Đề kiểm tra 15 phút Chương 6 Xác suất có điều kiện

Mô tả thêm: Bài kiểm tra 15 phút Xác suất có điều kiện của chúng tôi gồm 4 mức độ được thay đổi ngẫu nhiên, giúp bạn đọc rèn luyện củng cố kiến thức tốt hơn.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Cho hai biến cố A;B với P(A) = \frac{1}{3};P(B) = \frac{1}{2};P(A + B) =
\frac{3}{4}. Tính P\left(
\overline{A} + \overline{B} ight)?

    Ta có:

    P(A.B) = P(A) + P(B) - P(A + B) =
\frac{1}{12}

    P\left( \overline{A} + \overline{B}
ight) = P\left( \overline{A}\overline{B} ight) = 1 - P(AB) =
\frac{11}{12}

  • Câu 2: Thông hiểu

    Áo sơ mi May10 trước khi xuất khẩu sang phải qua 2 lần kiểm tra, nếu cả hai lần đều đạt thì chiếc áo đó mới đủ tiêu chuẩn xuất khẩu. Biết rằng bình quân 98\% sản phẩm làm ra qua được lần kiểm tra thứ nhất và 95\% sản phẩm qua được lần kiểm tra đầu sẽ tiếp tục qua được lần kiểm tra thứ hai. Tìm xác suất để 1 chiếc áo sơ mi đủ tiêu chuẩn xuất khẩu?

    Gọi A là biến cố ”Qua được lần kiểm tra đầu tiên” \Rightarrow P(A) = 0,98

    Gọi B là biên cố “Qua được lần kiểm tra thứ 2” \Rightarrow P\left( B|A ight) =
0,95

    Chiếc áo sơ mi đủ tiêu chuẩn xuất khẩu phải thỏa mãn 2 điều kiện trên hay ta đi tính P(A \cap B)

    Ta có:

    P\left( B|A ight) = \frac{P(A \cap
B)}{P(A)}

    \Rightarrow P(A \cap B) = P\left( B|A
ight).P(A) = 0,95.0,98 = \frac{931}{1000}.

  • Câu 3: Thông hiểu

    Một bình đựng 50 viên bi kích thước, chất liệu như nhau, trong đó có 30 viên bi xanh và 20 viên bi trắng. Lấy ngẫu nhiên ra một viên bi, rồi lại lấy ngẫu nhiên ra một viên bi nữa. Tính xác suất để lấy được một viên bi xanh ở lần thứ nhất và một viên bi trắng ở lần thứ hai?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Một bình đựng 50 viên bi kích thước, chất liệu như nhau, trong đó có 30 viên bi xanh và 20 viên bi trắng. Lấy ngẫu nhiên ra một viên bi, rồi lại lấy ngẫu nhiên ra một viên bi nữa. Tính xác suất để lấy được một viên bi xanh ở lần thứ nhất và một viên bi trắng ở lần thứ hai?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 4: Thông hiểu

    Cửa hàng nhận trứng của ba cơ sở nuôi gà theo tỉ lệ 25\%;35\%;40\%. Nếu tỉ lệ trứng hỏng của ba cơ sở là 5\%;4\%;2\% thì xác suất để một quả trứng mua tại cửa hàng bị hỏng là bao nhiêu?

    Khi mua một quả trứng của cửa hàng thì có một và chỉ một trong 3 biến cố xảy ra:

    A1 lấy trứng của cơ sở I.

    A2 lấy trứng của cơ sở II.

    A3 lấy trứng của cơ sở III.

    Xác suất của ba biến cố trên lần lượt là:

    P\left( A_{1} ight) = 0,25;P\left(
A_{2} ight) = 0,35;P\left( A_{3} ight) = 0,40

    Gọi B là biến cố trứng mua tại cửa hàng bị hỏng.

    Xác suất trứng hỏng tại ba cơ sở lần lượt là:

    P\left( B|A_{1} ight) = 0,05;P\left(
B|A_{2} ight) = 0,04;P\left( B|A_{3} ight) = 0,02

    Do đó:

    P(B) = P\left( A_{1} ight).P\left(
B|A_{1} ight) + P\left( A_{2} ight).P\left( B|A_{2} ight) +
P\left( A_{3} ight).P\left( B|A_{3} ight)

    \Rightarrow P(B) = 0,25.0,05 + 0,35.0,04
+ 0,4.0,02 = 0,0345.

