Đề kiểm tra 15 phút Chương 5 Phương trình mặt phẳng, đường thẳng, mặt cầu CTST

Mô tả thêm: Bài kiểm tra 15 phút Phương trình mặt phẳng, đường thẳng, mặt cầu của chúng tôi gồm 4 mức độ được thay đổi ngẫu nhiên, giúp bạn đọc rèn luyện củng cố kiến thức tốt hơn.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Trong không gian với hệ tọa độ Oxyz, đường thẳng d:\left\{ \begin{matrix}
x = 1 + 2t \\
y = 3 - t \\
z = 1 - t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight) đi qua điểm nào dưới đây?

    Nếu một điểm nằm trên một đường thẳng thì khi thay tọa độ điểm đó vào phương trình đường thẳng thì sẽ thỏa mãn phương trình đường thẳng.

    Lần lượt thay tọa độ M từ các phương án vào phương trình đường thẳng d ta được M(−3; 5; 3) thỏa mãn yêu cầu bài toán.

  • Câu 2: Vận dụng

    Trong không gian với hệ tọa độ Oxyz cho ba điểm A(1;2;3),B(3;4;4),C(2;6;6)I(a;b;c) là trực tâm tam giác ABC. Tính a +
b + c?

    Ta có: \left\{ \begin{matrix}
\overrightarrow{BC} = ( - 1;2;2);\overrightarrow{AC} = (1;4;3) \\
\overrightarrow{AI} = (a - 1;b - 2;c - 3) \\
\overrightarrow{BI} = (a - 3;b - 4;c - 4) \\
(ABC):2x - 5y + 6z - 10 = 0 \\
\end{matrix} ight.

    Lại có:

    \left\{ \begin{matrix}
\overrightarrow{BI}.\overrightarrow{AC} = 0 \\
\overrightarrow{AI}.\overrightarrow{BC} = 0 \\
I \in (ABC) \\
\end{matrix} ight. \Leftrightarrow \left\{ \begin{matrix}- 1(a - 1) + 2(b - 2) + 2(c - 3) = 0 \\1(a - 3) + 4(b - 4) + 3(c - 4) = 0 \\2a - 5b + 6c - 10 = 0 \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}a = \dfrac{27}{5} \\b = 4 \\c = \dfrac{16}{5} \\\end{matrix} ight.\  \Rightarrow a + b + c = \dfrac{63}{5}

  • Câu 3: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng:\bigtriangleup_{1}:\frac{x - 1}{2} = \frac{y -
2}{1} = \frac{z - 3}{- 2}\bigtriangleup_{2}:\frac{x - 4}{- 1} = \frac{y -
5}{- 2} = \frac{z - 6}{2}

    a) Vectơ có tọa độ (1;2;3) là một vectơ chỉ phương của \bigtriangleup_{1}. Sai||Đúng

    b) Đường thẳng \bigtriangleup_{2} đi qua điểm A(0; - 3;14). Đúng||Sai

    c) Đường thẳng \bigtriangleup_{3} đi qua B(1;1; - 2) và vuông góc với \bigtriangleup_{1} có phương trình tham số là \bigtriangleup_{3}:\left\{
\begin{matrix}
x = 1 - 2t \\
y = 1 - 2t \\
z = - 2 - 3t \\
\end{matrix} ight.. Đúng||Sai

    d) Góc giữa hai đường thẳng \bigtriangleup_{1}\bigtriangleup_{2} khoảng 132^{0}. Sai||Đúng

    Đáp án là:

    Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng:\bigtriangleup_{1}:\frac{x - 1}{2} = \frac{y -
2}{1} = \frac{z - 3}{- 2}\bigtriangleup_{2}:\frac{x - 4}{- 1} = \frac{y -
5}{- 2} = \frac{z - 6}{2}

    a) Vectơ có tọa độ (1;2;3) là một vectơ chỉ phương của \bigtriangleup_{1}. Sai||Đúng

    b) Đường thẳng \bigtriangleup_{2} đi qua điểm A(0; - 3;14). Đúng||Sai

    c) Đường thẳng \bigtriangleup_{3} đi qua B(1;1; - 2) và vuông góc với \bigtriangleup_{1} có phương trình tham số là \bigtriangleup_{3}:\left\{
\begin{matrix}
x = 1 - 2t \\
y = 1 - 2t \\
z = - 2 - 3t \\
\end{matrix} ight.. Đúng||Sai

    d) Góc giữa hai đường thẳng \bigtriangleup_{1}\bigtriangleup_{2} khoảng 132^{0}. Sai||Đúng

    a) Vectơ có tọa độ (2;1; - 2) là một vectơ chỉ phương của \bigtriangleup_{1} nên mệnh đề sai

    b) Mệnh đề đúng

    c) Gọi B = \bigtriangleup_{1} \cap
\bigtriangleup_{3} \Rightarrow B(1 + 2t;2 + t;3 - 2t)

    \begin{matrix}
\overrightarrow{AB} = ( - 2t; - 1 - t; - 5 + 2t\ ) \\
\overrightarrow{AB}\bot u_{\bigtriangleup_{1}} \Rightarrow t = 1 \\
\Rightarrow \overrightarrow{AB} = ( - 2; - 2; - 3\ ) \\
\end{matrix} nên mệnh đề đúng

    d) Góc giữa hai đường thẳng luôn là góc nhọn nên mệnh đề sai

  • Câu 4: Vận dụng cao

    Trong không gian Oxyz, cho mặt phẳng (P): x-2y+2z-5=0 và hai điểm A(-3;0;1), B(1;-1;3). Trong các đường thẳng đi qua A và song song (P), đường thẳng mà khoảng cách từ B đến đường thẳng đó là nhỏ nhất có phương trình là:

     khoảng cách nhỏ nhất

    Gọi (Q) là mặt phẳng qua A và song song (P).

    Ta có: (-3-2.0+2.1-5)(1+2.1+2.3-5) < 0 \Rightarrow A, B nằm về hai phía với (P).

    Gọi H là hình chiếu vuông góc của B lên (Q) \Rightarrow BH cố định và d(B,(Q))=BH.

    Gọi K là hình chiếu vuông góc của B lên bất kì qua A và nằm trong (Q) hay d//(P) .

    Ta có: BK \geq BH \Leftrightarrow d(B, d) \geq d(B, d) \Rightarrow d (B, d)bé nhất bằng BH  khi K trùng với điểm H.

    Gọi \vec{n} là VTPT của (ABH) \Rightarrow \vec{n}=[\vec{n_p}, \vec{AB}]=(-2;6;7)

    Ta có đường thẳng d cần lập qua  A, H và có VTCP là \vec{u_d}=[\vec{n},\vec{n_P}]=(26; 11; -2)

    Vậy phương trình đường thẳng d cần lập là: \dfrac{x+3}{26}=\dfrac{y}{11}=\dfrac{z-1}{-2}

  • Câu 5: Nhận biết

    Trong không gian Oxyz cho hai mặt phẳng (P):8x - 4y - 8z - 11 =0,(Q):\sqrt{2}x - \sqrt{2}y + 7 = 0. Góc giữa hai mặt phẳng (P);(Q) bằng:

    Ta có: (P):8x - 4y - 8z - 11 = 0 có 1 vectơ pháp tuyến là \overrightarrow{n_{1}} = (8; - 4; -
8)

    (Q):\sqrt{2}x - \sqrt{2}y + 7 =
0 có 1 vectơ pháp tuyến là \overrightarrow{n_{2}} = \left( \sqrt{2}; -
\sqrt{2};0 ight)

    Khi đó:

    \cos\left( (P);(Q) ight) = \cos\left(
\overrightarrow{n_{1}};\overrightarrow{n_{2}} ight)

