Tìm tập hợp các tâm I của mặt cầu sau nằm trên?
Theo đề bài, ta xác định các hệ số của :
Suy ra ta gọi được tâm I của mặt cầu có tọa độ là
Xét là mặt cầu
Vậy tập hợp các điểm I là phân đường thẳng
tương ứng với .
Tìm tập hợp các tâm I của mặt cầu sau nằm trên?
Theo đề bài, ta xác định các hệ số của :
Suy ra ta gọi được tâm I của mặt cầu có tọa độ là
Xét là mặt cầu
Vậy tập hợp các điểm I là phân đường thẳng
tương ứng với .
Trong không gian với hệ trục tọa độ , cho
. Phương trình mặt phẳng
đi qua
cắt các trục tọa độ
lần lượt tại
(khác
) sao cho
là trực tâm tam giác
là:
Mặt phẳng cắt trục
lần lượt tại
suy ra
là trực tâm của tam giác
và
Phương trình mặt phẳng .
Trong không gian với hệ tọa độ , cho 2 điểm
, đường thẳng
và mặt phẳng
. Đường thẳng
đi qua B, cắt đường thẳng ∆ và mặt phẳng
lần lượt tại C và D sao cho thể tích của 2 tứ diện
và
bằng nhau, biết
có một vectơ chỉ phương là
. Tính
.
Hình vẽ minh họa
Ta có
Nên . Vì
C là trung điểm của BD nên .
Điểm nên
là vectơ chỉ phương của đường thẳng d.
Vậy
Trong không gian với hệ tọa độ , cho hai đường thẳng
và
là giao tuyến của hai mặt phẳng
. Vị trí tương đối của hai đường thẳng là:
Xét hệ phương trình
Cho
Cho
Đường thẳng d1 đi qua M (1; 7; 3) và có vectơ chỉ phương
Đường thẳng d2 đi qua A (3; 1; −3) và có vectơ chỉ phương
Ta có
Do đó vị trí tương đối của hai đường thẳng là cắt nhau.
Cho đường thẳng có một vec-tơ chỉ phương là:
Ta có vectơ pháp tuyến của hai mặt phẳng
và
lần lượt là
Ta có vectơ chỉ phương của (D) là tích có hướng của 2 vecto pháp tuyến của 2 mặt phẳng:
Trong không gian , cho hai đường thẳng
. Gọi
là tập hợp tất cả các số
sao cho
chéo nhau và khoảng cách giữa chúng bằng
. Tính tổng tất cả các phần tử của
.
Vectơ chỉ phương của là
Khi đó: .
Gọi là mặt phẳng chứa
song song với
.
Tức là, qua
và nhận
làm vectơ pháp tuyến.
Ta có phương trình
Xét điểm . Do
chéo nhau nên
.
Lại có:
Vậy tổng các phần tử của S là .
Trong không gian với hệ tọa độ cho điểm
và mặt phẳng
. Đường thẳng
đi qua
và có vectơ chỉ phương
cắt
tại điểm
. Điểm
thay đổi trong
sao cho
luôn nhìn đoạn
dưới góc
. Khi độ dài
lớn nhất, đường thẳng
đi qua điểm nào trong các điểm sau?
Hình vẽ minh họa
Phương trình
Đường thẳng d cắt P tại B(−2; −2; 1).
Gọi H là hình chiếu của A lên (P).
Ta có: H(−3; −2; −1).
Vì MB ⊥ MA; MB ⊥ AH nên MB ⊥ MH suy ra MB ≤ BH.
Do đó: MB lớn nhất bằng BH khi M ≡ H
Vậy MB đi qua B, nhận là vectơ chỉ phương.
Phương trình do đó MB đi qua điểm
.
Trong không gian với hệ trục tọa độ cho các điểm
. Phương trình mặt phẳng đi qua
và vuông góc với
là:
Ta có:
Vậy phương trình mặt phẳng đi qua và vuông góc với
là:
Trong không gian cho mặt phẳng
. Một vectơ pháp tuyến của mặt phẳng
là:
Một vectơ pháp tuyến của mặt phẳng là:
.
