Đề kiểm tra 15 phút Chương 5 Phương trình mặt phẳng, đường thẳng, mặt cầu CTST

Mô tả thêm: Bài kiểm tra 15 phút Phương trình mặt phẳng, đường thẳng, mặt cầu của chúng tôi gồm 4 mức độ được thay đổi ngẫu nhiên, giúp bạn đọc rèn luyện củng cố kiến thức tốt hơn.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P):x - 2y + z - 3 = 0 và điểm A(1;2;0). Viết phương trình đường thẳng qua A và vuông góc với (P).

    Mặt phẳng (P) có vectơ pháp tuyến là \overrightarrow{n} = (1; -
2;1) nên đường thẳng cần tìm có vectơ chỉ phương là \overrightarrow{n} = (1; - 2;1).

    Vậy phương trình đường thẳng đi qua A và vuông góc với (P) là: \frac{x - 1}{1} = \frac{y - 2}{- 2} =
\frac{z}{1}

  • Câu 2: Thông hiểu

    Trong không gian Oxyz, cho các điểm A( - 1;2;1),B(2; -
1;4),C(1;1;4). Đường thẳng nào dưới đây vuông góc với mặt phẳng (ABC)?

    Ta có \left\{ \begin{matrix}
\overrightarrow{AB} = (3; - 3;3)//\overrightarrow{a} = (1; - 1;1) \\
\overrightarrow{AC} = (2; - 1;3) \\
\end{matrix} ight.

    \Rightarrow \overrightarrow{n_{(ABC)}} =
\left\lbrack \overrightarrow{a};\overrightarrow{AC} ightbrack = ( -
2; - 1;1) là 1 VTPT của mặt phẳng (ABC).

    Do đó đường thẳng vuông góc với mặt phẳng (ABC) có VTPT cùng phương với vectơ (−2; −1; 1).

    Dựa vào các đáp án ta thấy ở đáp án D đường thẳng \frac{x}{2} = \frac{y}{1} = \frac{z}{- 1} có 1 VTPT là (−2; 1; 1) cùng phương với (−2; −1; 1).

  • Câu 3: Vận dụng cao

    Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S): (x − 1)^2 + (y − 2)^2 + (z − 2)^2 = 9 hai hai điểm M(4; −4; 2),N(6; 0; 6). Gọi E là điểm thuộc mặt cầu (S) sao cho EM + EN đạt giá trị lớn nhất. Viết phương trình tiếp diện của mặt cầu (S) tại E?

    Hình vẽ minh họa

    Gọi I(1; 2; 2) là tâm của (S), P(5; −2; 4) là trung điểm MN.

    Theo bất đẳng thức Bu-nhi-a-copx-ki và công thức độ dài trung tuyến ta được:

    (EM + EN)^{2} \leq 2\left( EM^{2} +
EN^{2} ight) = 2\left( 2EP^{2} + \frac{MN^{2}}{2} ight)

    nên T = EM + EN đạt giá trị lớn nhất khi EM = EN và EP đạt giá trị lớn nhất.

    Khi đó E là giao điểm của đường thẳng IP với mặt cầu (S) (I nằm giữa E và P). Đường thẳng IP có phương trình:

    \frac{x - 1}{2} = \frac{y - 2}{- 2} =
\frac{z - 2}{1}

    Tọa độ E thỏa hệ phương trình:

    \left\{ \begin{matrix}(x - 1)^{2} + (y - 2)^{2} + (z - 2)^{2} = 9 \\\dfrac{x - 1}{2} = \dfrac{y - 2}{- 2} = \dfrac{z - 2}{1} \\\end{matrix} ight.

    Tìm được E(3; 0; 3) hoặc E(−1; 4; 1), thử lại để EP lớn nhất ta được E(−1; 4; 1).

    Khi đó phương trình tiếp diện với (S) tại E là 2x−2y+z+9 = 0.

  • Câu 4: Vận dụng

    Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng chéo nhau d_{1}:\frac{x - 3}{1} = \frac{y + 1}{- 1} =\frac{z - 4}{1},d_{2}:\frac{x - 2}{2} = \frac{y - 4}{- 1} = \frac{z +3}{4}. Viết phương trình đường vuông góc chung của d_{1},d_{2}.