    = \frac{\left| 8.\sqrt{2} + 4.\sqrt{2} -
8.0 ight|}{\sqrt{8^{2} + ( - 4)^{2} + ( - 8)^{2}}.\sqrt{\left(
\sqrt{2} ight)^{2} + \left( - \sqrt{2} ight)^{2} + 0}} =
\frac{1}{\sqrt{2}}

    \Rightarrow \left( (P);(Q) ight) =
45^{0}

  • Câu 6: Vận dụng

    Cho hình lập phương ABCD.A'B'C'D' có tâm O. Gọi I là tâm của hình vuông A'B'C'D' và điểm M \in OI sao cho MO = 2MI (tham khảo hình vẽ).

    Khi đó sin của góc tạo bởi hai mặt phẳng (MC’D′) và (MAB) bằng

    Gắn hệ tọa độ như hình vẽ:

    Cạnh hình lập phương là 1, ta được tọa độ các điểm như sau:

    \left\{ \begin{matrix}M\left( \dfrac{1}{2};\dfrac{1}{2};\dfrac{1}{6}ight),C'(0;1;0),D'(1;1;0) \\A(1;0;1),B(0;0;1) \\\end{matrix} ight.

    Khi đó \left\{ \begin{matrix}\overrightarrow{n_{(MC'D')}} = (0;1;3) \\\overrightarrow{n_{(MAB)}} = (0;5;3) \\\end{matrix} ight.\Rightarrow \cos\left( (MC'D');(MAB)ight)= \frac{|5.1 + 3.3|}{\sqrt{5^{2} + 3^{2}}.\sqrt{1^{2} + 3^{2}}}= \frac{7\sqrt{85}}{85}

    Suy ra \sin\left( (MC'D');(MAB)
ight) = \sqrt{1 - \left( \frac{7\sqrt{85}}{85} ight)^{2}} =
\frac{6\sqrt{85}}{85}

  • Câu 7: Vận dụng cao

    Trong không gian với hệ tọa độ Oxyz, cho hai điểm S(0;0;1)A(1;1;1). Hai điểm M(m;0;0),N(0  ;n;0) thay đổi sao cho m + n = 1m > 0,n > 0. Biết rằng luôn tồn tại một mặt cầu cố định đi qua A và tiếp xúc với mặt phẳng (SMN). Bán kính của mặt cầu đó là:

    Phương trình mặt phẳng (SMN)\frac{x}{m} + \frac{y}{n} + \frac{z}{1} =1

    \Leftrightarrow nx + my + mnz - mn =0.

    Gọi I(a;b;c)R là tâm và bán kính của mặt cầu cố định.

    Ta có

    R = d(I;(SMN))

    = \frac{|na + mb + mnc -mn|}{\sqrt{n^{2} + m^{2} + m^{2}n^{2}}}

    = \frac{|(1 - m)a + mb + m(1 - m)(c -1)|}{\sqrt{1 - 2mn + m^{2}n^{2}}}

    = \frac{|(1 - m)a + mb + m(1 - m)(c -1)|}{1 - mn}

    = \frac{\left| (1 - c)m^{2} + (b + c - a- 1)m + a ight|}{m^{2} - m + 1}

    R không đổi nên \frac{1 - c}{1} = \frac{b + c - a - 1}{- 1} =\frac{a}{1} = t \Rightarrow \left\{ \begin{matrix}a = t \\b = t \\c = 1 - t \\\end{matrix} ight., hay I(t;t;1- t).
    Mặt khác ta có R = IA = \sqrt{3t^{3} - 4t +2} = |t| \Rightarrow t = 1.

    Vậy R = 1.

  • Câu 8: Thông hiểu

    Trong không gian với hệ toạ độ Oxyz, cho (P):x - 2y + 2z - 5 = 0,A( - 3;0;1),B(1; -
1;3). Viết phương trình đường thẳng d qua A, song song với (P) sao cho khoảng cách từ B đến d là lớn nhất.

