Đề kiểm tra 15 phút Chương 7 Phương pháp tọa độ trong mặt phẳng

Mô tả thêm: Đề kiểm tra 15 phút Toán 10 Phương pháp tọa độ trong mặt phẳng gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Cho đường thẳng d_{1}:2x + 3y + m^{2} - 1 = 0d_{2}:\left\{ \begin{matrix}
x = 2m - 1 + t \\
y = m^{4} - 1 + 3t \\
\end{matrix} ight.. Tính cosin góc tạo bởi giữa hai đường thẳng trên.

    . \left\{ \begin{matrix}
d_{1}:2x + 3y + m^{2} - 1 = 0 ightarrow {\overrightarrow{n}}_{1} =
(2;3) \\
d_{2}:\left\{ \begin{matrix}
x = 2m - 1 + t \\
y = m^{4} - 1 + 3t \\
\end{matrix} ight.\  ightarrow {\overrightarrow{n}}_{2} = (3; - 1)
\\
\end{matrix} ight. \overset{\varphi = \left( d_{1};d_{2}
ight)}{ightarrow}\cos\varphi = \frac{|6 - 3|}{\sqrt{4 + 9}.\sqrt{9 +
1}} = \frac{3}{\sqrt{130}}.

  • Câu 2: Thông hiểu

    Viết phương trình tham số của đường thẳng d đi qua điểm M(6; - 10) và vuông góc với trục Oy.

    \begin{matrix}
\left\{ \begin{matrix}
M(6; - 10) \in d \\
d\bot Oy:x = 0 ightarrow {\overrightarrow{u}}_{d} = (1;0) \\
\end{matrix} ight.\ \overset{ightarrow}{}d:\left\{ \begin{matrix}
x = 6 + t \\
y = - 10 \\
\end{matrix} ight.\ \overset{t = - 4}{ightarrow}A(2; - 10) \in d \\
ightarrow d:\left\{ \begin{matrix}
x = 2 + t \\
y = - 10 \\
\end{matrix} ight.\ . \\
\end{matrix}

  • Câu 3: Nhận biết

    Đường tròn có tâm I(1;2), bán kính R = 3 có phương trình là:

    (C):\left\{ \begin{matrix}
I(1;2) \\
R = 3 \\
\end{matrix} ight.\  ightarrow (C):(x - 1)^{2} + (y - 2)^{2} = 9
\Leftrightarrow x^{2} + y^{2} - 2x - 4y - 4 = 0.

  • Câu 4: Nhận biết

    Tọa độ tâm I và bán kính R của đường tròn (C):16x^{2} + 16y^{2} + 16x - 8y - 11 = 0 là:

    (C):16x^{2} + 16y^{2} + 16x - 8y - 11 =
0 \Leftrightarrow x^{2} + y^{2} + x - \frac{1}{2}y - \frac{11}{16} =
0.

    ightarrow \left\{ \begin{matrix}
I\left( - \frac{1}{2};\frac{1}{4} ight) \\
R = \sqrt{\frac{1}{4} + \frac{1}{16} + \frac{11}{16}} = 1. \\
\end{matrix} ight.

  • Câu 5: Thông hiểu

    Một Elip đi qua điểm B(0;6) và có độ dài trục lớn là 4\sqrt{10}. Hãy xác định phương trình chính tắc của elip đó?

    Phương trình chính tắc của elip có dạng \frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} = 1;(a,b
> 0)

    Do (E) có độ dài trục lớn là 4\sqrt{10} nên 2a = 4\sqrt{10} \Rightarrow a = 2\sqrt{10}
\Rightarrow a^{2} = 40

    Do (E) đi qua điểm B(0;6) nên \frac{0^{2}}{a^{2}} + \frac{6^{2}}{b^{2}} =
1 \Rightarrow b^{2} = 36

    Vậy phương trình chính tắc của elip là: \frac{x^{2}}{40} + \frac{y^{2}}{36} =
1.

