Đề kiểm tra 15 phút Chương 5 Vectơ sách CTST

Mô tả thêm: Đề kiểm tra 15 phút Toán 10 Vectơ gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Chân trời sáng tạo.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Trong mặt phẳng tọa độ Oxy cho 2 điểm M(2; 1) và N(1; 2). Tọa độ vectơ \overrightarrow{MN}

    Ta có: 

    \overrightarrow {MN}  = \left( {{x_N} - {x_M};{y_M} - {y_N}} ight) = \left( { - 1;1} ight)

  • Câu 2: Nhận biết

    Trong mặt phẳng tọa độ Oxy cho tọa độ hai điểm A( - 1;3),B(2; - 1). Tính tọa độ vecto \overrightarrow{AB}?

    Ta có: A( - 1;3),B(2; - 1)

    \Rightarrow \overrightarrow{AB} = \left(
- 2 - ( - 1); - 1 - 3 ight) = (3; - 4)

    Vậy \overrightarrow{AB} = (3; -
4).

  • Câu 3: Nhận biết

    Cho ba điểm A,\
B,\ C phân biệt. Khẳng định nào sau đây đúng?

    Xét đáp án \overrightarrow{MP} +
\overrightarrow{NM} = \overrightarrow{NP}. Ta có \overrightarrow{MP} + \overrightarrow{NM} =
\overrightarrow{NM} + \overrightarrow{MP} =
\overrightarrow{NP}. Vậy đáp án này đúng.

  • Câu 4: Nhận biết

    Gọi O là tâm hình vuông ABCD. Tính \overrightarrow{OB} -
\overrightarrow{OC}.

    Ta có \overrightarrow{OB} -
\overrightarrow{OC} = \overrightarrow{CB} =
\overrightarrow{DA}.

  • Câu 5: Thông hiểu

    Cho hai vecto \overrightarrow{a}\overrightarrow{b} biết |\overrightarrow{a}| = 4,|\overrightarrow{b}| =
5(\overrightarrow{a},\overrightarrow{b}) =
120^{\circ}. Tính |\overrightarrow{a} +
\overrightarrow{b}|.

    Ta có:

    \left|\overrightarrow{a} + \overrightarrow{b} ight| =\sqrt{(\overrightarrow{a} + \overrightarrow{b})^{2}} =\sqrt{{\overrightarrow{a}}^{2} + {\overrightarrow{b}}^{2} +2\overrightarrow{a}.\overrightarrow{b}}

    = \sqrt{|\overrightarrow{a}|^{2} +
|\overrightarrow{b}|^{2} +
2|\overrightarrow{a}||\overrightarrow{b}|cos(\overrightarrow{a},\overrightarrow{b})}
= \sqrt{21}.

  • Câu 6: Thông hiểu

    Trong mặt phẳng tọa độ Oxy, cho vectơ \overrightarrow{a} = (9;3). Vectơ nào sau đây không vuông góc với vectơ \overrightarrow{a}?

    \overrightarrow{a}.\overrightarrow{v_{1}} = 9.1 +
3.( - 3) = 0 \Rightarrow
\overrightarrow{a}\bot\overrightarrow{v_{1}} nên đáp án \overrightarrow{v_{1}} = (1; - 3) đúng.

    \overrightarrow{a}.\overrightarrow{v_{2}} = 9.2 +
3.( - 6) = 0 \Rightarrow
\overrightarrow{a}\bot\overrightarrow{v_{2}} nên đáp án \overrightarrow{v_{2}} = (2; - 6) đúng.

    \overrightarrow{a}.\overrightarrow{v_{3}} = 9.1 +
3.3 = 18 eq 0 nên đáp án \overrightarrow{v_{3}} = (1;3) sai.

    \overrightarrow{a}.\overrightarrow{v_{1}} = 9.( -
1) + 3.3 = 0 \Rightarrow
\overrightarrow{a}\bot\overrightarrow{v_{4}} nên đáp án \overrightarrow{v_{4}} = ( - 1;3) đúng.