    Hình vẽ minh họa

    ( - 3 - 2\ .0 + 2\ .1 - 5).\left( 1 -
2.( - 1) + 2.3 - 5 ight) < 0 nên hai điểm A, B khác phía so với (P).

    Gọi H là hình chiếu của B lên d.

    Ta có: BH ≤ BA nên khoảng cách BH từ B đến d lớn nhất khi và chỉ khi H trùng A.

    Khi đó AB ⊥ d.

    VTPT của (P) là \overrightarrow{n} = (1;
- 2;2),\overrightarrow{AB} = (4; - 1;2)

    VTCP của d là \overrightarrow{u} =
\left\lbrack \overrightarrow{n};\overrightarrow{AB} ightbrack = ( -
2;6;7)

    Mà d qua A(−3; 0; 1) nên phương trình đường thẳng d là: \frac{x + 3}{2} = \frac{y}{- 6} = \frac{z - 1}{-
7}

  • Câu 9: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S) có tâm là điểm A(2; 2; 2), mặt phẳng (P) : 2x + 2y + z + 8 = 0 cắt mặt cầu (S) theo thiết diện là đường tròn có bán kính r = 8. Diện tích của mặt cầu (S) là:

    Ta có:

    d\left( A;(P) ight) = \frac{|4 + 4 + 2
+ 8|}{\sqrt{2^{2} + 2^{2} + 1^{2}}} = 6

    R^{2} = d^{2}\left( A;(P) ight) +
r^{2} = 100

    Vậy diện tích mặt cầu là: S = 4\pi R^{2}
= 400\pi.

  • Câu 10: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, cho điểm A(2;1;1), mặt phẳng (P):x - z - 1 = 0 và đường thẳng d:\left\{ \begin{matrix}
x = 1 - t \\
y = 2 \\
z = - 2 + t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight). Gọi d_{1};d_{2} là các đường thẳng đi qua A, nằm trong (P) và đều có khoảng cách đến đường thẳng d bằng \sqrt{6}. Côsin của góc giữa d_{1}d_{2} bằng bao nhiêu?

    Hình vẽ minh họa

    Ta có: \left\{ \begin{matrix}
\overrightarrow{n_{(P)}} = (1;0; - 1) \\
\overrightarrow{u_{d}} = ( - 1;0;1) \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
d\bot P \\
d \cap P = M(0;2; - 1) \\
\end{matrix} ight.

    \Rightarrow \overrightarrow{MA} = (2; -
1;2) \Rightarrow MA = 3

    Gọi H K; lần lượt là hình chiếu vuông góc của M lên d_{1}d_{2}, ta có:

    \left\{ \begin{matrix}
d\left( d_{1};d ight) = d\left( M;d_{1} ight) = MH \\
d\left( d_{2};d ight) = d\left( M;d_{2} ight) = MK \\
\end{matrix} ight.

    \Rightarrow MK = MH = \sqrt{6}
\Rightarrow \sin\widehat{MAK} = \sin\widehat{MAH} = \frac{HM}{AM} =
\frac{\sqrt{6}}{3}

    \Rightarrow \cos\left( d_{1};d_{2}
ight) = \left| \cos\left( 2.\widehat{MAH} ight) ight|

    = \left| 1 - 2\sin^{2}\left(\widehat{MAH} ight) ight| = \left| 1 - \frac{4}{3} ight| =\frac{1}{3}

  • Câu 11: Nhận biết

    Trong không gian Oxyz, cho các mặt cầu dưới đây. Hỏi mặt cầu nào có bán kính R = 2?

