Nên suy ra hàm số cũng đồng biến trên .
Gọi là giá trị của tham số
để đồ thị hàm số
có hai điểm cực trị là
sao cho diện tích tam giác
bằng
(
là gốc tọa độ). Khi đó giá trị biểu thức
bằng:
Tập xác định .
Ta có:
Ta có bảng biến thiên như sau:
Suy ra
Đường thẳng (PQ) đi qua điểm và nhận
làm một vecto pháp tuyến nên có phương trình
Theo bài ra ta có diện tích tam giác OPQ bằng 2 nên ta có phương trình:
Vậy .
Một chất điểm chuyển động thẳng với quãng đường biến thiên theo thời gian bởi quy luật , trong đó
là khoảng thời gian tính từ lúc bắt đầu chuyển động. Vận tốc của chất điểm đó đạt giá trị bé nhất khi
bằng bao nhiêu?
Một chất điểm chuyển động thẳng với quãng đường biến thiên theo thời gian bởi quy luật , trong đó
là khoảng thời gian tính từ lúc bắt đầu chuyển động. Vận tốc của chất điểm đó đạt giá trị bé nhất khi
bằng bao nhiêu?
Cho hàm số có đạo hàm
trên khoảng
. Đồ thị hàm số
như hình vẽ:
Hàm số nghịch biến trên khoảng nào trong các khoảng nào sau đây?
Hàm số nghịch biến khi
Vậy hàm số nghịch biến trên khoảng .
Đồ thị hàm số có bao nhiêu đường tiệm cận đứng?
Ta có:
suy ra
là đường tiệm cận đứng của đồ thị hàm số.
suy ra
là đường tiệm cận đứng của đồ thị hàm số.
Vậy đồ thị hàm số đã cho có 2 đường tiệm cận đứng.
Cho hàm số . Mệnh đề nào dưới đây là mệnh đề sai?
Vì nên đồ thị hàm số luôn nghịch biến trên các khoảng
.
Vậy mệnh đề sai là: "Hàm số đồng biến trên ".
Hàm số đồng biến trên nửa khoảng
khi:
Ta có:
Để hàm số đã cho đồng biến trên nửa khoảng khi đó:
Xét hàm số trên nửa khoảng
ta có:
Bảng biến thiên của hàm số trên nửa khoảng
là:
Từ bảng biến thiên suy ra
Vậy khi và chỉ khi
.
Cho đồ thị hàm số như sau:
Đồ thị hàm số đã cho có phương trình tiệm cận đứng và tiệm cận ngang lần lượt là:
Dựa vào đồ thị hàm số ta thấy phương trình tiệm cận đứng và tiệm cận ngang của đồ thị hàm số lần lượt là .
Tập hợp tất cả các giá trị thực của tham số để đồ thị hàm số
có đúng hai tiệm cận đứng?
Điều kiện xác định
Vì nên để đồ thị hàm số có đúng hai tiệm cận đứng thì phương trình
phải có hai nghiệm phân biệt lớn hơn
.
Xét hàm số trên
có:
Bảng biến thiên
Phương trình (*) có hai nghiệm phân biệt lớn hơn khi
.
Vậy đáp án cần tìm là .
Cho hàm số với
là tham số. Gọi
tập hợp tất cả các giá trị nguyên của tham số
thỏa mãn
. Số phần tử của tập hợp
bằng:
Ta có:
Đạo hàm
và
Suy ra
Mà
Vậy có tất cả 11 giá trị nguyên của tham số m.
Cho hàm số y = f(x) có đạo hàm . Hàm số
đồng biến trên các khoảng nào?
Cho hàm số y = f(x) có đạo hàm . Hàm số
đồng biến trên các khoảng nào?
Cho hàm số có đồ thị hàm số như hình vẽ.
Chọn khẳng định đúng trong các khẳng định dưới đây?
Dựa vào đồ thị hàm số ta thấy:
=> Hệ số a < 0 => Loại đáp án C và D
Đồ thị hàm số đi qua điểm =>
Hàm số có ba cực trị => ab < 0
Do a < 0 => b > 0
Đồ thị hàm số đi qua điểm có tọa độ =>
Hàm số nghịch biến trên khoảng
khi và chỉ khi:
Tập xác định
Ta có:
Hàm số đã cho nghịch biến trên khoảng
khi và chỉ khi
Xét hàm số trên
ta có bảng biến thiên như sau:
Dựa vào bảng biến thiên ta có:
Do đó
Vậy thỏa mãn yêu cầu bài toán.
Có bao nhiêu giá trị nguyên của tham số để hàm số
nghịch biến trên khoảng
?
Tập xác định
Ta có:
Hàm số nghịch biến trên khoảng
khi và chỉ khi
Vì nên có tất cả 5 giá trị nguyên của tham số m thỏa mãn yêu cầu bài toán.
Cho hàm số có đồ thị kí hiệu là
. Tìm điểm thuộc
?
Ta thấy
Cho hàm số với
là tham số. Giả sử
là tập hợp tất cả các giá trị nguyên của
sao cho đồ thị của hàm số có
điểm cực trị. Tính tổng tất cả các phần tử của tập hợp
?
Cho hàm số với
là tham số. Giả sử
là tập hợp tất cả các giá trị nguyên của
sao cho đồ thị của hàm số có
điểm cực trị. Tính tổng tất cả các phần tử của tập hợp
?
Cho hàm số có bảng biến thiên như sau:
Giá trị nhỏ nhất của hàm số đã cho trên đoạn bằng bao nhiêu?
Giá trị nhỏ nhất của hàm số đã cho trên đoạn bằng
.