  • Câu 7: Nhận biết

    Trên đường thẳng MN lấy điểm P sao cho \overrightarrow{MN}=-3\overrightarrow{MP}. Điểm P được xác định đúng trong hình vẽ nào sau đây:

     Vì \overrightarrow{MN}=-3\overrightarrow{MP} nên M nằm giữa NP, đồng thời MN=3MP.

  • Câu 8: Vận dụng

    Trong hệ tọa độ Oxy, cho tam giác ABCM(2;3),\ N(0; - 4),\ P( - 1;6) lần lượt là trung điểm của các cạnh BC,\ CA,\
AB. Tìm tọa độ đỉnh A?

    Gọi A(x;y).

    Từ giả thiết, ta suy ra \overrightarrow{PA} =
\overrightarrow{MN}. (*)

    Ta có \overrightarrow{PA} = (x + 1;y -
6)\overrightarrow{MN} = ( - 2;
- 7).

    Khi đó (*) \Leftrightarrow \left\{\begin{matrix}x + 1 = - 2 \\y - 6 = - 7 \\\end{matrix} ight.\ \overset{}{\leftrightarrow}\left\{ \begin{matrix}x = - 3 \\y = - 1 \\\end{matrix} ight.\ \overset{}{ightarrow}A( - 3; - 1).

  • Câu 9: Vận dụng

    Cho tam giác ABC có điểm O thỏa mãn |\overrightarrow{OA}+\overrightarrow{OB}-2\overrightarrow{OC}|=|\overrightarrow{OA}-\overrightarrow{OB}|. Khẳng định nào sau đây là đúng?

     Ta có: |\overrightarrow{OA}+\overrightarrow{OB}-2\overrightarrow{OC}|=|\overrightarrow{OA}-\overrightarrow{OB}| \Leftrightarrow\left| {\overrightarrow {CA}  + \overrightarrow {CB} } ight| = \left| {\overrightarrow {BA} } ight|.

    Vẽ hình bình hành ACBD, suy ra \left| {\overrightarrow {CA}  + \overrightarrow {CB} } ight| = \left| {\overrightarrow {CD} } ight|. Mà \left| {\overrightarrow {CA}  + \overrightarrow {CB} } ight| = \left| {\overrightarrow {BA} } ight|. Suy ra CD=BA. Do đó ACBD là hình chữ nhật. Do đó tam giác ACB vuông C.

  • Câu 10: Nhận biết

    Cho hình bình hành ABCD, vectơ có điểm đầu và điểm cuối là các đỉnh của hình bình hành bằng với vectơ \overrightarrow{AB} là:

    Ta có ABCD là hình bình hành nên \left\{ \begin{matrix}
AB = CD \\
AB \parallel CD \\
\end{matrix} ight. do đó \overrightarrow{AB} =
\overrightarrow{DC}.

  • Câu 11: Thông hiểu

    Cho hình vuông ABCD, tâm O, cạnh 4 cm. Điểm E, H lần lượt thuộc các cạnh BC, CD sao cho \overrightarrow{BE}=\frac{1}{4}\overrightarrow{BC}\overrightarrow{CH}=\frac{3}{4}\overrightarrow{CD}. Độ dài vecto |\overrightarrow{OE}+\overrightarrow{OH}| là:

    Ta có:

    \begin{matrix}  \overrightarrow {OE}  + \overrightarrow {OH}  \hfill \\   = \overrightarrow {OB}  + \overrightarrow {BE}  + \overrightarrow {OC}  + \overrightarrow {CH}  \hfill \\   = \overrightarrow {OB}  + \overrightarrow {OC}  + \overrightarrow {BE}  + \overrightarrow {CH}  \hfill \\   = \overrightarrow {AB}  + \dfrac{1}{4}\overrightarrow {BC}  + \dfrac{3}{4}\overrightarrow {BA}  \hfill \\   = \dfrac{1}{4}\overrightarrow {AB}  + \dfrac{1}{4}\overrightarrow {BC}  \hfill \\   = \dfrac{1}{4}\left( {\overrightarrow {AB}  + \overrightarrow {BC} } ight) \hfill \\   = \dfrac{1}{4}\overrightarrow {AC}  \hfill \\ \end{matrix}