    Phương trình mặt cầu (S):x^{2} + y^{2} +
z^{2} - 2ax - 2by - 2cz + d = 0 có bán kính R = \sqrt{a^{2} + b^{2} + c^{2} - d}

    Xét phương trình mặt cầu (S):x^{2} +
y^{2} + z^{2} - 4x + 2y + 2z + 2 = 0 ta có:

    \left\{ \begin{matrix}
a = 2;b = - 1 \\
c = - 1;d = 2 \\
\end{matrix} ight.\  \Rightarrow R = \sqrt{a^{2} + b^{2} + c^{2} - d}
= \sqrt{4} = 2

  • Câu 12: Vận dụng

    Mặt phẳng \left( P ight):2x - 2y + 4z + 5 = 0  và đường thẳng (d):\left\{ \begin{array}{l}x - y + 2z + 1 = 0\\y + 2z - 3 = 0\end{array} ight. :   

    Theo đề bài, ta có vecto pháp tuyến của \left( P ight):\overrightarrow n  = \left( {2, - 2,4} ight)

    Đường thẳng (d) được cho dưới dạng hệ của hai mặt phẳng: x - y + 2z + 1 = 02x + y - z - 3 = 0 cũng có 2 VTPT lần lượt \overrightarrow {{n_1}}  = \left( {1, - 1,2} ight);\overrightarrow {{n_2}}  = \left( {2,1, - 1} ight)

    Như vậy, VTCP của (d) sẽ là tích có hướng của 2 VTPT: \left( d ight):\overrightarrow a  = \left[ {\overrightarrow {{n_1}} ,\overrightarrow {{n_2}} } ight] = \left( { - 1,5,3} ight)

    \Rightarrow \overrightarrow n .\overrightarrow a  =  - 2 - 10 + 12 = 0

    Cho\,\,\,\,\,z = 0 \Rightarrow \left\{ \begin{array}{l}x - y =  - 1\\2x + y = 3\end{array} ight. \Rightarrow \left\{ \begin{array}{l}x = \dfrac{2}{3}\\y = \dfrac{5}{3}\end{array} ight.

    \Rightarrow A\left( {\frac{2}{3},\frac{5}{3},0} ight) \in \left( d ight) và tọa độ của A không thỏa mãn phương trình của (P).

    Vậy (d) // (P) .

  • Câu 13: Nhận biết

    Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P):x - y + 2z + 1 = 0 và đường thẳng (d):\frac{x - 1}{1} = \frac{y}{2} = \frac{z
+ 1}{- 1}. Tính góc giữa đường thẳng (d) và mặt phẳng (P).

    Ta có: \overrightarrow{u_{d}} = (1;2; -
1);\overrightarrow{n_{(P)}} = (1; - 1;2)

    Do đó: \cos\left(
\overrightarrow{u_{d}};\overrightarrow{n_{(P)}} ight) = \frac{|1 - 2 -
2|}{\sqrt{6}.\sqrt{6}} = \frac{1}{2}

    Suy ra góc giữa đường thẳng d và mặt phẳng (P) bằng 90^{0} -
60^{0} = 30^{0}.

  • Câu 14: Nhận biết

    Trong không gian Oxyz, cho đường thẳng \Delta đi qua điểm M(2;0; - 1) và có vectơ chỉ phương \overrightarrow{a} = (4; - 6;2). Phương trình tham số của đường thẳng \Delta

    đường thẳng \Delta đi qua điểm M(2;0; - 1) và có vectơ chỉ phương \overrightarrow{u} = (2; - 3;1) nên có phương trình tham số \left\{
\begin{matrix}
x = 2 + 2t \\
y = - 3t \\
z = - 1 + t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight).

  • Câu 15: Nhận biết

    Trong không gian Oxyz cho mặt phẳng (\alpha):x - 2y + 2z - 3 = 0. Điểm nào sau đây nằm trên mặt phẳng (\alpha)?

    Ta thấy tọa độ điểm Q(1;0;1) thỏa mãn phương trình mặt phẳng (\alpha):x -
2y + 2z - 3 = 0 nên điểm Q nằm trên (\alpha).