  • Câu 6: Nhận biết

    Cho đường thẳng d_{1} có vectơ pháp tuyến là \overrightarrow{n_{1}} và đường thẳng d_{2} có vectơ pháp tuyến là \overrightarrow{n_{2}}. Gọi \beta là góc tạo bởi hai đường thẳng d_{1};d_{2}. Kết luận nào sau đây đúng?

    Góc tạo bởi hai đường thẳng đã cho được xác định bởi công thức \cos\beta = \frac{\left|
\overrightarrow{n_{1}}.\overrightarrow{n_{2}} ight|}{\left|
\overrightarrow{n_{1}} ight|.\left| \overrightarrow{n_{2}}
ight|}.

  • Câu 7: Nhận biết

    Cho elip có phương trình chính tắc \frac{x^{2}}{9} + \frac{y^{2}}{4} = 1. Khi đó độ dài trục lớn và trục nhỏ của elip lần lượt là:

    Ta có: \left\{ \begin{matrix}
a^{2} = 9 \\
b^{2} = 4 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a = 3 \\
b = 2 \\
\end{matrix} ight.

    Độ dài trục lớn AA_{1} = 2a =
6

    Độ dài trục bé BB_{1} = 2b =
4

    Vậy độ dài trục lớn và trục nhỏ của elip lần lượt là: 6;4

  • Câu 8: Nhận biết

    Phương trình nào dưới đây không phải là phương trình tham số của đường thẳng đi qua hai điểm O(0;0)M(1; - 3)?

    Kiểm tra đường thẳng nào không chứa O(0;0)\overset{ightarrow}{} loại.

    Có thể kiểm tra đường thẳng nào không đi qua điểm M(1; - 3).

  • Câu 10: Vận dụng

    Tìm tất cả các giá trị của tham số m để hai đường thẳng d_{1}:4x + 3my–m^{2} = 0d_{2}:\left\{ \begin{matrix}
x = 2 + t \\
y = 6 + 2t \\
\end{matrix} ight. cắt nhau tại một điểm thuộc trục tung.

    Oy \cap d_{2} \leftrightarrow \left\{
\begin{matrix}
x = 2 + t = 0 \\
y = 6 + 2t \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = 0 \\
y = 2 \\
\end{matrix} ight.\  ightarrow Oy \cap d_{2} = A(0;2) \in
d_{1}

    \Leftrightarrow
6m - m^{2} = 0 \Leftrightarrow \left\lbrack \begin{matrix}
m = 0 \\
m = 6 \\
\end{matrix} ight.\ .

  • Câu 11: Thông hiểu

    Trong mặt phẳng với hệ tọa độ Oxy, cho đường thẳng \Delta:ax + by + c = 0 và hai điểm M\left( x_{m}\ ;\ y_{m} ight), N\left( x_{n};y_{n} ight) không thuộc \Delta. Chọn khẳng định đúng trong các khẳng định sau:

    M,\ N cùng phía so với \Delta thì \left( ax_{m} + by_{m} + c ight)\left( ax_{n} + by_{n} + c ight) luôn cùng dấu.

    Chọn M,\ N cùng phía so với \Delta khi \left( ax_{m} + by_{m} + c ight).\left( ax_{n} +
by_{n} + c ight)\  > \ 0.

  • Câu 12: Thông hiểu

    Cho phương trình x^{2} + y^{2} - 2x + 2my\  + 10 = 0(1). Có bao nhiêu giá trị m nguyên dương không vượt quá 10 để (1) là phương trình của đường tròn?

    Ta có: x^{2} + y^{2} - 2x + 2my\  + \ 10
= 0 ightarrow \left\{ \begin{matrix}
a = 1 \\
b = - m \\
c = 10 \\
\end{matrix} ight.

    ightarrow a^{2} + b^{2} - c > 0
\Leftrightarrow m^{2} - 9 > 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
m < - 3 \\
m > 3 \\
\end{matrix} ight.\  \Leftrightarrow m = 4;5\ldots;10. Có 7 giá trị m.