    \Rightarrow \left| {\overrightarrow {OE}  + \overrightarrow {OH} } ight| = \frac{1}{4}\left| {\overrightarrow {AC} } ight| = \frac{1}{4}AC = \frac{1}{4}.4\sqrt 2  = \sqrt 2

  • Câu 12: Thông hiểu

    Cho tam giác ABC vuông tại A có AB = 3, BC = 5. Tính |\overrightarrow{AB}+\overrightarrow{BC}|

    Ta có: \left| {\overrightarrow {AB}  + \overrightarrow {BC} } ight| = \left| {\overrightarrow {AC} } ight| = AC

    Tam giác ABC vuông tại A ta có:

    \begin{matrix}  A{B^2} + A{C^2} = B{C^2} \hfill \\   \Rightarrow A{C^2} = B{C^2} - A{B^2} = {5^2} - {3^2} = 16 \hfill \\   \Rightarrow AC = 4 \hfill \\   \Rightarrow \left| {\overrightarrow {AC} } ight| = AC = 4 \hfill \\ \end{matrix}

  • Câu 13: Nhận biết

    Cho đoạn thẳng ABM là một điểm trên đoạn AB sao cho MA
= \frac{1}{5}AB. Trong các khẳng định sau, khẳng định nào sai?

    Hình vẽ minh họa

    Ta thấy \overrightarrow{MB}\overrightarrow{AB} cùng hướng nên \overrightarrow{MB} = -
\frac{4}{5}\overrightarrow{AB} là sai.

  • Câu 14: Thông hiểu

    Cho hình chữ nhật ABCD. Khẳng định nào sau đây đúng?

    Ta có \left\{ \begin{matrix}
\left| \overrightarrow{AB} - \overrightarrow{AD} ight| = \left|
\overrightarrow{DB} ight| = BD \\
\left| \overrightarrow{AB} + \overrightarrow{AD} ight| = \left|
\overrightarrow{AC} ight| = AC \\
\end{matrix} ight.\ .

    BD = AC \Rightarrow \left|
\overrightarrow{AB} - \overrightarrow{AD} ight| = \left|
\overrightarrow{AB} + \overrightarrow{AD} ight|.

  • Câu 15: Nhận biết

    Trong mặt phẳng Oxy cho \overrightarrow{a} = (1;3),\ \ \overrightarrow{b}= ( - 2;1). Tích vô hướng của 2 vectơ \overrightarrow{a}.\overrightarrow{b} là:

    Ta có \overrightarrow{a} =(1;3),\overrightarrow{b} = ( - 2;1), suy ra \overrightarrow{a}.\overrightarrow{b} = 1.( - 2) +3.1 = 1.

  • Câu 16: Thông hiểu

    Mệnh đề nào sau đây sai?

    Chọn \left| \overrightarrow{AB} ight|
> 0.

    Vì có thể xảy ra trường hợp \left|
\overrightarrow{AB} ight| = 0 \Leftrightarrow A \equiv B.

  • Câu 17: Vận dụng

    Cho hình bình hành ABCDO là giao điểm của hai đường chéo. Đẳng thức nào sau đây sai?

    Xét các đáp án:

    Đáp án \overrightarrow{OA} +
\overrightarrow{OB} + \overrightarrow{OC} + \overrightarrow{OD} =
\overrightarrow{0}. Ta có \overrightarrow{OA} + \overrightarrow{OB} +
\overrightarrow{OC} + \overrightarrow{OD} = \left( \overrightarrow{OA} +
\overrightarrow{OC} ight) + \left( \overrightarrow{OB} +
\overrightarrow{OD} ight) = \overrightarrow{0}.

    Đáp án \overrightarrow{AC} =
\overrightarrow{AB} + \overrightarrow{AD}. Ta có \overrightarrow{AB} + \overrightarrow{AD} =
\overrightarrow{AC} (quy tắc hình bình hành).

    Đáp án \left| \overrightarrow{BA} +
\overrightarrow{BC} ight| = \left| \overrightarrow{DA} +
\overrightarrow{DC} ight|. Ta có \left\{ \begin{matrix}
\left| \overrightarrow{BA} + \overrightarrow{BC} ight| = \left|
\overrightarrow{BD} ight| = BD \\
\left| \overrightarrow{DA} + \overrightarrow{DC} ight| = \left|
\overrightarrow{DB} ight| = BD \\
\end{matrix} ight..

    Đáp án \overrightarrow{AB} +
\overrightarrow{CD} = \overrightarrow{AB} +
\overrightarrow{CB}. Do \overrightarrow{CD} eq \overrightarrow{CB}
\Rightarrow \left( \overrightarrow{AB} + \overrightarrow{CD} ight)
eq \left( \overrightarrow{AB} + \overrightarrow{CB} ight). Chọn đáp án này.

  • Câu 18: Nhận biết

    Cho hình vuông ABCD, tính cos(\overrightarrow{AB},\overrightarrow{CA}).

     

    Vẽ \overrightarrow {CE}  = \overrightarrow {AB}.

    Ta có: \left( {\overrightarrow {AB} ,\overrightarrow {CA} } ight) = \left( {\overrightarrow {CE} ,\overrightarrow {CA} } ight) = 45^\circ  + 90^\circ  = 135^\circ\Rightarrow \cos 135^\circ  = \frac{{ - \sqrt 2 }}{2}.

     

  • Câu 19: Thông hiểu

    Trong hệ tọa độ Oxy, cho ba điểm A(0; - 3),\ B(2;1),\ D(5;5) Tìm tọa độ điểm C để tứ giác ABCD là hình bình hành.

    Gọi C(x;y). Ta có \left\{ \begin{matrix}
\overrightarrow{AB} = (2;4) \\
\overrightarrow{DC} = (x - 5;y - 5) \\
\end{matrix} ight.\ .

    Tứ giác ABCD là hình bình hành \Leftrightarrow \overrightarrow{AB} =
\overrightarrow{DC}

    \overset{}{ightarrow}\left\{\begin{matrix}2 = x - 5 \\4 = y - 5 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x = 7 \\y = 9 \\\end{matrix} ight.\ \overset{}{ightarrow}C(7;9).

  • Câu 20: Vận dụng cao

    Cho tam giác đều ABC cạnh a, trọng tâm G. Tập hợp các điểm M thỏa mãn \left| \overrightarrow{MA} + \overrightarrow{MB}
ight| = \left| \overrightarrow{MA} + \overrightarrow{MC}
ight|

    Gọi I,\ \ J lần lượt là trung điểm của AB,\ \ AC. Khi đó \left\{ \begin{matrix}
\overrightarrow{MA} + \overrightarrow{MB} = 2\overrightarrow{MI} \\
\overrightarrow{MA} + \overrightarrow{MC} = 2\overrightarrow{MJ} \\
\end{matrix} ight.\ .

    Theo bài ra, ta có \left|\overrightarrow{MA} + \overrightarrow{MB} ight| = \left|\overrightarrow{MA} + \overrightarrow{MC} ight|\Leftrightarrow \left|2\ \overrightarrow{MI} ight| = \left| 2\ \overrightarrow{MJ} ight|\Leftrightarrow MI = MJ.

    Vậy tập hợp các điểm M thỏa mãn \left| \overrightarrow{MA} +
\overrightarrow{MB} ight| = \left| \overrightarrow{MA} +
\overrightarrow{MC} ight| là đường trung trực của đoạn thẳng IJ, cũng chính là đường trung trực của đoạn thẳng BCIJ là đường trung bình của tam giác ABC.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 5 Vectơ sách CTST Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 11 lượt xem
Sắp xếp theo