  • Câu 5: Thông hiểu

    Có hai hộp đựng phiếu thi, mỗi phiếu ghi một câu hỏi. Hộp thứ nhất có 15 phiếu và hộp thứ hai có 9 phiếu. Học sinh A đi thi chỉ thuộc 10 câu ở hộp thứ nhất và 8 câu ở hộp thứ hai. Giáo viên rút ngẫu nhiên từ mỗi hộp ra một phiếu thi, sau đó cho học sinh A rút ngẫu nhiên ra 1 phiếu từ 2 phiếu mà giáo viên đã rút. Tính xác suất để học sinh A trả lời được câu hỏi trong phiếu.

    Gọi E1 là biến cố sinh viên rút ra từ hộp 1

    E2 là biến cố sinh viên rút ra từ hộp 2

    E1, E2 tạo thành một nhóm biến cố đầy đủ

    Gọi B là biến cố rút ra 1 câu thuộc B=(E_1∩B)∪(E_2∩B)

    => P(B) = P(E_1).P(B|E_1) + P(E_2).P(B|E_2)

    Ta có: \left\{ \begin{gathered}
  P\left( {{E_1}} ight) = \frac{{C_1^1}}{{C_2^1}} = \frac{1}{2};P\left( {{E_2}} ight) = \frac{{C_1^1}}{{C_2^1}} = \frac{1}{2} \hfill \\
  P\left( {B|{E_1}} ight) = \frac{{C_{10}^1}}{{C_{15}^1}} = \frac{2}{3} \hfill \\
  P\left( {B|{E_2}} ight) = \frac{{C_8^1}}{{C_9^1}} = \frac{8}{9} \hfill \\ 
\end{gathered}  ight.

    Thay vào công thức ta tính được P(B) =
\frac{7}{9}.

  • Câu 6: Nhận biết

    Cho hai biến cố AB với 0 <
P(A) < 1. Khi đó công thức xác suất toàn phần tính P(B) là:

    Ta có công thức xác suất toàn phần tính P(B) là:

    P(B) = P(A).P\left( B|A ight) + P\left(
\overline{A} ight).P\left( B|\overline{A} ight)

  • Câu 7: Vận dụng

    Theo thống kê xác suất để hai ngày liên tiếp có mưa ở một thành phố vào mùa hè là 0,5; còn không mưa là 0,3. Biết các sự kiện có một ngày mưa, một ngày không mưa là đồng khả năng. Tính xác suất để ngày thứ hai có mưa, biết ngày đầu không mưa?

    Gọi A là "ngày đầu mưa" và B là "ngày thứ hai mưa" thì ta có:

    P(AB) = 0,5;P\left(
\overline{A}\overline{B} ight) = 0,3

    Vì các sự kiện có một ngày mưa, một ngày không mưa là đồng khả năng nên

    P\left( A\overline{B} ight) = P\left(
\overline{A}B ight) = \frac{1 - 0,5 - 0,3}{2} = 0,1

    Xác suất cần tính là P\left(
\overline{B}|A ight) có:

    P\left( \overline{B}|A ight) =
\frac{P\left( B\overline{A} ight)}{P\left( \overline{A} ight)} =
\frac{P\left( B\overline{A} ight)}{P\left( \overline{A}\overline{B}
ight) + P\left( \overline{A}B ight)}

    = \frac{0,1}{0,1 + 0,3} = 0,25 =
25\%

  • Câu 8: Thông hiểu

    Dây chuyền lắp ráp nhận được các chi tiết do hai máy sản xuất. Trung bình máy thứ nhất cung cấp 60\% chi tiết, máy thứ hai cung cấp 40\% chi tiết. Biết 90\% chi tiết do máy thứ nhất sản xuất đều đạt tiêu chuẩn và 85\% chi tiết do máy thứ hai sản xuất là đạt tiêu chuẩn. Lấy ngẫu nhiên từ dây chuyển một sản phẩm, thấy nó đạt tiêu chuẩn. Tìm xác suất để sản phẩm đó do máy thứ nhất sản xuất.

    Gọi A là biến cố chi tiết lấy từ dây chuyển đạt tiêu chuẩn.

    Biến cố A có thể xảy ra đồng thời với một trong hai biến cố sau đây tạo nên một nhóm đầy đủ các biến cố.

    H1 chi tiết máy do máy một sản xuất.

    H2 chi tiết máy do máy hai sản xuất.

