Đề kiểm tra 15 phút Chương 2 Vectơ và hệ trục tọa độ trong không gian KNTT

Mô tả thêm: Bài kiểm tra 15 phút Vectơ và hệ trục tọa độ trong không gian của chúng tôi gồm 4 mức độ được thay đổi ngẫu nhiên, giúp bạn đọc rèn luyện củng cố kiến thức tốt hơn.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Trong không gian với hệ trục tọa độ Oxyz cho vectơ \overrightarrow{OM} có độ dài \left| \overrightarrow{OM} ight| = 1, gọi \alpha;\beta;\gamma lần lượt là góc tạo bởi ba vectơ đơn vị \overrightarrow{i};\overrightarrow{j};\overrightarrow{k} trên ba trục Ox;Oy;Oz và vectơ \overrightarrow{OM}. Khi đó tọa độ điểm M là:

    Gọi M(x;y;z) \Rightarrow
\overrightarrow{OM} = (x;y;z)\overrightarrow{i} = (1;0;0),\overrightarrow{j} =
(0;1;0),\overrightarrow{k} = (0;0;1)

    \left\{ \begin{matrix}\cos\alpha = \dfrac{\overrightarrow{OM}.\overrightarrow{i}}{\left|\overrightarrow{OM} ight|.\left| \overrightarrow{i} ight|} = x \\\cos\beta = \dfrac{\overrightarrow{OM}.\overrightarrow{j}}{\left|\overrightarrow{OM} ight|.\left| \overrightarrow{j} ight|} = y \\\cos\gamma = \dfrac{\overrightarrow{OM}.\overrightarrow{k}}{\left|\overrightarrow{OM} ight|.\left| \overrightarrow{k} ight|} = z \\\end{matrix} ight.\  \Rightarrow M\left( \cos\alpha;\cos\beta;\cos\gammaight)

  • Câu 2: Nhận biết

    Cho hình lập phương ABCD.EFGH. Hãy xác định góc giữa cặp vectơ \overrightarrow{AB}\overrightarrow{EG}?

    Hình vẽ minh họa

    \overrightarrow{EG} =
\overrightarrow{AC} (AEGC là hình chữ nhật) nên \left(
\overrightarrow{AB};\overrightarrow{EG} ight) = \left(
\overrightarrow{AB};\overrightarrow{AC} ight) = \widehat{BAC} =
45^{0}(AEGC là hình vuông)

  • Câu 3: Nhận biết

    Trong không gian Oxyz, cho điểm A(1;2; - 3),\ \ B(3; - 2;1). Tọa độ trung điểm của AB là.

    Tọa độ trung điểm I của AB là:

    I = \left( \frac{1 + 3}{2};\frac{2 -
2}{2};\frac{- 3 + 1}{2} ight) = (2;0; - 1)

  • Câu 4: Thông hiểu

    Trong không gian hệ trục tọa độ Oxyz, cho các điểm A(1;0;0),B(1;1;0),C(0;1;1). Tìm tọa độ điểm D để tứ giác ABCD là hình bình hành?

    Giả sử điểm D(x;y;z) ta có ABCD là hình bình hành nên \overrightarrow{AD} =
\overrightarrow{BC}

    \Leftrightarrow \left\{ \begin{matrix}
x - 1 = - 1 \\
y = 0 \\
z = 1 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = 0 \\
y = 0 \\
z = 1 \\
\end{matrix} ight.. Vậy tọa độ điểm D(0;0;1).

  • Câu 5: Thông hiểu

    Trong không gian hệ trục tọa độ Oxyz, cho hình hộp ABCD.A'B'C'D' có tọa độ các điểm A(0;0;0),B(a;0;0),D(0;2a;0),A'(0;0;2a) với a eq 0. Độ dài đoạn thẳng AC' là:

    Hình vẽ minh họa

    Ta có: \left\{ \begin{matrix}
\overrightarrow{AB} = (a;0;0) \\
\overrightarrow{AD} = (0;2a;0) \\
\overrightarrow{AA'} = (0;0;2a) \\
\end{matrix} ight.

    Theo quy tắc hình hộp ta có:

    \overrightarrow{AB} +
\overrightarrow{AD} + \overrightarrow{AA'} =
\overrightarrow{AC'} \Rightarrow \overrightarrow{AC'} =
(a;2a;2a)

    Suy ra AC' = \left|
\overrightarrow{AC'} ight| = \sqrt{a^{2} + (2a)^{2} + (2a)^{2}} =
3|a|

    Vậy độ dài AC’ bằng 3|a|.

  • Câu 6: Vận dụng cao

    Một chiếc máy được đặt trên một giá đỡ ba chân tại điểm đặt E(0;0;6), giá đỡ có các điểm tiếp xúc mặt đất của ba chân lần lượt là A_{1}(0;1;0),A_{2}\left( \frac{\sqrt{3}}{2}; -\frac{1}{2};0 ight),A_{3}\left( -\frac{\sqrt{3}}{2}; - \frac{1}{2};0 ight). Biết rằng trọng lượng của chiếc máy là 240\ N, tác dụng lên các giá đỡ theo các lực \overrightarrow{F_{1}},\overrightarrow{F_{2}},\overrightarrow{F_{3}} như hình.

    Tính tích vô hướng của \overrightarrow{F_{1}} \cdot\overrightarrow{F_{3}} (làm tròn đến chữ số hàng đơn vị).

    Đáp án: 6311

    Đáp án là:

    Một chiếc máy được đặt trên một giá đỡ ba chân tại điểm đặt E(0;0;6), giá đỡ có các điểm tiếp xúc mặt đất của ba chân lần lượt là A_{1}(0;1;0),A_{2}\left( \frac{\sqrt{3}}{2}; -\frac{1}{2};0 ight),A_{3}\left( -\frac{\sqrt{3}}{2}; - \frac{1}{2};0 ight). Biết rằng trọng lượng của chiếc máy là 240\ N, tác dụng lên các giá đỡ theo các lực \overrightarrow{F_{1}},\overrightarrow{F_{2}},\overrightarrow{F_{3}} như hình.

    Tính tích vô hướng của \overrightarrow{F_{1}} \cdot\overrightarrow{F_{3}} (làm tròn đến chữ số hàng đơn vị).

    Đáp án: 6311

    Ta có: \left\{ \begin{matrix}\overrightarrow{EA_{1}} = (0;1; - 6) \\\overrightarrow{EA_{2}} = \left( \frac{\sqrt{3}}{2}; - \frac{1}{2}; - 6ight) \\\overrightarrow{EA_{3}} = \left( - \frac{\sqrt{3}}{2}; - \frac{1}{2}; -6 ight) \\\end{matrix} ight.

    \Rightarrow EA_{1} = EA_{2} = EA_{3} =\sqrt{37}.

    Suy ra, \left| \overrightarrow{F_{1}}ight| = \left| \overrightarrow{F_{2}} ight| = \left|\overrightarrow{F_{3}} ight| (vì chân bằng nhau, giá đỡ cân bằng, trọng lực tác dụng đều lên 3 chân của giá đỡ).

    Do đó: \left\{ \begin{matrix}\overrightarrow{F_{1}} = k\overrightarrow{EA_{1}} = (0;k; - 6k) \\\overrightarrow{F_{2}} = k\overrightarrow{EA_{2}} = \left(\frac{\sqrt{3}}{2}k; - \frac{1}{2}k; - 6k ight) \\\overrightarrow{F_{3}} = k\overrightarrow{EA_{3}} = \left( -\frac{\sqrt{3}}{2}k; - \frac{1}{2}k; - 6k ight) \\\end{matrix} ight.

    \Rightarrow \overrightarrow{F_{1}} +\overrightarrow{F_{2}} + \overrightarrow{F_{3}} = (0;0; -18k).

    \overrightarrow{F_{1}} +\overrightarrow{F_{2}} + \overrightarrow{F_{3}} = \overrightarrow{P} =(0;0; - 240).

    Suy ra - 18k = - 240 \Leftrightarrow k =\frac{40}{3}.

    Từ đó \left\{ \begin{matrix}\overrightarrow{F_{1}} = \left( 0;\frac{40}{3}; - 80 ight) \\\overrightarrow{F_{2}} = \left( \frac{20\sqrt{3}}{3}; - \frac{20}{3}; -80 ight) \\\overrightarrow{F_{3}} = \left( - \frac{20\sqrt{3}}{3}; - \frac{20}{3};- 80 ight) \\\end{matrix} ight..

    Vậy \overrightarrow{F_{1}}.\overrightarrow{F_{3}} =0.\left( \frac{- 20\sqrt{3}}{3} ight) + \frac{40}{3}\left( -\frac{20}{3} ight) + ( - 80).( - 80) \approx 6311.

  • Câu 7: Thông hiểu

    Cho hình lập phương ABCD.A_{1}B_{1}C_{1}D_{1} có cạnh a. Gọi M là trung điểm của AD. Tính tích vô hướng \overrightarrow{B_{1}M}.\overrightarrow{BD_{1}}?

    Hình vẽ minh họa

    Ta có: \overrightarrow{BD_{1}} =
\overrightarrow{BA} + \overrightarrow{AD_{1}} = - \overrightarrow{AB} +
\overrightarrow{AA_{1}} + \overrightarrow{AD}

    Ta có: \overrightarrow{B_{1}M} =
\overrightarrow{B_{1}A} + \overrightarrow{AM} hay \overrightarrow{B_{1}M} = - \overrightarrow{AB} -
\overrightarrow{AA_{1}} + \frac{1}{2}\overrightarrow{AD}

    Do đó \overrightarrow{B_{1}M}.\overrightarrow{BD_{1}} =
AB^{2} - A_{1}A^{2} + \frac{1}{2}AD^{2} = \frac{a^{2}}{2}

  • Câu 8: Nhận biết

    Trong không gian Oxyz, cho hai vectơ \overrightarrow{u} = (1;3; -
2);\overrightarrow{v} = (2;1; - 1). Vectơ \overrightarrow{u} - \overrightarrow{v} có tọa độ là:

    Ta có: \overrightarrow{u} -
\overrightarrow{v} = (1 - 2;3 - 1; - 2 + 1) = ( - 1;2; - 1)

    Vậy đáp án cần tìm là ( - 1;2 -
1).

  • Câu 9: Vận dụng cao

    Cho tứ diện ABCDAB;AC;AD đôi một vuông góc với nhau. Cho điểm M thay đổi trong không gian. Giá trị nhỏ nhất của biểu thức P =\sqrt{3}MA + MB + MC + MD?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho tứ diện ABCDAB;AC;AD đôi một vuông góc với nhau. Cho điểm M thay đổi trong không gian. Giá trị nhỏ nhất của biểu thức P =\sqrt{3}MA + MB + MC + MD?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 10: Thông hiểu

    ột nguồn âm phát ra sóng âm là sóng cầu. Khi gắn hệ trục toạ độ Oxyz (đơn vị trên mỗi trục là mét). Cường độ âm chuẩn tại điểm I(3;4;5)là tâm của nguồn phát âm với bán kính 10\ m. Để kiểm tra một điểm ở vị trí\ M(7;10;17) có nhận được cường độ âm phát ra tại I hay không người ta sẽ tính khoảng cách giữa hai vị trí IM. Hỏi khoảng cách giữa hai vị trí IMlà bao nhiêu mét?

    Đáp án: 14 (m)

    Đáp án là:

    ột nguồn âm phát ra sóng âm là sóng cầu. Khi gắn hệ trục toạ độ Oxyz (đơn vị trên mỗi trục là mét). Cường độ âm chuẩn tại điểm I(3;4;5)là tâm của nguồn phát âm với bán kính 10\ m. Để kiểm tra một điểm ở vị trí\ M(7;10;17) có nhận được cường độ âm phát ra tại I hay không người ta sẽ tính khoảng cách giữa hai vị trí IM. Hỏi khoảng cách giữa hai vị trí IMlà bao nhiêu mét?

    Đáp án: 14 (m)

    Ta có

    IM = \sqrt{(7 - 3)^{2} + (10 - 4)^{2} +
(17 - 5)^{2}}

    = \sqrt{4^{2} + 6^{2} + 12^{2}} =
\sqrt{196} = 14 (m).

    Đáp số 14(m).

  • Câu 11: Nhận biết

    Trong không gian Oxyz, cho điểm A(2;2;1). Tính độ dài đoạn thẳng OA?

    Ta có: \overrightarrow{OA} = (2;2;1)
\Rightarrow OA = \sqrt{2^{2} + 2^{2} + 1^{2}} = 3

  • Câu 12: Vận dụng

    Trong không gian hệ trục tọa độ Oxyz, cho hình hộp ABCD.A'B'C'D' có tọa độ các điểm A( -3;0;0),B(0;2;0),D(0;0;1),A'(1;2;3). Giả sử điểm C'(a;b;c). Tính giá trị biểu thức T=a+b+2c?

    Gọi điểm C'(x;y;z)

    Ta có: \left\{ \begin{matrix}\overrightarrow{AB} = (3;2;0) = 3\overrightarrow{i} +2\overrightarrow{j} + 0.\overrightarrow{k} \\\overrightarrow{AD} = (3;0;1) = 3.\overrightarrow{i} +0.\overrightarrow{j} + 1.\overrightarrow{k} \\\overrightarrow{AA'} = (4;2;3) = 4.\overrightarrow{i} +2\overrightarrow{j} + 3\overrightarrow{k} \\\end{matrix} ight.

    \overrightarrow{AB} +\overrightarrow{AD} + \overrightarrow{AA'} =\overrightarrow{AC'} \Rightarrow \overrightarrow{AC'} =10\overrightarrow{i} + 4\overrightarrow{j} +4\overrightarrow{k}

    Suy ra \left\{ \begin{matrix}x = 10 + 3 \\y = 4 - 0 \\z = 4 - 0 \\\end{matrix} ight.\  \Rightarrow C'(13;4;4) suy ra a=13;b=4;c=4

    Vậy  T=25

  • Câu 13: Nhận biết

    Trong không gian Oxyz, cho điểm M(1;2;3). Tìm tọa độ hình chiếu M lên trục Ox.

    Tọa độ hình chiếu của điểm M trên trục Ox là (1;0;0)

  • Câu 14: Thông hiểu

    Cho hai điểm A(5;1;3)H(3; - 3; - 1). Tọa độ điểm A' đối xứng với A qua H là:

    Vì điểm A' đối xứng với A qua H nên H là trung điểm của AA'

    \Rightarrow \left\{ \begin{matrix}
x_{A'} = 2x_{H} - x_{A} = 1 \\
y_{A'} = 2y_{H} - y_{A} = - 7 \\
z_{A'} = 2z_{H} - z_{A} = 5 \\
\end{matrix} ight.\  \Rightarrow A'(1; - 7; - 5)

  • Câu 15: Vận dụng

    Cho tứ diện ABCD. Gọi M;N;P;Q;R;S;G lần lượt là trung điểm các đoạn thẳng AB;CD;AC;BD;AD;BC;MN.