    Đường thẳng d_{1},d_{2} lần lượt có vectơ chỉ phương là \overrightarrow{u_{1}} = (1; -
1;1),\overrightarrow{u_{2}} = (2; - 1;4)

    Gọi ∆ là đường vuông góc chung giữa d_{1}d_{2}, suy ra ∆ có vectơ chỉ phương \overrightarrow{u_{\Delta}} = \left\lbrack
\overrightarrow{u_{1}},\overrightarrow{u_{2}} ightbrack = ( - 3; -
2;1)

    Giả sử ∆ giao với d_{1},d_{2} lần lượt tại \left\{ \begin{matrix}
M(3 + m; - 1 - m;4 + m) \\
N(2 + 2n;4 - n; - 3 + 4n) \\
\end{matrix} ight., khi đó ta có \overrightarrow{MN} = ( - m + 2n - 1;m - n + 5; -
m + 4n - 7)

    Do ∆ là đường vuông góc chung, suy ra:

    \left\{ \begin{matrix}
\overrightarrow{u_{1}}.\overrightarrow{MN} = 0 \\
\overrightarrow{u_{2}.}\overrightarrow{MN} = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
- 3m + 7n - 13 = 0\  \\
- 7m + 21n - 35 = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
m = - 2 \\
n = 1 \\
\end{matrix} ight.

    Từ đó suy ra đường thẳng ∆ có véc tơ chỉ phương \overrightarrow{u_{\Delta}} và đi qua điểm M(1; 1; 2).

    Vậy ta có phương trình đường thẳng: \Delta:\frac{x - 1}{3} = \frac{y - 1}{2} = \frac{z
- 2}{- 1}

  • Câu 5: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, phương trình mặt phẳng trung trực (\alpha) của đoạn thẳng AB với A(0; -
4;1),B( - 2;2;3)

    Gọi M là trung điểm của AB suy ra M(
- 1; - 1;2)

    Phương trình mặt phẳng (\alpha) đi qua M và nhận \overrightarrow{AM} = ( - 1;3;1) làm vectơ pháp tuyến:

    \Rightarrow (\alpha): - x + 3y + z =
0

    \Rightarrow (\alpha):x - 3y - z =
0

  • Câu 6: Nhận biết

    Trong không gian Oxyz, cho ba mặt phẳng (P),(Q),(R) lần lượt có phương trình là x - 4z + 8 = 0,2x - 8z = 0,y
= 0. Mệnh đề nào dưới đây đúng?

    Mặt phẳng (P) có một vectơ pháp tuyến là \overrightarrow{p} = (1;0; - 4) và mặt phẳng (R) có một vectơ pháp tuyến là \overrightarrow{r} = (0;1;0)

    Do \overrightarrow{p} eq
k.\overrightarrow{r};\forall k\mathbb{\in R} nên vectơ \overrightarrow{p} không cùng phương với vectơ \overrightarrow{r}.

    Vậy mặt phẳng (R) cắt mặt phẳng (P).

  • Câu 7: Nhận biết

    Trong không gian với hệ tọa độ Oxyz cho đường thẳng d:\left\{ \begin{matrix}
x = 1 - t \\
y = 2 + 2t \\
z = 3 + t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight) và mặt phẳng (P):x - y + 3 = 0. Tính số đo góc giữa đường thẳng d và mặt phẳng (P).

    Đường thẳng d có vectơ chỉ phương là \overrightarrow{u} = ( - 1;2;1)

    Mặt phẳng (P) có vectơ pháp tuyến là \overrightarrow{n} = (1; - 1;0)

    Gọi α là góc giữa đường thẳng d và mặt phẳng (P) .

    Khi đó ta có:

    \sin\alpha = \frac{\left|
\overrightarrow{u}.\overrightarrow{n} ight|}{\left| \overrightarrow{u}
ight|.\left| \overrightarrow{n} ight|} = \frac{\left| - 1.1 + 2.( -
1) + 1.0 ight|}{\sqrt{( - 1)^{2} + 2^{2} + 1^{2}}.\sqrt{1^{2} + ( -
1)^{2} + 0^{2}}} = \frac{\sqrt{3}}{2}

    \Rightarrow \alpha = 60^{0}

  • Câu 8: Vận dụng cao

    Trong không gian với hệ tọa độ Oxyz, cho bốn điểm A(1; 0; 0), B(3; 2; 1), C\left( -
\frac{5}{3};\frac{4}{3};\frac{8}{3} ight) và M thay đổi sao cho hình chiếu của M lên mặt phẳng (ABC) nằm trong tam giác ABC và các mặt phẳng (MAB),(MBC),(MCA) hợp với mặt phẳng (ABC) các góc bằng nhau. Tính giá trị nhỏ nhất của OM.

