Tìm tọa độ giao điểm của hai đường thẳng:
Theo đề bài, ta biến đổi được (b) có dạng:
Thay x, y, z vào phương trình x+2y+z =9 , ta có:
=> Tọa độ giao điểm của (a) và (b): A (0, - 4, - 1)
Cùng nhau thử sức với bài kiểm tra 15 phút Chương 3 Phương pháp tọa độ trong không gian
Tìm tọa độ giao điểm của hai đường thẳng:
Theo đề bài, ta biến đổi được (b) có dạng:
Thay x, y, z vào phương trình x+2y+z =9 , ta có:
=> Tọa độ giao điểm của (a) và (b): A (0, - 4, - 1)
Cho tứ diện đều với
là trung điểm của
. góc giữa hai đường thẳng
có cosin bằng:
Hình vẽ minh họa
Giả sử cạnh tứ diện đều bằng a. Khi đó:
Tương tự
Ta có:
Do đó
Mà nên
Xác định tọa độ trọng tâm của tam giác
, biết rằng
?
Tọa độ trọng tâm G của tam giác được xác định như sau:
Trong không gian , cho mặt phẳng
, mặt phẳng
chứa trục
và đi qua điểm
. Tìm tham số m để hai mặt phẳng
và
vuông góc với nhau?
Ta có
Mặt phẳng chứa trục
và đi qua điểm
⇒ (Q) có vectơ pháp tuyến
Mặt phẳng (P) có véc-tơ pháp tuyến
Để hai mặt phẳng và
vuông góc với nhau thì
Trong không gian với hệ toạ độ , phương trình nào sau đây là phương trình chính tắc của đường thẳng?
Phương trình chính tắc của đường thẳng có dạng:
với
.
Vậy đáp án đúng là :
Trong không gian với hệ trục tọa độ , cho bốn điểm
. Gọi (L) là tập hợp tất cả các điểm M trong không gian thỏa mãn đẳng thức
. Biết rằng (L) là một đường tròn, đường tròn đó có bán kính r bằng bao nhiêu?
Gọi M(x; y; z) là tập hợp các điểm thỏa mãn yêu cầu bài toán.
Ta có
Từ giả thiết
Suy ra quỹ tích điểm M là đường tròn giao tuyến của mặt cầu tâm và mặt cầu tâm
Dễ thấy
Trong không gian cho
. Viết phương trình mặt phẳng
?
Phương trình mặt phẳng là
Từ gốc O vẽ OH vuông góc với mặt phẳng (P); gọi lần lượt là các góc tạo bởi vector pháp tuyến của (P) với ba trục Ox, Oy, Oz. Phương trình của (P) là (
):
Theo đề bài, ta có:
Gọi
Ta có:
Trong không gian , cho điểm
và mặt phẳng
. Mặt phẳng
đi qua
và song song với mặt phẳng
có phương trình là:
Do mặt phẳng (Q) song song với mặt phẳng (P) nên có vectơ pháp tuyến là
Phương trình mặt phẳng (Q) là:
Trong không gian với hệ trục toạ độ , cho mặt phẳng
. Hỏi có bao nhiêu điểm
thuộc mặt phẳng
với
là các số nguyên không âm.
Ta có nên mặt phẳng
đi qua các điểm
Từ đó suy ra tất cả các điểm có toạ độ nguyên của mặt phẳng (P) đều nằm trong miền tam giác ABC.
Tam giác ABC đều có các cạnh bằng , chiếu các điểm có toạ độ nguyên của hình tam giác ABC xuống mặt phẳng (Oxy) ta được các điểm có toạ độ nguyên của hình tam giác OAB.
Mà số điểm có toạ độ nguyên của tam giác OAB bằng
Trong không gian với hệ tọa độ , cho hai điểm
. Phương trình đường thẳng nào được cho dưới đây không phải là phương trình đường thẳng
?
Ta có
Vì điểm nên
không phải là phương trình đường thẳng AB.
Các đường thẳng còn lại đều có vectơ chỉ phương là (1; 1; −5) và đi qua điểm A(2; 3; −1) hoặc đi qua điểm B(1; 2; 4).