  • Câu 13: Nhận biết

    Đường thẳng d đi qua điểm A( - 4;5) và có vectơ pháp tuyến \overrightarrow{n} = (3;2) có phương trình tham số là:

    \left\{ \begin{matrix}A( - 4;5) \in d \\{\overrightarrow{n}}_{d} = (3;2) ightarrow {\overrightarrow{u}}_{d} =( - 2;3) \\\end{matrix} ight.\ \overset{ightarrow}{}d:\left\{ \begin{matrix}x = - 4 - 2t \\y = 5 + 3t \\\end{matrix} ight.\ \left( t\mathbb{\in R} ight).

  • Câu 14: Vận dụng

    Đường tròn (C) có tâm I thuộc đường thẳng d:x + 3y - 5 = 0, bán kính R = 2\sqrt{2} và tiếp xúc với đường thẳng \Delta:\ x - y - 1 = 0. Phương trình của đường tròn (C) là:

    I \in d ightarrow I(5 - 3a;a)
ightarrow d\lbrack I;\Deltabrack = R = 2\sqrt{2} \Leftrightarrow
\frac{|4 - 4a|}{\sqrt{2}} = 2\sqrt{2}

    \Leftrightarrow \left\lbrack
\begin{matrix}
a = 0 \\
a = 2 \\
\end{matrix} ight.\  ightarrow \left\lbrack \begin{matrix}
I(5;0) \\
I( - 1;2) \\
\end{matrix} ight.\ .

    Vậy các phương trình đường tròn là: (x -
5)^{2} + y^{2} = 8 hoặc (x + 1)^{2}
+ (y - 2)^{2} = 8.

  • Câu 15: Nhận biết

    Cho hình elip có độ dài trục lớn và độ dài trục nhỏ lần lượt bằng 6 và 0. Viết phương trình elip.

    Ta có: \left\{ \begin{matrix}
2a = 6 \Rightarrow a = 3 \\
2b = 4 \Rightarrow b = 2 \\
\end{matrix} ight.

    Phương trình elip là: \frac{x^{2}}{9} +
\frac{y^{2}}{4} = 1

  • Câu 16: Thông hiểu

    Cho đường tròn (C) có tâm I thuộc đường thẳng d_{1}:x - y + 1 = 0 có bán kính R = 2 và cắt đường thẳng d_{2}:3x - 4y = 0 tại hai điểm A;B sao cho AB = 2\sqrt{3}. Phương trình đường tròn (C) cần tìm là:

    Gọi tâm I thuộc đường thẳng d_{1} nên suy ra I(a;a + 1)

    d\left( I;\left( d_{2} ight) ight) =
\sqrt{R^{2} - \frac{AB^{2}}{4}} = \sqrt{4 - \frac{12}{4}} =
1

    Do đó:

    \frac{\left| 3a - 4(a + 1)
ight|}{\sqrt{3^{2} + ( - 4)^{2}}} = 1 \Leftrightarrow | - a - 4| = 5
\Leftrightarrow \left\lbrack \begin{matrix}
a = 1 \\
a = - 9 \\
\end{matrix} ight.

    Với a = 1 \Rightarrow I(1;2) nên phương trình đường tròn là (x - 1)^{2} + (y
- 2)^{2} = 4.

    Với a = - 9 \Rightarrow I( - 8; -
8) nên phương trình đường tròn là (x + 9)^{2} + (y + 8)^{2} = 4.

  • Câu 17: Vận dụng

    Cho Hyperbol (H):\frac{x^{2}}{4} - y^{2} = 1. Hãy tìm tọa độ điểm M trên (H) thỏa mãn M thuộc nhánh phải và MF_{1} nhỏ nhất (ngắn nhất).

    Ta có: \left\{ \begin{matrix}
a^{2} = 4 \\
b^{2} = 1 \\
c^{2} = a^{2} + b^{2} \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
a = 2 \\
b = 1 \\
c = \sqrt{5} \\
\end{matrix} ight.\ .

    Gọi M\left( x_{0};y_{0} ight) \in
(H).

    Ta có: \frac{x^{2}}{4} - y^{2} = 1
\Leftrightarrow x^{2} = 4\left( y^{2} + 1 ight). M thuộc nhánh phải của (H) nên x_{0}
\geq 2.

    MF_{1} = 2 + \frac{2}{\sqrt{5}}x_{0} \geq
2 + \frac{4}{\sqrt{5}}. MF_{1} nhỏ nhất bằng \frac{4}{\sqrt{5}} khi M \equiv A(2;0).

  • Câu 18: Nhận biết

    Xác định phương trình tham số của đường thẳng d. Biết rằng d đi qua điểm A(1;2) và có một vectơ chỉ phương là \overrightarrow{u} =
(2022;2023)?

    Đường thẳng đi qua điểm M\left(
x_{0};y_{0} ight) và nhận \overrightarrow{u} = \left( u_{1};u_{2}
ight) làm vectơ chỉ phương sẽ có phương trình tham số là: \left\{ \begin{matrix}
x = x_{0} + u_{1}t \\
y = y_{0} + u_{2}t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight).

    Áp dụng với dữ kiện bài toan trên ta được: \left\{ \begin{matrix}
x = 1 + 2022t \\
y = 2 + 2023t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight)

  • Câu 19: Nhận biết

    Xét vị trí tương đối của hai đường thẳng d_{1}:\left\{ \begin{matrix}
x = 4 + 2t \\
y = 1 - 5t \\
\end{matrix} ight.d_{2}:5x
+ 2y - 14 = 0.

    \left. \ \begin{matrix}
d_{1}:\left\{ \begin{matrix}
x = 4 + 2t \\
y = 1 - 5t \\
\end{matrix} ight.\  ightarrow A(4;1) \in d_{1},\ \
{\overrightarrow{u}}_{1} = (2; - 5) \\
d_{2}:5x + 2y - 14 = 0 ightarrow \ \ {\overrightarrow{n}}_{2} = (5;2)
ightarrow {\overrightarrow{u}}_{2} = (2; - 5) \\
\end{matrix} ight\} ightarrow \left\{ \begin{matrix}
{\overrightarrow{u}}_{1} = {\overrightarrow{u}}_{2} \\
A\boxed{\in}d_{2} \\
\end{matrix} ight.\  ightarrow d_{1}||d_{2}.Chọn

  • Câu 20: Thông hiểu

    Cho hypebol (H): 4x^{2} – y^{2} = 1. Khẳng định nào sau đây đúng?

    Ta có:

    \begin{matrix}  4{x^2} - {y^2} = 1 \hfill \\   \Leftrightarrow \dfrac{{{x^2}}}{{\dfrac{1}{4}}} - \dfrac{{{y^2}}}{1} = 1 \hfill \\   \Leftrightarrow \dfrac{{{x^2}}}{{{{\left( {\dfrac{1}{2}} ight)}^2}}} - \dfrac{{{y^2}}}{1} = 1 \hfill \\   \Rightarrow a = \dfrac{1}{2};b = 1 \Rightarrow c = \sqrt {{a^2} - {b^2}}  = \dfrac{{\sqrt 5 }}{2} \hfill \\ \end{matrix}

    Vậy Hypebol (H) có tiêu cự 2c = \sqrt 5  e \frac{{\sqrt 5 }}{2}

    => Hai tiêu điểm của (H) là: {F_1} = \left( { - \frac{{\sqrt 5 }}{2};0} ight);{F_2} = \left( {\frac{{\sqrt 5 }}{2};0} ight)

    Ta có trục thực là: {A_1}{A_2} = 2a = 2.\frac{1}{2} = 1

    Trục ảo là: 2b = 2.1 = 2 e \frac{1}{2}

    Vậy khẳng định đúng là:" Hypebol có trục thực bằng 1".

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 7 Phương pháp tọa độ trong mặt phẳng Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 2 lượt xem
Sắp xếp theo