Đề kiểm tra 15 phút Chương 4 Số phức

Cùng nhau thử sức với bài kiểm tra 15 phút Chương 4 Số phức.

  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Số phức liên hợp của số phức 5 - 3i là

    \overline z = \overline {a + bi} = a – bi

    \Rightarrow \overline z  = \overline {5 - 3i}  = 5 - ( - 3i) = 5 + 3i

  • Câu 2: Vận dụng

    Cho số phức z thỏa mãn \left| {z - 1 + 2i} ight| = 2 Biết rằng tập hợp các điểm biểu diễn số phức {\text{w}} = 3 - 2i + \left( {2 - i} ight)z là một đường tròn. Tính bán kính của đường tròn đó.

    Ta có: {\text{w}} = 3 - 2i + \left( {2 - i} ight)z = 3 - 7i + \left( {2 - i} ight)\left( {z - 1 + 2i} ight)

    \Rightarrow {\text{w}} - 3 + 7i = \left( {2 - i} ight)\left( {z - 1 + 2i} ight)

    \Rightarrow \left| {{\text{w}} - 3 + 7i} ight| = \left| {\left( {2 - i} ight)\left( {z - 1 + 2i} ight)} ight| = \left| {2 - i} ight|\left| {z - 1 + 2i} ight| = 2\sqrt 5

    => Tập hợp các điểm biểu diễn số phức {\text{w}} = 3 - 2i + \left( {2 - i} ight)z là một đường tròn bán kính R = 2\sqrt 5

  • Câu 3: Thông hiểu

    Cho phương trình sau: z^4 – 4z^3 +7z^2 – 16z + 12 = 0. Tính tổng số tất cả các nghiệm của phương trình?

    4 || Bốn || bốn

    Đáp án là:

    Cho phương trình sau: z^4 – 4z^3 +7z^2 – 16z + 12 = 0. Tính tổng số tất cả các nghiệm của phương trình?

    4 || Bốn || bốn

    Do tổng tất cả các hệ số của phương trình z^4 – 4z^3 +7z^2 – 16z + 12 = 0 bằng 0 nên z^4 – 4z^3 +7z^2 – 16z + 12 = 0 có nghiệm z = 1.

    z^4 – 4z^3 +7z^2 – 16z + 12 = 0\Leftrightarrow (z – 1)(z^3 – 3z^2 + 4z – 12) = 0

    \Leftrightarrow (z – 1) (z – 3) (z^2 + 4) = 0

    \Leftrightarrow\left[ \begin{array}{l}z = 1\\z = 3\\{z^2} + 4 = 0\end{array} ight. \Leftrightarrow \left[ \begin{array}{l}z = 1\\z = 3\\z = 2i\\z =  - 2i\end{array} ight.

    Vậy phương trình đã cho có 4 nghiệm và cộng tổng chúng lại ta được 4.

  • Câu 4: Vận dụng cao

    Cho hai số phức {z_1},{z_2} có điểm biểu diễn lần lượt là {M_1},{M_2} cùng thuộc đường tròn có phương trình {x^2} + {y^2} = 1\left| {{z_1} - {z_2}} ight| = 1. Tính giá trị biểu thức P = \left| {{z_1} + {z_2}} ight|

     Cách 1: Do {M_1},{M_2} cùng thuộc đường tròn có phương trình {x^2} + {y^2} = 1 nên \left| {{z_1}} ight| = \left| {{z_2}} ight| = 1

    Lại có: 

    \begin{matrix}  \left| {{z_1} - {z_2}} ight| = 1 \Leftrightarrow {\left| {{z_1} - {z_2}} ight|^2} = 1 \hfill \\   \Leftrightarrow \left( {{z_1} - {z_2}} ight)\overline {\left( {{z_1} - {z_2}} ight)}  = 1 \hfill \\   \Leftrightarrow \left( {{z_1} - {z_2}} ight)\left( {\overline {{z_1}}  - \overline {{z_2}} } ight) = 1 \hfill \\ \end{matrix}

    \begin{matrix}   \Leftrightarrow {z_1}.\overline {{z_1}}  - \left( {{z_1}.\overline {{z_2}}  + \overline {{z_1}} .{z_2}} ight) + {z_2}.\overline {{z_2}}  = 1 \hfill \\   \Leftrightarrow {\left| {{z_1}} ight|^2} + {\left| {{z_2}} ight|^2} - \left( {{z_1}.\overline {{z_2}}  + \overline {{z_1}} .{z_2}} ight) = 1 \hfill \\   \Leftrightarrow {z_1}.\overline {{z_2}}  + \overline {{z_1}} .{z_2} = 1 \hfill \\  {P^2} = {\left| {{z_1} + {z_2}} ight|^2} = \left( {{z_1} + {z_2}} ight)\overline {\left( {{z_1} + {z_2}} ight)}  = \left( {{z_1} + {z_2}} ight)\left( {\overline {{z_1}}  + \overline {{z_2}} } ight) \hfill \\   = {\left| {{z_1}} ight|^2} + {\left| {{z_2}} ight|^2} + \left( {{z_1}.\overline {{z_2}}  + \overline {{z_1}} .{z_2}} ight) = 3 \hfill \\ \end{matrix}

    Vậy P = \sqrt 3

    Cách 2: Do {M_1},{M_2}, cùng thuộc đường tròn (T) tâm O(0;0), bán kính R = 1 và \left| {{z_1} - {z_2}} ight| = 1 nên {M_1}{M_2} =1.

    Suy ra \Delta O{M_1}{M_2} là tam giác đều cạnh bằng 1

    P = \left| {{z_1} + {z_2}} ight| = \left| {\overrightarrow {O{M_1}}  + \overrightarrow {O{M_2}} } ight| = \left| {2\overrightarrow {OH} } ight| = 2.OH = 2.\frac{{\sqrt 3 }}{2} = \sqrt 3 ( Trong đó H là trung điểm {M_1}{M_2})

  • Câu 5: Thông hiểu

    Cho số phức z = 2 + i. Tính |z|

     Ta có \left| z ight| = \sqrt {{2^2} + {1^2}}  = \sqrt 5

  • Câu 6: Thông hiểu

    Cho số phức \frac{{3 - i}}{z} + {\left( {2 - i} ight)^3} = 3 - 13i. Số phức \frac{{{{\left( {z + 12i} ight)}^2}}}{i} + {z^2} là số phức nào sau đây?

     Ta có: {\left( {2 - i} ight)^3} = 2 - 11i \Rightarrow z = \frac{{3 - i}}{{1 - 2i}} = 1 + i

    Suy ra  \frac{{{{\left( {z + 12i} ight)}^2}}}{i} + {z^2} = ((1+i) +12i)^2 :i +(1+i)^2

    =(1+13i)^2 :i +(1+i)^2 =26+168i +2i =26+170i.

  • Câu 7: Vận dụng

    Tính số phức sau: z = (1+i)15

    Ta có: (1 + i)2 = 1 + 2i – 1 = 2i => (1 + i)14 = (2i)7 = 128.i7 = -128.i

    z = (1+i)15 = (1+i)14(1+i) = -128i (1+i) = -128 (-1 + i) = 128 – 128i

  • Câu 8: Thông hiểu

    Cho {\left( {x + 2i} ight)^2} = 3x + yi,\left( {x,y \in \mathbb{R}} ight). Giá trị của x và y bằng:

     Ta có:

    {\left( {x + 2i} ight)^2} = 3x + yi \Leftrightarrow {x^2} - 4 + 4xi = 3x + yi

    \Leftrightarrow \left\{ \begin{gathered}  {x^2} - 4 = 3x \hfill \\  4x = y \hfill \\ \end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}  \left[ \begin{gathered}  x =  - 1 \hfill \\  x = 4 \hfill \\ \end{gathered}  ight. \hfill \\  4x = y \hfill \\ \end{gathered}  ight. \Leftrightarrow \left[ \begin{gathered}  \left\{ \begin{gathered}  x =  - 1 \hfill \\  y =  - 4 \hfill \\ \end{gathered}  ight. \hfill \\  \left\{ \begin{gathered}  x = 4 \hfill \\  y = 16 \hfill \\ \end{gathered}  ight. \hfill \\ \end{gathered}  ight.

  • Câu 9: Vận dụng

    Biết z_1z_2 là hai nghiệm phức của phương trình: 2{x^2} + \sqrt 3 x + 3 = 0. Khi đó z_1^2 + z_2^2  bằng:

     Ta có: z_1^2 + z_2^2 = {\left( {{z_1} + {z_2}} ight)^2} - 2{z_1}{z_2}

    Áp dụng hệ thức Viet ta có: \left\{ \begin{array}{l}{z_1} + {z_2} =  - \dfrac{{\sqrt 3 }}{2}\\{z_1}{z_2} = \dfrac{3}{2}\end{array} ight.

    Suy ra ta có:z_1^2 + z_2^2 = {\left( { - \frac{{\sqrt 3 }}{2}} ight)^2} - 2.\frac{3}{2} =  - \frac{9}{4}.

  • Câu 10: Nhận biết

    Số phức liên hợp của số phức 3 - 4i là:

    \overline z = \overline {a + bi} = a – bi

    \Rightarrow \overline z  = \overline {3 - 4i}  = 3 - ( - 4i) = 3 + 4i

  • Câu 11: Thông hiểu

    Tìm các căn bậc hai của số phức z = 5 + 12i

     Giả sử m + ni (m; n \in R) là căn bậc hai của z

    Ta có: {(m + ni)^2} = 5 + 12i

    \Leftrightarrow {m^2} + 2mni + {n^2}{i^2} = 5 + 12i \Leftrightarrow {m^2} + 2mni - {n^2} = 5 + 12i

    \Leftrightarrow \left\{ \begin{gathered}  {m^2} - {n^2} = 5 \hfill \\  2mn = 12 \hfill \\ \end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}  {m^2} - {n^2} = 5(1) \hfill \\  m = \frac{6}{n}(2) \hfill \\ \end{gathered}  ight.

    Thay (2) vào (1) ta có: {\left( {\frac{6}{n}} ight)^2} - {n^2} = 5 \Leftrightarrow 36 - {n^4} = 5{n^2}

    \Leftrightarrow {n^4} + 5{n^2} - 36 = 0 \Leftrightarrow {n^2} = 4;{n^2} =  - 9(loai)

    \left[ \begin{gathered}  n = 2 \Rightarrow m = 3 \hfill \\  n =  - 2 \Rightarrow m =  - 3 \hfill \\ \end{gathered}  ight.

    Vậy z có hai căn bậc hai là 3+2i và -3-2i.

  • Câu 12: Vận dụng

    Tìm tổng các giá trị của số thực a sao cho phương trình {z^2} + 3z + {a^2} - 2a = 0 có nghiệm phức z_0 thỏa mãn \left| {{z_{m{o}}}} ight| = 2

    4 || Bốn || bốn

    Đáp án là:

    Tìm tổng các giá trị của số thực a sao cho phương trình {z^2} + 3z + {a^2} - 2a = 0 có nghiệm phức z_0 thỏa mãn \left| {{z_{m{o}}}} ight| = 2

    4 || Bốn || bốn

     Ta có với mọi a \in \mathbb R thì phương trình {z^2} + 3z + {a^2} - 2a = 0 luôn có nghiệm phức.

    {z_1} = \frac{{ - 3 + i\sqrt {\left| { - 4{a^2} + 8a + 9} ight|} }}{2}{z_2} = \frac{{ - 3 - i\sqrt {\left| { - 4{a^2} + 8a + 9} ight|} }}{2}.

    Suy ra \left| {{z_1}} ight| = \left| {{z_2}} ight| = \sqrt {\frac{3}{4} + \frac{{\left| { - 4{a^2} + 8a + 9} ight|}}{4}}.

     

    \left| {{z_{m{o}}}} ight| = 2 \Rightarrow \sqrt {\frac{3}{4} + \frac{{\left| { - 4{a^2} + 8a + 9} ight|}}{4}}  = 2

    \Leftrightarrow \frac{9}{4} + \frac{{\left| { - 4{a^2} + 8a + 9} ight|}}{4} = 4 \Leftrightarrow \left| { - 4{a^2} + 8a + 9} ight| = 7

    \Leftrightarrow \left[ \begin{array}{l} - 4{a^2} + 8a + 9 = 7\\ - 4{a^2} + 8a + 9 =  - 7\end{array} ight. \Leftrightarrow \left[ \begin{array}{l} - 4{a^2} + 8a + 2 = 0{m{        }}\left( 1 ight)\\ - 4{a^2} + 8a + 16 = 0{m{      }}\left( 2 ight)\end{array} ight.

    Từ (1) ta có  {a_1} + {a_2} = 2, từ (2) ta có {a_3} + {a_4} = 2.

    Vậy tổng {a_1} + {a_2} + {a_3} + {a_4} = 4.

  • Câu 13: Vận dụng cao

    Cho các số phức z thỏa mãn \left| {{z^2} + 4} ight| = \left| {\left( {z - 2i} ight)\left( {z - 1 + 2i} ight)} ight|. Tìm giá trị nhỏ nhất của biểu thức P = \left| {z + 3 - 2i} ight|.

    3 || ba || Ba

    Đáp án là:

    Cho các số phức z thỏa mãn \left| {{z^2} + 4} ight| = \left| {\left( {z - 2i} ight)\left( {z - 1 + 2i} ight)} ight|. Tìm giá trị nhỏ nhất của biểu thức P = \left| {z + 3 - 2i} ight|.

    3 || ba || Ba

    Gọi M(x; y) là điểm biểu diễn số phức z trong mặt phẳng phức.

    \left| {{z^2} + 4} ight| = \left| {\left( {z - 2i} ight)\left( {z - 1 + 2i} ight)} ight| \Leftrightarrow \left| {z - 2i} ight|.\left| {z + 2i} ight| = \left| {\left( {z - 2i} ight)\left( {z - 1 + 2i} ight)} ight|

    \Leftrightarrow \left[ \begin{array}{l}z = 2i\\\left| {z + 2i} ight| = \left| {z - 1 + 2i} ight|\end{array} ight.

    \Leftrightarrow \left[ \begin{array}{l}x = 0;\;y = 2\\x = \frac{1}{2};\;y \in \mathbb R\end{array} ight.

    Vậy M= (0; 2) hoặc M \in d:x = \frac{1}{2}.

    Gọi I(-3;2) thì P=IM. Khi đó I{M_{\min }} = 3 hoặc I{M_{\min }} = d(I;d) = \frac{7}{2}.

    Vậy {P_{\min }} = 3.

  • Câu 14: Nhận biết

    Cho số phức z thỏa mãn {z^2} - 6z + 13 = 0. Giá trị của \left| {z + \frac{6}{{z + i}}} ight| là:

     {z^2} - 6z + 13 = 0 \Leftrightarrow \left[ \begin{gathered}  z = 3 + 2i \hfill \\  z = 3 - 2i \hfill \\ \end{gathered}  ight.

    Với z = 3 + 2i \Rightarrow z + \frac{6}{{z + i}} = 4 + i \Rightarrow \left| {z + \frac{6}{{z + i}}} ight| = \sqrt {17}

    Với z = 3 - 2i \Rightarrow z + \frac{6}{{z + i}} = \frac{{24}}{5} - \frac{7}{5}i \Rightarrow \left| {z + \frac{6}{{z + i}}} ight| = 5

  • Câu 15: Thông hiểu

    Cho số phức z = 1 + \left( {1 + i} ight) + {\left( {1 + i} ight)^2} + ... + {\left( {1 + i} ight)^{26}}. Phần thực của số phức z là?

     Ta có: z = 1 + \left( {1 + i} ight) + {\left( {1 + i} ight)^2} + ... + {\left( {1 + i} ight)^{26}} = \frac{{{{\left( {1 + i} ight)}^{27}} - 1}}{i}

    = \frac{{{{\left( {1 + i} ight)}^{26}}.\left( {1 + i} ight) - 1}}{i} = \frac{{{{(2i)}^{13}}\left( {1 + i} ight) - 1}}{i}

    = \frac{{{2^{13}}i - {2^{13}} - 1}}{i} = {2^{13}} + (1 + {2^{13}})i

    Vậy phần thực là  2^{13}.

  • Câu 16: Nhận biết

    Cho số phức z = 1 + 2i, giá trị của số phức w = z + i\overline z là?

    Ta có: w = z + i\overline z  = \left( {1 + 2i} ight) + i\left( {1 - 2i} ight) = 3 + 3i

  • Câu 17: Thông hiểu

    Số phức z = \frac{{3 - 4i}}{{4 - i}} bằng:

     Ta có: z = \frac{{3 - 4i}}{{4 - i}} = \frac{{16}}{{17}} - \frac{{13}}{{17}}i

  • Câu 18: Nhận biết

    Kí hiệu {z_1},{z_2} là hai nghiệm phức của phương trình 3{z^2} - z + 1 = 0. Tính P = \left| {{z_1}} ight| + \left| {{z_2}} ight|

    Phương trình 3{z^2} - z + 1 = 0 có hai nghiệm {z_{1,2}} = \frac{{1 \pm i\sqrt {11} }}{6}.

    Khi đó P = \left| {{z_1}} ight| + \left| {{z_2}} ight| = \frac{{2\sqrt 3 }}{3}

  • Câu 19: Thông hiểu

    Gọi {z_1},{z_2},{z_3},{z_4} là bốn nghiệm của phương trình {z^4} - {z^3} - 2{z^2} + 6z - 4 = 0 trên tập

    số phức tính tổng: S = \frac{1}{{z_1^2}} + \frac{1}{{z_2^2}} + \frac{1}{{z_3^2}} + \frac{1}{{z_4^2}}.

    Ta có: {z^4} - {z^3} - 2{z^2} + 6z - 4 = 0 \Leftrightarrow \left( {z - 1} ight)\left( {z + 2} ight)\left( {{z^2} - 2z + 2} ight) = 0 (1)

    Không mất tính tổng quát ta gọi 4 nghiệm của (1) lần lượt là:

    \left[ \begin{array}{l}{z_1} = 1\\{z_2} =  - 2\\{z_3} = 1 + i\\{z_4} = 1 - i\end{array} ight.

    Thay và biểu thức ta có: 

    S = \frac{1}{{z_1^2}} + \frac{1}{{z_2^2}} + \frac{1}{{z_3^2}} + \frac{1}{{z_4^2}} = 1 + \frac{1}{4} + \frac{1}{{{{\left( {1 - i} ight)}^2}}} + \frac{1}{{{{\left( {1 + i} ight)}^2}}} = \frac{5}{4}

  • Câu 20: Nhận biết

    Nghiệm của phương trình: {z^2} + 4z + 7 = 0  là:

     Ta có: \Delta ' = {2^2} - 7 =  - 3 = 3{i^2}

    \Rightarrowcác căn bậc hai của \triangle '  là \pm i\sqrt 3

    Vậy nghiệm của phương trình là: z =  - 2 + \sqrt 3 i,\,\,\,z =  - 2 - \sqrt 3 i

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 4 Số phức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 39 lượt xem
Sắp xếp theo