    Hình vẽ minh họa

    Gọi H là hình chiếu của M lên mặt phẳng (ABC).

    Giả thiết suy ra H là tâm đường tròn nội tiếp tam giác ABC nên thỏa mãn

    BC.\overrightarrow{HA} +
AC.\overrightarrow{HB} + AB.\overrightarrow{HC} =
\overrightarrow{0}

    Ta có AB = 3, AC = 4, BC = 5, suy ra

    \left\{ \begin{matrix}
5(x - 1) + 4(x - 3) + 3x + 5 = 0 \\
5y + 4(y - 2) + 3y - 4 = 0\  \\
5z + 4(z - 1) + 3z - 8 = 0\  \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = 1 \\
y = 1 \\
z = 1 \\
\end{matrix} ight.\  \Rightarrow H(1;1;1)

    Phương trình đường thẳng MH nhận \overrightarrow{u} =
\overrightarrow{n_{ABC}} làm vectơ chỉ phương nên MH là: \left\{ \begin{matrix}
x\  = \ 1\  + \ t \\
y\  = \ 1\  - \ 2t \\
z\  = \ 1\  + \ 2t \\
\end{matrix} ight.

    Khi đó: OM_{\min} = \frac{\left|
\left\lbrack \overrightarrow{MH};\overrightarrow{OH} ightbrack
ight|}{\left| \overrightarrow{MH} ight|} =
\frac{\sqrt{26}}{3}

  • Câu 9: Nhận biết

    Trong không gian Oxyz, cho hai mặt phẳng (P);(Q) có các vectơ pháp tuyến là \overrightarrow{a}\left(
a_{1};b_{1};c_{1} ight),\overrightarrow{b}\left( a_{2};b_{2};c_{2}
ight). Góc \alpha là góc giữa hai mặt phẳng đó \cos\alpha là biểu thức nào sau đây?

    Theo công thức góc giữa hai mặt phẳng ta có:

    \cos\alpha = \cos\left(
\overrightarrow{a};\overrightarrow{b} ight) = \frac{\left| a_{1}a_{2}
+ b_{1}b_{2} + c_{1}c_{2} ight|}{\left| \overrightarrow{a}
ight|.\left| \overrightarrow{b} ight|}

  • Câu 10: Nhận biết

    Trong không gian Oxyz, cho hai điểm A(0;1;1)B(1;2;3). Viết phương trình mặt phẳng (P) đi qua A và vuông góc với đường thẳng AB.

    Mặt phẳng (P) có một véctơ pháp tuyến \overrightarrow{n} =
\overrightarrow{AB} = (1;1;2)

    Phương trình mặt phẳng (P) là: x + y - 1 + 2(z - 1) = 0 hay (P):x + y + 2z - 3 = 0.

  • Câu 11: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, cho ba điểm M(4;9;8),N(1; - 3;4),P(2;5; - 1). Mặt phẳng (\alpha) đi qua ba điểm M,N,P có phương trình tổng quát Ax + By + Cz + D = 0. Biết A = 92, tìm giá trị của D?

    Do A = 92 nên mặt phẳng (P) có phương trình 92x + By + Cz + D = 0

    Do (P) đi qua các điểm A;B;C nên ta có hệ:

    \left\{ \begin{matrix}
92.4 + B.9 + C.8 + D = 0 \\
92.1 + B.( - 3) + C.4 + D = 0 \\
92.2 + B.5 + C.( - 1) + D = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
B = - 19 \\
C = - 12 \\
D = - 101 \\
\end{matrix} ight.

    Vậy D = - 101.

  • Câu 12: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, cho các điểm A(1;0;0),B(0;2;0),C(0;0;m). Để mặt phẳng (ABC) hợp với mặt phẳng (Oxy) một góc 60^{0} thì giá trị của m là

    Mặt phẳng Oxy có vectơ pháp tuyến là \overrightarrow{k} = (0;0;1)

    Ta có \overrightarrow{AB} = ( -
1;2;0);\overrightarrow{AC} = ( - 1;0;m), suy ra vectơ pháp tuyến của mặt phẳng (ABC)\overrightarrow{n} = \left\lbrack
\overrightarrow{AB};\overrightarrow{AC} ightbrack =
(2m;m;2)

    Theo bài ra ta có:

    cos60^{0} = \frac{\left|
\overrightarrow{k}.\overrightarrow{n} ight|}{\left| \overrightarrow{k}
ight|.\left| \overrightarrow{n} ight|} \Leftrightarrow \sqrt{5m^{2}
+ 4} = 4

    \Leftrightarrow m^{2} = \frac{12}{5}
\Leftrightarrow m = \pm \sqrt{\frac{12}{5}}

  • Câu 13: Vận dụng

    Cho A(1; - 1;0)(P):2x - 2y + z - 1 = 0. Điểm M(a;b;c) \in (P) sao cho MA\bot OA và đoạn AM bằng 3 lần khoảng cách từ A đến (P). Khẳng định nào sau đây đúng?

    Ta có:

    \left\{ \begin{matrix}
M \in (P) \\
MA\bot OA \\
AM = 3d\left( A;(P) ight) \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
2a - 2b + c - 1 = 0 \\
1(a - 1) - 1(b + 1) + 0(c - 0) = 0 \\
\sqrt{(a - 1)^{2} + (b + 1)^{2} + (c - 0)^{2}} = 3 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
2a - 2b + c - 1 = 0 \\
a - b - 2 = 0 \\
(a - 1)^{2} + (b + 1)^{2} + c^{2} = 9 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
b = a - 2 \\
c = - 3 \\
(a - 1)^{2} + (b + 1)^{2} + c^{2} = 9 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
a = 1 \\
c = - 3 \\
b = - 1 \\
\end{matrix} ight.\  \Rightarrow a + b + c = - 3.

  • Câu 14: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S):(x - 1)^{2} + (y - 2)^{2} + (z + 1)^{2} =
25. Đường thẳng d cắt mặt cầu (S) tại hai điểm A, B. Biết tiếp diện của (S) tại A, B vuông góc. Tính độ dài AB.

    Hình vẽ minh họa

    Mặt cầu (S) có tâm I(1; 2; −1), bán kính R = 5. Xét mặt phẳng (P) chứa d cắt giao tuyến của hai tiếp diện tại O.

    Ta có tứ giác OIAB là hình vuông.

    Suy ra AB = IA.\sqrt{2} = R\sqrt{2} =
5\sqrt{2}.

  • Câu 15: Thông hiểu

    Trong không gian với hệ trục tọa độ Oxyz, cho điểm M(2;0;1) và đường thẳng d:\frac{x - 1}{1} = \frac{y}{2} = \frac{z -
2}{2}. Tìm tọa độ hình chiếu vuông góc của M lên đường thẳng d.

    Gọi (P) là mặt phẳng đi qua M(2;0;1) và vuông góc với đường thẳng d.

    Suy ra (P) nhận \overrightarrow{u_{d}} =
(1;2;1) làm vectơ pháp tuyến.

    Phương trình mặt phẳng

    (P):(x - 2) + 2y + z - 1 =
0

    \Leftrightarrow x + 2y + z - 3 =
0.

    Gọi H là hình chiếu vuông góc của M lên đường thẳng d, suy ra H = d \cap (P).

    Tọa độ điểm H là nghiệm của hệ

    \left\{ \begin{matrix}\dfrac{x - 1}{1} = \dfrac{y}{2} = \dfrac{z - 2}{2} \\x + 2y + z - 3 = 0 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}2x - y = 2 \\y - 2z = - 4 \\x + 2y + z - 3 = 0 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x = 1 \\y = 0 \\z = 2 \\\end{matrix} ight.

  • Câu 16: Nhận biết

    Trong không gian với hệ tọa độ Oxyz, vectơ \overrightarrow{u} = (1;2; - 5) là vectơ chỉ phương của đường thẳng nào sau đây?

    Đường thẳng d:\left\{ \begin{matrix}
x = 6 - t \\
y = - 1 - 2t \\
z = 5t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight) có một vectơ chỉ phương là \overrightarrow{v} = ( -
1; - 2;5) cùng phương với vectơ \overrightarrow{u} = (1;2; - 5). Vậy \overrightarrow{u} = (1;2; - 5) là một vectơ chỉ phương của đường thẳng \left\{ \begin{matrix}
x = 6 - t \\
y = - 1 - 2t \\
z = 5t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight)

  • Câu 17: Thông hiểu

    Cho mặt cầu \left( S ight):{x^2} + {y^2} + {z^2} + 4x - 2y + 6z - 2 = 0 và mặt phẳng \left( P ight):3x + 2y + 6z + 1 = 0. Gọi (C) là đường tròn giao tuyến của (P) và (S). Tính tọa độ tâm H của (C).

     Theo đề bài, mặt cầu (S) có tâm I\left( { - 2,1, - 3} ight) và vecto pháp tuyến của (P):\,\,\overrightarrow n  = \left( {3,2,6} ight)

    \begin{array}{l}IH \bot \left( P ight) \Rightarrow IH:x =  - 2 + 3t;\,\,y = 1 + 2t;\,\,z =  - 3 + 6t\\H \in \left( P ight) \Rightarrow 3\left( { - 2 + 3t} ight) + 2\left( {1 + 2t} ight) + 6\left( { - 3 + 6t} ight) + 1 = 0 \Leftrightarrow t = \dfrac{3}{7}\\ \Rightarrow H\left( { - \dfrac{5}{7},\dfrac{{13}}{7}, - \dfrac{3}{7}} ight)\end{array}

  • Câu 18: Nhận biết

    Trong không gian Oxyz, phương trình nào sau đây là phương trình của mặt cầu có tâm I(7;6; - 5) và bán kính 9?

    Mặt cầu tâm I(7;6; - 5), bán kính R = 9 có phương trình lá:

    (x - 7)^{2} + (y - 6)^{2} + (z - 5)^{2} =
81.

  • Câu 19: Vận dụng

    Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (Q):x + 2y - z - 5 = 0 và đường thẳng d:\frac{x + 1}{2} = \frac{y + 1}{1} =
\frac{z - 3}{1}. Phương trình mặt phẳng (P) chứa đường thẳng d và tạo với mặt phẳng (Q) một góc nhỏ nhất là

    Vì (P) chứa d nên phương trình của (P) có dạng (P):a(x + 1) + b(y + 1) + c(z - 3) = 0 với \left\{ \begin{matrix}
a^{2} + b^{2} + c^{2} > 0 \\
2a + b + c = 0 \\
\end{matrix} ight..

    Gọi α là góc giữa (P) và (Q), ta có:

    \cos\alpha = \frac{\left|
\overrightarrow{n_{P}}.\overrightarrow{n_{Q}} ight|}{\left|
\overrightarrow{n_{P}} ight|.\left| \overrightarrow{n_{Q}} ight|} =
\frac{|a + 2b - c|}{\sqrt{a^{2} + b^{2} + c^{2}}.\sqrt{6}} =
\frac{\left| 3(a + b) ight|}{\sqrt{5a^{2} + 4ab +
2b^{2}}.\sqrt{6}}

    Nếu a = 0 thì \cos\alpha = \frac{\sqrt{3}}{2} \Rightarrow \alpha
= 30^{0}

    Nếu a eq 0 thì \cos\alpha = \frac{\left| 3(1 + t)
ight|}{\sqrt{6}.\sqrt{5 + 4t + 2t^{2}}};\left( t = \frac{b}{a}
ight).

    Khi đó 0 \leq \cos\alpha <
\frac{\sqrt{3}}{2}

    Ta có α nhỏ nhất khi và chỉ khi cosα lớn nhất.

    Do đó \alpha = 30^{0}\cos\alpha = \frac{\sqrt{3}}{2}.

    Khi đó a = 0, chọn b = 1,\ c = - 1.

    Vậy phương trình mặt phẳng (P) cần tìm là: (P):y - z + 4 = 0.

  • Câu 20: Nhận biết

    Mặt cầu (S) có tâm A(1; -2; 2) và bán kính R = 8. Tìm phương trình mặt cầu (S).

    Phương trình mặt cầu tâm I(a;b;c) bán kính R có dạng: (x - a)^{2} + (y - b)^{2} + (z - c)^{2} =
R^{2}

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 5 Phương trình mặt phẳng, đường thẳng, mặt cầu CTST Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 12 lượt xem
Sắp xếp theo