Trong không gian , đường thẳng
có một vectơ chỉ phương là:
Đường thẳng có một vectơ chỉ phương là:
Trong không gian , đường thẳng
có một vectơ chỉ phương là:
Đường thẳng có một vectơ chỉ phương là:
Trong không gian , cho điểm
. Mệnh đề nào sau đây đúng?
Vì tọa độ điểm có
nên
.
Trong không gian với hệ tọa độ , cho hai đường thẳng
và
là giao tuyến của hai mặt phẳng
. Vị trí tương đối của hai đường thẳng là:
Xét hệ phương trình
Cho
Cho
Đường thẳng d1 đi qua M (1; 7; 3) và có vectơ chỉ phương
Đường thẳng d2 đi qua A (3; 1; −3) và có vectơ chỉ phương
Ta có
Do đó vị trí tương đối của hai đường thẳng là cắt nhau.
Trong không gian , cho đường thẳng
. Điểm nào sau đây không thuộc đường thẳng
?
Thay vào
ta được:
Thay vào
ta được:
Thay vào
ta được:
hệ vô nghiệm nên
.
Thay vào
ta được:
Cho ba mặt phẳng và
qua hai điểm
và vuông góc với
. Câu nào sau đây đúng? (Có thể chọn nhiều hơn 1 đáp án)
Theo đề bài ta có Một vecto chỉ phương của
là:
=> A đúng
Vecto chỉ phương thứ hai của là:
Một vecto pháp tuyến của là:
=> B đúng.
Vecto chỉ phương của là:
Ta có: nên
không vuông góc với
.
Cho tam giác ABC với .
Viết phương trình tổng quát của mặt phẳng vuông góc với mặt phẳng
song song đường cao AH của tam giác ABC.
Theo đề bài, ta có: song song đường cao
Trong không gian cho điểm
. Viết phương trình mặt phẳng
đi qua
và cắt các trục tọa độ
tại
sao cho
là trực tâm của tam giác
?
Giả sử .
Khi đó:
Ta có:
Ta có: vì H là trực tâm của tam giác ABC suy ra
Mặt khác
Vậy hay
.
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng . Trong các vectơ sau, vectơ nào là vectơ chỉ phương của đường thẳng (d)?
Phương trình chính tắc của đường thẳng có dạng:
với
.
Vectơ chỉ phương .
Trong không gian với hệ trục tọa độ , cho ba vectơ
,
và
. Chọn mệnh đề đúng?
Ta có: là mệnh đề đúng.
Trong không gian với hệ tọa độ , cho hai đường thẳng chéo nhau
. Viết phương trình đường vuông góc chung của
.
Đường thẳng lần lượt có vectơ chỉ phương là
Gọi ∆ là đường vuông góc chung giữa và
, suy ra ∆ có vectơ chỉ phương
Giả sử ∆ giao với lần lượt tại
, khi đó ta có
Do ∆ là đường vuông góc chung, suy ra:
Từ đó suy ra đường thẳng ∆ có véc tơ chỉ phương và đi qua điểm
.
Vậy ta có phương trình đường thẳng:
Trong không gian chọn hệ trục tọa độ cho trước, (đơn vị đo là kilômét), rađa phát hiện một máy bay chiến đấu của Nga di chuyển với vận tốc và hướng không đổi từ điểm đến điểm
trong 20 phút. Nếu máy bay tiếp tục giữ nguyên vận tốc và hướng bay thì tọa độ của máy bay sau 5 phút tiếp theo là
, trong đó
là phân số tối giản. Khi đó, hãy tính
?
Đáp án: 1223
Trong không gian chọn hệ trục tọa độ cho trước, (đơn vị đo là kilômét), rađa phát hiện một máy bay chiến đấu của Nga di chuyển với vận tốc và hướng không đổi từ điểm đến điểm
trong 20 phút. Nếu máy bay tiếp tục giữ nguyên vận tốc và hướng bay thì tọa độ của máy bay sau 5 phút tiếp theo là
, trong đó
là phân số tối giản. Khi đó, hãy tính
?
Đáp án: 1223
Gọi là tọa độ của máy bay sau 5 phút tiếp theo.
Do máy bay tiếp tục giữ nguyên vận tốc và thời gian bay từ gấp 4 lần thời gian bay từ
nên
Mặt khác, máy bay giữ nguyên hướng bay nên và
cùng hướng.
Suy ra
Tọa độ của máy bay sau 5 phút tiếp theo là .
Do đó,
Trong không gian với hệ tọa độ , cho 2 điểm
, đường thẳng
và mặt phẳng
. Đường thẳng
đi qua B, cắt đường thẳng ∆ và mặt phẳng
lần lượt tại C và D sao cho thể tích của 2 tứ diện
và
bằng nhau, biết
có một vectơ chỉ phương là
. Tính
.
Hình vẽ minh họa
Ta có
Nên . Vì
C là trung điểm của BD nên .
Điểm nên
là vectơ chỉ phương của đường thẳng d.
Vậy
Trong không gian với hệ trục tọa độ , cho điểm
và mặt phẳng
. Gọi
là hình chiếu vuông góc của
lên
. Tìm tọa độ điểm
?
Vì H là hình chiếu vuông góc của M lên (P) nên
Điểm H thuộc mặt phẳng (P) nên ta có phương trình:
Trong không gian với hệ trục tọa độ , cho các điểm
. Xác định tọa độ điểm
sao cho
?
Ta có:
Mà
Vậy đáp án cần tìm là: hoặc
Trong không gian với hệ tọa độ , cho mặt phẳng
, véc tơ nào trong các vectơ được cho dưới đây là một vectơ pháp tuyến của
?
Ta có phương trình mặt phẳng nên có một vectơ pháp tuyến của mặt phẳng
là:
Mặt khác cùng phương với
Do đó là một vectơ pháp tuyến của
.
Trong không gian , cho vectơ
. Hãy chọn vectơ cùng phương với
?
Ta có: cùng phương với
khi
. Khi đó đáp án cần tìm là
(vì
).
Trong không gian với hệ tọa độ , cho ba điểm
. Gọi
là mặt phẳng đi qua
sao cho tổng khoảng cách từ
và
đến
lớn nhất, biết rằng
không cắt đoạn
. Khi đó vectơ pháp tuyến của mặt phẳng
là:
Kiểm tra : Mặt phẳng (P) có phương trình 2x − 2y − z − 1 = 0.
Thay tọa độ B, C vào (P) ta thấy B, C nằm về 2 phía (P) nên loại .
Kiểm tra : Mặt phẳng (P) có phương trình x+ 2z −3 = 0.
Thay tọa độ B, C vào (P) ta thấy B ∈ (P) nên loại .
Kiểm tra : Mặt phẳng (P) có phương trình −x + 2y − z + 2 = 0.
Thay tọa độ B, C vào (P) ta thấy B, C nằm về 2 phía (P) nên loại .
Kiểm tra v: Mặt phẳng (P) có phương trình x − 2z + 1 = 0.
Thay tọa độ B, C vào (P) ta thấy B, C nằm về cùng phía (P) nên chọn .
Trong không gian cho điểm
. Viết phương trình mặt phẳng
đi qua điểm
và cắt các trục tọa độ tại ba điểm phân biệt
sao cho
là trực tâm của tam giác
?
Giả sử (P) cắt các trục tọa độ tại
Khi đó
Ta có: mà H là trực tâm của tam giác ABC nên
Mặt khác
Trong không gian cho hình hộp có
. Gọi
là trung điểm của
,
là giao điểm của
và
. Mệnh đề nào sau đây đúng?
Hình vẽ minh họa
Vì I là trung điểm của B’C’ suy ra
Và K là giao điểm của nên theo định lí Talet
Ta có:
Khi đó
Vậy .
Cho ba vectơ không đồng phẳng. Xét các vectơ
. Khẳng định nào dưới đây đúng?
Giả sử ba vectơ đồng phẳng, khi đó
Ta có:
Khi đó:
Vậy ba vectơ đồng phẳng.
Vậy khẳng định đúng là: “Ba vectơ đồng phẳng”.