    Xét tính đúng sai của các khẳng định sau.

    a) \overrightarrow{MR} =
\overrightarrow{SN}. Sai||Đúng

    b) \overrightarrow{GA} +
\overrightarrow{GB} + \overrightarrow{GC} + \overrightarrow{GD} =
\overrightarrow{0}. Đúng||Sai

    c) 2\overrightarrow{PQ} =
\overrightarrow{AB} + \overrightarrow{AC} +
\overrightarrow{AD}. Sai||Đúng

    d) \left| \overrightarrow{IA} +
\overrightarrow{IB} + \overrightarrow{IC} + \overrightarrow{ID}
ight| nhỏ nhất khi và chỉ khi điểm I trùng với điểm G. Đúng||Sai

    Đáp án là:

    Cho tứ diện ABCD. Gọi M;N;P;Q;R;S;G lần lượt là trung điểm các đoạn thẳng AB;CD;AC;BD;AD;BC;MN.

    Xét tính đúng sai của các khẳng định sau.

    a) \overrightarrow{MR} =
\overrightarrow{SN}. Sai||Đúng

    b) \overrightarrow{GA} +
\overrightarrow{GB} + \overrightarrow{GC} + \overrightarrow{GD} =
\overrightarrow{0}. Đúng||Sai

    c) 2\overrightarrow{PQ} =
\overrightarrow{AB} + \overrightarrow{AC} +
\overrightarrow{AD}. Sai||Đúng

    d) \left| \overrightarrow{IA} +
\overrightarrow{IB} + \overrightarrow{IC} + \overrightarrow{ID}
ight| nhỏ nhất khi và chỉ khi điểm I trùng với điểm G. Đúng||Sai

    Hình vẽ minh họa

    a) Đúng: \left. \ \begin{matrix}\overrightarrow{MR} = \dfrac{1}{2}\overrightarrow{BD} \\\overrightarrow{SN} = \dfrac{1}{2}\overrightarrow{BD} \\\end{matrix} ight\} \Rightarrow \overrightarrow{MR} =\overrightarrow{SN}.

    b) Đúng: Vi M là trung điểm của AB nên \overrightarrow{GA} + \overrightarrow{GB} =
2\overrightarrow{GM}

    N là trung điểm của CD nên \overrightarrow{GC} + \overrightarrow{GD} =
2\overrightarrow{GN}

    G là trung điểm của MN nên \overrightarrow{GM} + \overrightarrow{GN} =
\overrightarrow{0}

    Do đó: \overrightarrow{GA} +
\overrightarrow{GB} + \overrightarrow{GC} + \overrightarrow{GD} =
2(\overrightarrow{GM} + \overrightarrow{GN}) = 2.\overrightarrow{0} =
\overrightarrow{0}

    c) Sai: \overrightarrow{PQ} =\overrightarrow{AQ} - \overrightarrow{AP} =\frac{1}{2}(\overrightarrow{AB} + \overrightarrow{AD}) -\frac{1}{2}\overrightarrow{AC}\Leftrightarrow 2\overrightarrow{PQ} =\overrightarrow{AB} - \overrightarrow{AC} +\overrightarrow{AD}

    d) Đúng

    Ta có: \overrightarrow{IA} +
\overrightarrow{IB} + \overrightarrow{IC} + \overrightarrow{ID} =
4\overrightarrow{IG} + (\overrightarrow{GA} + \overrightarrow{GB} +
\overrightarrow{GC} + \overrightarrow{GD}) =
4\overrightarrow{IG}.

    \Rightarrow |\overrightarrow{IA} +
\overrightarrow{IB} + \overrightarrow{IC} + \overrightarrow{ID}| =
|4\overrightarrow{IG}| = 4IG.

    Do đó: |\overrightarrow{IA} +
\overrightarrow{IB} + \overrightarrow{IC} +
\overrightarrow{ID}| nhỏ nhất khi IG = 0 \Leftrightarrow I \equiv G 

  • Câu 16: Vận dụng

    Trong không gian hệ trục tọa độ Oxyz, cho hình hộp ABCD.A'B'C'D' biết A(2;4;0),B(4;0;0),C( -
1;4;7),D'(6;8;10). Xác định tọa độ B’?

    Hình vẽ minh họa

    Giả sử điểm D(a;b;c),B'(a';b';c')

    Gọi O = AC \cap BD \Rightarrow O\left(
\frac{1}{2};4; - \frac{7}{2} ight) \Rightarrow \left\{ \begin{matrix}
a = - 3 \\
b = 8 \\
c = - 7 \\
\end{matrix} ight.

    Suy ra \left\{ \begin{matrix}
\overrightarrow{DD'} = (9;0;17) \\
\overrightarrow{BB'} = (a' - 4;b';c') \\
\end{matrix} ight.. Vì ABCD.A'B'C'D' là hình hộp nên \overrightarrow{DD'} =
\overrightarrow{BB'}

    \Leftrightarrow \left\{ \begin{matrix}
a' = 13 \\
b' = 0 \\
c' = 17 \\
\end{matrix} ight.\  \Rightarrow B'(13;0;17)

  • Câu 17: Thông hiểu

    Trong không gian hệ trục tọa độ Oxyz, cho M(2;1;4)M'(a;b;c) là điểm đối xứng cới điểm M qua Oy. Khi đó a
+ b + c bằng:

    Gọi H là hình chiếu của M trên Oy ta có H(0;1;0). Do M' đối xứng với M qua Oy, khi đó H là trung điểm của M'M

    Suy ra M'( - 2;1; - 4) từ đó a + b + c = - 5.

  • Câu 18: Nhận biết

    Cho hình lập phương ABCD.A_{1}B_{1}C_{1}D_{1}. Hãy phân tích vectơ \overrightarrow{AC_{1}} theo các vectơ \overrightarrow{AB};\overrightarrow{AD};\overrightarrow{AA_{1}}?

    Hình vẽ minh họa

    Ta có: \overrightarrow{AC_{1}} =
\overrightarrow{AC} + \overrightarrow{AA_{1}} = \overrightarrow{AB} +
\overrightarrow{AD} + \overrightarrow{AA_{1}} (Theo quy tắc hình bình hành).

  • Câu 19: Thông hiểu

    Hãy chọn mệnh đề đúng trong các mệnh đề sau đây?

    Nếu \overrightarrow{SB} +
\overrightarrow{SD} = \overrightarrow{SA} + \overrightarrow{SC} thì

    \overrightarrow{SB} -
\overrightarrow{SA} = \overrightarrow{SC} - \overrightarrow{SD}
\Leftrightarrow \overrightarrow{AB} = \overrightarrow{DC}

    Suy ra tứ giác ABCD là hình bình hành

    Mệnh đề sai \overrightarrow{AB} +
\overrightarrow{AC} = \overrightarrow{AD} vì:

    \overrightarrow{AB} +
\overrightarrow{AC} = \overrightarrow{AD} \Leftrightarrow
\overrightarrow{AB} = \overrightarrow{AD} - \overrightarrow{AC}
\Leftrightarrow \overrightarrow{AB} = \overrightarrow{CD}

  • Câu 20: Thông hiểu

    Trong không gian hệ trục tọa độ Oxyz, cho các điểm A(0; - 1;1),B( - 2;1; - 1),C( - 1;3;2). Biết rằng tứ giác ABCD là hình bình hành, khi đó tọa độ điểm D là:

    Giả sử điểm D(x;y;z) ta có ABCD là hình bình hành nên \overrightarrow{BA} =
\overrightarrow{CD}

    \Leftrightarrow \left\{ \begin{matrix}
x + 1 = 2 \\
y - 3 = - 2 \\
z - 2 = 2 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = 1 \\
y = 1 \\
z = 4 \\
\end{matrix} ight.. Vậy tọa độ điểm D(1;1;4)

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 2 Vectơ và hệ trục tọa độ trong không gian KNTT Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 68 lượt xem
Sắp xếp theo