    Như vậy xác suất để chi tiết máy dó máy một sản xuất bằng:

    P\left( H_{1}|A ight) = \frac{P\left(
H_{1} ight).P\left( A|H_{1} ight)}{P\left( H_{1} ight).P\left(
A|H_{1} ight) + P\left( H_{2} ight).P\left( A|H_{2}
ight)}

    Theo dữ kiện đề bài cho ta có:\left\{
\begin{matrix}
P\left( H_{1} ight) = 0,6;P\left( H_{2} ight) = 0,4 \\
P\left( A|H_{1} ight) = 0,9;P\left( A|H_{2} ight) = 0,85 \\
\end{matrix} ight.

    Do đó:

    P\left( H_{1}|A ight) =
\frac{0,6.0,9}{0,6.0,9 + 0,4.0,85} = 0,614

  • Câu 9: Nhận biết

    Cho hai biến cố ABcủa một phép thử T. Xác suất của biến cố A với điều kiện biến cố B đã xảy ra được gọi là xác suất của A với điều kiện B, ký hiệu là P\left( \left. \ A ight|B ight). Phát biểu nào sau đây đúng?

    Nếu P(B) > 0 thì P\left( \left. \ A ight|B ight) =
\frac{P(A).P\left( \left. \ B ight|A ight)}{P(B)}.

  • Câu 10: Thông hiểu

    Một cuộc khảo sát 1000 người về hoạt động thể dục thấy có 80\% số người thích đi bộ và 60\% thích đạp xe vào buổi sáng và tất cả mọi người đều tham gia ít nhất một trong hai hoạt động trên. Chọn ngẫu nhiên một người hoạt động thể dục. Nếu gặp được người thích đi xe đạp thì xác suất mà người đó không thích đi bộ là bao nhiêu?

    Gọi A là "người thích đi bộ", B là "người thích đi xe đạp"

    Theo giả thiết: P(A) = 0,8' P(B) = 0,6; P(A + B) = 1.

    Ta có:

    P\left( \bar{A}\mid B ight) =
\frac{P\left( \bar{A}B ight)}{P(B)} = \frac{P(B) -
P(AB)}{P(B)}

    = \frac{P(B) + \lbrack P(A + B) - P(A) -
P(B)brack}{P(B)}

    = \frac{P(A + B) - P(A)}{P(B)} = \frac{1
- 0,8}{0,6} \simeq 0,3333

  • Câu 11: Thông hiểu

    Trong một vùng dân cư, cứ 100 người thì có 30 người hút thuốc lá. Biết tỷ lệ người bị viêm họng trong số người hút thuốc lá là 60\%, trong số người không hút thuốc lá là 30\%. Khám ngẫu nhiên một người và thấy người đó bị viêm họng. Nếu người đó không bị viêm họng thì xác suất để người đó hút thuốc lá là bao nhiêu?

    Gọi A: "Người này hút thuốc"

    B: "Người này bị viêm họng"

    Theo giả thiết ta có: P(A) = 0,3;P\left(
B|A ight) = 0,6;P\left( B|\overline{A} ight) = 0,3

    Ta thấy rằng A;\overline{A} là một hệ đầy đủ các biến cố.

    Theo công thức xác suất toàn phần ta tính được:

    P(B) = P\left( B|A ight)P(A) + P\left(
B|\overline{A} ight)P\left( \overline{A} ight)

    = 0,6.0,3 + 0,3.0,7 = 0,39

    \Rightarrow P\left( \overline{B} ight)
= 1 - P(B) = 0,61

    Theo công thức Bayes, xác suất để người đó hút thuốc lá khi biết người đó không bị viêm họng là:

    P\left( A|\overline{B} ight) =
\frac{P\left( \overline{B}|A ight)P(A)}{P\left( \overline{B} ight)}
= \frac{0,4.0,3}{0,61} = 0,197

  • Câu 12: Nhận biết

    Cho hai biến cố AB với 0 <
P(B) < 1. Khi đó công thức xác suất toàn phần tính P(A) là:

    Ta có công thức xác suất toàn phần tính P(A) là:

    P(A) = P(B).P\left( A|B ight) + P\left(
\overline{B} ight).P\left( A|\overline{B} ight)

  • Câu 13: Thông hiểu

    Gieo hai con xúc xắc cân đối, đồng chất. Tính xác suất để tổng số chấm xuất hiện trên hai con xúc xắc lớn hơn hoặc bằng 10, nếu biết rằng có ít nhất một con đã ra mặt 5 chấm?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Gieo hai con xúc xắc cân đối, đồng chất. Tính xác suất để tổng số chấm xuất hiện trên hai con xúc xắc lớn hơn hoặc bằng 10, nếu biết rằng có ít nhất một con đã ra mặt 5 chấm?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 14: Thông hiểu

    Một hộp chứa 8 bi trắng, 2 bi đỏ. Lần lượt lấy từng bi. Giả sử lần đầu tiên lấy được bi trắng. Xác định xác suất lần thứ hai lấy được bi đỏ.