Trong không gian , cho hai vectơ
. Vectơ
có tọa độ là:
Ta có: . Khi đó
Vậy
Xét tính đúng sai của mỗi khẳng định. Trong không gian cho ba điểm
và hai vecto
a) Tích vô hướng của hai vecto bằng
Đúng||Sai
b) Trung điểm của đoạn có tọa độ là
. Sai||Đúng
c) Tọa độ của vecto là
. Sai||Đúng
d) Hình chiếu vuông góc của trọng tâm tam giác lên mặt phẳng
là
Đúng||Sai
Xét tính đúng sai của mỗi khẳng định. Trong không gian cho ba điểm
và hai vecto
a) Tích vô hướng của hai vecto bằng
Đúng||Sai
b) Trung điểm của đoạn có tọa độ là
. Sai||Đúng
c) Tọa độ của vecto là
. Sai||Đúng
d) Hình chiếu vuông góc của trọng tâm tam giác lên mặt phẳng
là
Đúng||Sai
a) đúng, b) sai, c) sai, d) đúng.
a) Ta có
b) Ta có trung điểm của đoạncó tọa độ là
c) Ta có
Suy ra
d) Ta có Suy ra hình chiếu vuông góc của trọng tâm tam giác
lên mặt phẳng
là
.
Trong không gian với hệ trục tọa độ , cho hình bình hành
. Biết
và
. Diện tích hình bình hành
là:
Ta có:
Suy ra diện tích ABCD là:
Trong không gian hệ trục tọa độ cho điểm
. Trong các mệnh đề sau, mệnh đề nào đúng?
Nếu đối xứng với
qua mặt phẳng
thì
.
Nếu đối xứng với
qua trục
thì
.
Nếu đối xứng với
qua gốc tọa độ thì
.
Vậy mệnh đề đúng là: “Nếu đối xứng với
qua mặt phẳng
thì
”.
Trong không gian , cho vectơ
. Các khẳng định sau là đúng hay sai?
a) Tọa độ điểm A là . Đúng||Sai
b) Hình chiếu vuông góc của lên trục
là
. Sai||Đúng
c) Trung điểm của là
. Đúng||Sai
d) Hình chiếu vuông góc của lên mặt phẳng
là
. Sai||Đúng
Trong không gian , cho vectơ
. Các khẳng định sau là đúng hay sai?
a) Tọa độ điểm A là . Đúng||Sai
b) Hình chiếu vuông góc của lên trục
là
. Sai||Đúng
c) Trung điểm của là
. Đúng||Sai
d) Hình chiếu vuông góc của lên mặt phẳng
là
. Sai||Đúng
a) Ta có
b) Hình chiếu vuông góc của A lên Ox là .
c) Trung điểm của là điểm
.
d) Hình chiếu vuông góc của lên mặt phẳng
là
.
Trong không gian với hệ tọa độ , cho hai điểm
. Đường thẳng
đi qua tâm đường tròn nội tiếp tam giác
và vuông góc với mặt phẳng
. Hỏi
đi qua điểm nào dưới đây?
Ta có:
Gọi I là tâm đường tròn nội tiếp tam giác .
Phương trình đường thẳng
Đường thẳng ∆ đi qua điểm M(1; −1; 1).
Cho lăng trụ tam giác . Đặt
. Biểu diễn vectơ
qua các vectơ
. Chọn đáp án đúng?
Ta có:
Vậy đáp án đúng là: .
Trong không gian với hệ trục tọa độ , cho điểm
. Mặt phẳng
qua
cắt chiều dương của các trục
lần lượt tại
thỏa mãn
. Tính giá trị nhỏ nhất của thể tích khối chóp
?
Giả sử với
.
Khi đó mặt phẳng có dạng:
.
Vì (P) đi qua M nên
Vì
Thể tích khối chóp là:
Ta có:
khi
.
Trong không gian , cho hai đường thẳng song song
và
. Viết phương trình đường thẳng nằm trong mặt phẳng (d, d’), đồng thời cách đều hai đường thẳng d và d’.
Lấy .
Đường thẳng cần tìm đi qua trung điểm của MN, là điểm I(3; 0; 2), và song song với d và d’.
Phương trình đường thẳng cần tìm là: