Tính giá trị biết rằng
?
Ta có:
Tính giá trị biết rằng
?
Ta có:
Cho ba điểm phân biệt. Khi đó:
Chọn: Điều kiện cần và đủ để thẳng hàng là
cùng phương với
Cho hình bình hành ABCD. Đẳng thức nào sau đây đúng?
Áp dụng quy tắc hình bình hành tại điểm B ta có:
Đẳng thức nào sau đây mô tả đúng hình vẽ bên:
Nhận xét: .
Cho hai vectơ và
đều khác vectơ
Tích vô hướng của
và
được xác định bằng công thức nào dưới đây?
Cho hai vectơ và
đều khác vectơ
Tích vô hướng của
và
là một số, kí hiệu là
được xác định bởi công thức sau:
.
Cho ba điểm phân biệt. Khẳng định nào sau đây đúng?
Xét đáp án Ta có
. Vậy đáp án này đúng.
Cho không cùng phương,
. Vectơ cùng hướng với
là:
Ta có. Chọn
.
Cho góc thỏa
và
Khẳng định nào sau đây đúng?
Ta có
Cho tam giác và đặt
Cặp vectơ nào sau đây cùng phương?
Dễ thấy hai vectơ
cùng phương.
Chp parabol như hình vẽ:
Biết G là đỉnh parabol cách AB một khoảng bằng 6, . Tính khoảng cách giữa hai điểm
?
Xét hệ tọa độ Oxy với O là trung điểm AB, tia Ox là tia OB.
Khi đó tọa độ
Gọi biểu thức hàm số có đồ thị là hình parabol là
Có G là đỉnh parabol suy ra
Có suy ra
Biểu thức hàm số là
Hoành độ giao điểm với trục hoành:
Vậy khoảng cách giữa hai điểm A và B là .
Nếu là trọng tâm tam giác
thì đẳng thức nào sau đây đúng?
Gọi là trung điểm
.
Ta có .
Trong mặt phẳng tọa độ cho vectơ
. Vectơ nào sau đây không vuông góc với vectơ
?
Vì nên đáp án
đúng.
Vì nên đáp án
đúng.
Vì nên đáp án
sai.
Vì nên đáp án
đúng.
Trong hệ tọa độ cho bốn điểm
Khẳng định nào sau đây đúng?
Ta có là hình bình hành.
Cho tam giác Có bao nhiêu vectơ khác vectơ - không có điểm đầu và điểm cuối là các đỉnh
Đó là các vectơ:
Cho tam giác ABC vuông tại A có AB = 3, BC = 5. Tính
Ta có:
Tam giác ABC vuông tại A ta có:
Cho hình chữ nhật Khẳng định nào sau đây đúng?
Ta có
Mà
Cho lục giác đều ABCDEF có tâm O. Số các vectơ bằng vectơ có điểm đầu và điểm cuối là đỉnh của lục giác bằng :
Các vectơ bằng vectơ có điểm đầu và điểm cuối là đỉnh của lục giác là
và
.
Cho có
. Số đo của góc
là:
Ta có:
Cho tam giác có
. Tính độ dài cạnh
.
Áp dụng định lí côsin:
.
Suy ra .
Cho tam giác ABC có điểm O thỏa mãn . Khẳng định nào sau đây là đúng?
Ta có: .
Vẽ hình bình hành , suy ra
. Mà
. Suy ra
. Do đó
là hình chữ nhật. Do đó tam giác
vuông
.