    Gọi A là biến cố lần một lấy được bi trắng.

    Gọi B là biến cố lần hai lấy được bi đỏ.

    Xác suất lần 2 lấy được bi đỏ khi lần 1 đã lấy được bi trắng làP\left( B|A ight).

    Ta có: \left\{ \begin{matrix}P(A) = \dfrac{8.9}{10.9} = \dfrac{4}{5} \\P(A \cap B) = \dfrac{8.2}{10.9} = \dfrac{8}{45} \\\end{matrix} ight. khi đó:

    P\left( B|A ight) = \dfrac{P(A \cap B)}{P(A)} = \dfrac{\dfrac{8}{45}}{\dfrac{4}{5}} = \dfrac{2}{9}.

  • Câu 15: Vận dụng cao

    Có 3 cửa hàng I, II, III cùng kinh doanh sản phẩm Y, trong đó thị phần của cửa hàng I, III như nhau và gấp đôi thị phần của cửa hàng II. Tỉ lệ sản phẩm loại A trong 3 cửa hàng lần lượt là 70\%; 75\% ; 50\%. Một khách hàng chọn ngẫu nhiên 1 cửa hàng và tử đó mua một sản phẩm. Giả sử khách hàng đã mua được sản phẩm loại A, hỏi khả năng người ấy đã mua được ở cửa hàng nào là nhiều nhất?

    Gọi T: "Khách hàng mua được sản phẩm loại A"

    Ai: "Mua ở cửa hàng i"

    Ta có {A1, A2, A3} là một hệ đầy đủ các biến cố và xác định được:P\left( A_{1}
ight) = \frac{2}{5} = 0,4;P\left( A_{2} ight) = \frac{1}{5} =
0,2;P\left( A_{3} ight) = \frac{2}{5} = 0,4

    P\left( T|A_{1} ight) = 0,7;P\left(
A|A_{2} ight) = 0,75;P\left( T|A_{3} ight) = 0,5

    Áp dụng công thức xác suất toàn phần ta có xác suất để khách hàng mua được sản phẩm loại A là:

    P(T) = P\left( A_{1} ight)P\left(
T|A_{1} ight) + P\left( A_{2} ight)P\left( A|A_{2} ight) + P\left(
A_{3} ight)P\left( T|A_{3} ight)

    \Rightarrow P(T) = 0,4.0,7 + 0,2.0,75 +
0,4.0,5 = 0,63

    Áp dụng công thức Bayes, ta có:

    P\left( A_{1}|T ight) = \frac{P\left(
A_{1} ight)P\left( T|A_{1} ight)}{P(T)} = \frac{0,4.0,7}{0,63} =
0,4444

    P\left( A_{21}|T ight) = \frac{P\left(
A_{2} ight)P\left( T|A_{2} ight)}{P(T)} = \frac{0,2.0,75}{0,63} =
0,2381

    P\left( A_{3}|T ight) = \frac{P\left(
A_{3} ight)P\left( T|A_{3} ight)}{P(T)} = \frac{0,4.0,5}{0,63} =
0,3175

    Ta thấy rằng P(A1|T) là lớn nhất tức là khả năng người ấy đã mua ở cửa hàng I là nhiều nhất.

  • Câu 16: Nhận biết

    Cho AB là các biến cố của phép thử T. Biết rằng P(A) > 0;0 < P(B) <
1. Xác suất của biến cố B với điều kiện biến cố A đã xảy ra được tính theo công thức nào sau đây?

    Theo công thức Bayes ta có:

    P\left( B|A ight) = \frac{P(B).P\left(
A|B ight)}{P(B).P\left( A|B ight) + P\left( \overline{B}
ight).P\left( A|\overline{B} ight)}

  • Câu 17: Vận dụng

    Một hệ thống được cấu tạo bởi 3 bộ phận độc lập nhau. Hệ thống sẽ hoạt động nếu ít nhất 2 trong 3 bộ phận còn hoạt động. Nếu độ tin cậy của mỗi bộ phận là 0.95 thì độ tin cậy của hệ thống là bao nhiêu?

    Gọi Bi: "Bộ phận thứ i hoạt động tốt" (i = 1, 2, 3)

    H: "Hệ thống hoạt động tốt"

    Theo giả thiết, ta thấy rằng P(Bi) = 0.95 với i = 1, 2, 3 và

    H = \overline{B_{1}}B_{2}B_{3} +
B_{1}\overline{B_{2}}B_{3} + B_{1}B_{2}\overline{B_{3}} +
B_{1}B_{2}B_{3}

    Do tính độc lập, xung khắc và đối xứng nên:

    P(H) = 3P\left( \overline{B_{1}}
ight)P\left( B_{2} ight)P\left( B_{3} ight) + P\left( B_{1}
ight)P\left( B_{2} ight)P\left( B_{3} ight)

    \Rightarrow P(H) = 3.(0,95)^{2}.(0,05) +
0,95^{3} = 99,28.

  • Câu 18: Vận dụng

    Ba máy tự động sản xuất cùng một loại chi tiết, trong đó máy I sản xuất 25\%, máy II sản xuất 30\% và máy III sản xuất 45\% tổng sản lượng. Tỷ lệ phế phẩm của các máy lần lượt là 0,1\%;0,2\%;0,4\%. Tìm xác suất để khi chọn ngẫu nhiên ra 1 sản phẩm từ kho thì chi tiết phế phẩm đó do máy II sản xuất?

    Gọi Ai: “Sản phẩm do máy i sản xuất”

    A: “Sản phẩm là phế phẩm”

    Ta có: A1, A2, A3 là một hệ đầy đủ các biến cố và

    P\left( A_{1} ight) = 0,25;P\left(
A_{2} ight) = 0,3;P\left( A_{3} ight) = 0,45

    P\left( A|A_{1} ight) = 0,001;P\left(
A|A_{2} ight) = 0,002;P\left( A|A_{3} ight) = 0,004

    Theo công thức xác suất toàn phần ta có:

    P(A) = P\left( A_{1} ight)P\left(
A|A_{1} ight) + P\left( A_{2} ight)P\left( A|A_{3} ight) + P\left(
A_{3} ight)P\left( A|A_{3} ight) = 0,00265

    Theo công thức Bayes ta có:

    P\left( A_{2}|A ight) = \frac{P\left(
A|A_{2} ight).P\left( A_{2} ight)}{P(A)} = 0,226

  • Câu 19: Vận dụng

    Có 3 hộp bi:

    Hộp 1: Có 3 xanh, 4 đỏ, 5 vàng.

    Hộp 2: Có 4 xanh, 5 đỏ, 6 vàng.

    Hộp 3: Có 5 xanh, 6 đỏ, 7 vàng

    Chọn ngẫu nhiên 1 hộp và từ hộp đó lấy ngẫu nhiên 1 bi. Tính xác suất để bi lấy ra là bi xanh. Nếu bi lấy ra không là bi xanh, tính xác suất để bi đó được lấy từ hộp 2?

    Gọi A_{1};A_{2};A_{3} lần lượt là các biến cố “Chọn được hộp thứ 1, 2, 3” ta có hệ A_{1};A_{2};A_{3} là hệ biến cố xung khắc và đầy đủ:

    P\left( A_{1} ight) = P\left( A_{2}
ight) = P\left( A_{3} ight) = \frac{1}{3}

    Gọi B là biến cố “Lấy được bi xanh”

    Ta có:

    P(B) = P\left( A_{1} ight).P\left(
B|A_{1} ight) + P\left( A_{2} ight).P\left( B|A_{2} ight) +
P\left( A_{3} ight).P\left( B|A_{3} ight)

    \Rightarrow P(B) =
\frac{1}{3}.\frac{3}{12} + \frac{1}{3}.\frac{4}{15} +
\frac{1}{3}.\frac{5}{18} \approx 26,48\%

    \overline{B} là biến cố bi lấy ra không phải là bi xanh, ta cần tính:

    P\left( A_{2}|B ight) = \frac{P\left(
A_{2} ight).P\left( \overline{B}|A_{2} ight)}{P\left( \overline{B}
ight)} = \frac{\frac{1}{3}.\frac{11}{15}}{1 - 0,2648} =
33,25\%

  • Câu 20: Nhận biết

    Cho hai biến cố AB, với P(A) =
0,6;P(B) = 0,7;P(A \cap B) = 0,3. Tính P\left( A|B ight)?

    Ta có: P\left( A|B ight) = \frac{P(A
\cap B)}{P(B)} = \frac{0,3}{0,7} = \frac{3}{7}.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 6 Xác suất có điều kiện Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 21 lượt xem
Sắp xếp theo