  • Câu 16: Thông hiểu

    Trong không gian Oxyz, phương trình của mặt phẳng (P) đi qua điểm B(2;1; - 3), đồng thời vuông góc với hai mặt phẳng (Q):x + y + 3z = 0,(R):2x
- y + z = 0 là:

    Ta có \left\{ \begin{matrix}
\overrightarrow{n_{1}} = (1;1;3) \\
\overrightarrow{n_{2}} = (2; - 1;1) \\
\end{matrix} ight. lần lượt là vectơ pháp tuyến của các mặt phẳng (Q),(R).

    Do mặt phẳng (P) vuông góc với hai mặt phẳng (Q),(R) nên \left\lbrack
\overrightarrow{n_{1}},\overrightarrow{n_{2}} ightbrack = (4;5; -
3) là một vectơ pháp tuyến của (P).

    Từ đó suy ra mặt phẳng (P) có phương trình 4x + 5y - 3z - 22 =
0.

  • Câu 17: Thông hiểu

    Trong không gian Oxyz, điểm M thuộc trục Oy và cách đều hai mặt phẳng (P):x + y - z + 1 = 0(Q):x - y + z - 5 = 0 có tọa độ là?

    Ta có M \in Oy suy ra M(0;m;0).

    Theo đề bài ra ta có:

    d\left( M,(P) ight) = d\left( M,(Q)
ight)

    \Leftrightarrow \frac{|m + 1|}{\sqrt{3}}
= \frac{| - m - 5|}{\sqrt{3}} \Leftrightarrow m = - 3

    Vậy M(0; - 3;0).

  • Câu 18: Nhận biết

    Trong không gian Oxyz, phương trình nào sau đây là phương trình của mặt cầu có tâm I(7;6; - 5) và bán kính 9?

    Mặt cầu tâm I(7;6; - 5), bán kính R = 9 có phương trình lá:

    (x - 7)^{2} + (y - 6)^{2} + (z - 5)^{2} =
81.

  • Câu 19: Nhận biết

    Trong không gian Oxyz, hãy tính pq lần lượt là khoảng cách từ điểm M(5; - 2;0) đến mặt phẳng (Oxz) và mặt phẳng (P):3x - 4z + 5 = 0?

    Do mặt phẳng (Oxz) có phương trình y = 0 nên

    p = d\left( M;(Oxz) ight) = \frac{| -
2|}{\sqrt{0^{2} + 1^{2} + 0^{2}}} = 2

    Do mặt phẳng (P) có phương trình 3x − 4z + 5 = 0 nên

    q = d\left( M;(P) ight) = \frac{|3.5 -
4.0 + 5|}{\sqrt{3^{2} + 0^{2} + ( - 4)^{2}}} = 4

  • Câu 20: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, giá trị dương của tham số m sao cho mặt phẳng (Oxy) tiếp xúc với mặt cầu (x - 3)^{2} + y^{2} + (z - 2)^{2} = m^{2} +
1 là:

    Ta có: (Oxy) có phương trình z = 0

    Mặt cầu (x - 3)^{2} + y^{2} + (z - 2)^{2}
= m^{2} + 1 có tâm I(3;0;2) và bán kính R = \sqrt{m^{2} + 1}

    Để mặt phẳng (Oxy) tiếp xúc với mặt cầu (x - 3)^{2} + y^{2} + (z - 2)^{2} =
m^{2} + 1 thì

    d\left( I;(P) ight) = R
\Leftrightarrow \frac{|2|}{\sqrt{1}} = \sqrt{m^{2} + 1}

    \Leftrightarrow m^{2} + 1 = 4
\Leftrightarrow m = \pm \sqrt{3}. Vì m nhận giá trị dương nên m = \sqrt{3}.

    Vậy m = \sqrt{3} thỏa yêu cầu đề bài.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 5 Phương trình mặt phẳng, đường thẳng, mặt cầu CTST Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 10 lượt xem
Sắp xếp theo