Trong không gian với hệ tọa độ , cho
. Gọi
là mặt cầu tâm
bán kính bằng
là mặt cầu tâm
bán kính bằng
. Có bao nhiêu mặt phẳng tiếp xúc với hai mặt cầu
đồng thời song song với đường thẳng đi qua 2 điểm
,
?
Hình vẽ minh họa:
Ta có nên
nằm bên trong mặt cầu
.
Một mặt phẳng qua và
cắt hai mặt cầu theo hai đường tròn giao tuyến như hình bên.
Kẻ tiếp tuyến chung của hai đường tròn, tiếp tuyến này sẽ cắt đường thẳng tại
.
Gọi lần lượt là tiếp điểm với hai đường tròn như hình vẽ.
Tam giác đồng dạng tam giác
nên
.
Suy ra .
Gọi là mặt phẳng tiếp xúc với cả hai mặt cầu
và
.
Khi đó sẽ luôn đi qua
.
Gọi với
là một vectơ pháp tuyến của mặt phẳng
.
Phương trình .
Ta có:
Trường hợp : chọn
.
Khi đó (nhận).
Trường hợp : chọn
.
Khi đó (loại vì chứa
).
Trong không gian cho hai mặt phẳng
. Góc giữa hai mặt phẳng
bằng:
Ta có: có 1 vectơ pháp tuyến là
có 1 vectơ pháp tuyến là
Khi đó:
Trong không gian với hệ tọa độ , cho đường thẳng
. Điểm
nằm trên đường thẳng
thì điểm M có dạng nào sau đây?
Đường thẳng đi qua điểm
và có vectơ chỉ phương
nên đường thẳng
có phương trình tham số là
Điểm nằm trên đường thẳng
nên điểm
có dạng
Giá trị phải thỏa mãn điều kiện nào để mặt cong là mặt cầu:
?
Ta có:
là mặt cầu
.
Trong không gian , viết phương trình mặt cầu
đường kính
biết
?
Gọi là trung điểm của
khi đó
là tâm mặt cầu
.
Bán kính
Vậy phương trình mặt cầu cần tìm là: .
Trong không gian , đường thẳng
có một vectơ chỉ phương là:
Đường thẳng có một vectơ chỉ phương là:
Trong không gian , cho mặt phẳng
có phương trình
. Xét mặt phẳng
, với
là tham số thực. Tìm tất cả giá trị của m để
tạo với
góc
.
Ta có: và
có vectơ pháp tuyến lần lượt là
Vì tạo với
góc
.
.
Trong không gian , cho
và mặt phẳng
. Viết phương trình mặt cầu đi qua
và tiếp xúc mặt phẳng
.
Gọi là tâm mặt cầu cần tìm.
Theo bài ra ta có:
Vậy phương trình mặt cầu tâm I(3; 1; −2) bán kính là
.
Trong không gian tọa độ , cho mặt phẳng
và đường thẳng
. Khoảng cách giữa đưởng thẳng
và mặt phẳng
bằng:
Đường thẳng đi qua
và có vectơ chỉ phương
Mặt phẳng có vectơ pháp tuyến
.
Ta có: , nên đường thằng
song song với mặt phẳng
.
Vậy khoảng cách giữa đường thẳng và mặt phẳng
bằng khoảng cách từ
đến mặt phẳng
:
Trong không gian , cho bốn điểm
và
. Có tất cả bao nhiêu mặt phẳng phân biệt đi qua ba trong năm điểm
?
Hình vẽ minh họa
Ta có mặt phẳng (ABC): .
Suy ra thuộc mặt phẳng (ABC).
Số mặt phẳng qua ba trong bốn điểm A, B, C, D là 1.
Số mặt phẳng qua điểm O và hai trong bốn điểm A, B, C, D là .
Vậy số mặt phẳng phân biệt đi qua ba trong năm điểm là
.
Trong không gian với hệ tọa độ vuông góc , cho mặt phẳng
và hai điểm
. Hình chiếu vuông góc của đoạn thẳng
trên mặt phẳng
có độ dài bao nhiêu?
Ta có . Gọi α là góc giữa đường thẳng AB và (P).
Khi đó:
Hình chiếu vuông góc của đoạn thẳng AB trên mặt phẳng (P) có độ dài bằng: