Trong mặt phẳng với hệ tọa độ , cho đường thẳng
và hai điểm
,
không thuộc
. Chọn khẳng định đúng trong các khẳng định sau:
cùng phía so với
thì
và
luôn cùng dấu.
Chọn cùng phía so với
khi
Đề kiểm tra 15 phút Toán 10 Chương 7 Phương pháp tọa độ trong mặt phẳng sách Kết nối tri thức giúp bạn học tổng hợp lại kiến thức của cả nội dung chương. Cùng nhau luyện tập nha!
Trong mặt phẳng với hệ tọa độ , cho đường thẳng
và hai điểm
,
không thuộc
. Chọn khẳng định đúng trong các khẳng định sau:
cùng phía so với
thì
và
luôn cùng dấu.
Chọn cùng phía so với
khi
Tìm tọa độ tâm của đường tròn đi qua ba điểm
,
,
.
Cho parabol . Giao điểm của
với trục hoành tại hai điểm
. Khẳng định nào sau đây đúng?
Phương trình hoành độ giao điểm là nghiệm của phương trình:
Áp dụng định lí Vi – et ta có:
Elip có một tiêu điểm và tích độ dài trục lớn với trục bé bằng
. Phương trình chính tắc của elip là:
Gọi (E) có dạng .
Theo giả thiết ta có: .
Vậy (E) cần tìm là
Xét vị trí tương đối của hai đường thẳng và
.
cắt nhau nhưng không vuông góc.
Phương trình tổng quát của đường thẳng đi qua hai điểm và
là:
Tìm phương trình chính tắc của hyperbol nếu nó có tiêu cự bằng và độ dài trục thực bằng
.
Ta có : .
Phương trình chính tắc
Đường tròn có tâm
thuộc đường thẳng
và tiếp xúc với hai đường thẳng
có phương trình là:
Ta có:
Vậy phương trình các đường tròn:
hoặc
Elip có độ dài trục lớn bằng
, các đỉnh trên trục nhỏ và các tiêu điểm của elip cùng nằm trên một đường tròn. Hãy tính độ dài trục nhỏ của
.
Ta có
Và bốn điểm cùng nằm trên một đường tròn
Vậy độ dài trục nhỏ của là
Đường tròn có tâm
và bán kính
lần lượt là:
Trong mặt phẳng với hệ tọa độ , cho tam giác
có
,
và
. Phương trình đường phân giác trong của góc
là:
Suy ra các đường phân giác góc là:
Suy ra đường phân giác trong góc là
Khái niệm nào sau đây định nghĩa về hypebol?
Cho cố định với
. Hypebol
là tập hợp điểm
sao cho
với
là một số không đổi và
.
Trong các phương trình sau đây, phương trình nào là phương trình tham số của đường thẳng?
Phương trình tham số của đường thẳng là:
Đường trung trực của đoạn thẳng với
,
có một vectơ pháp tuyến là:
Gọi là trung trực đoạn AB, ta có:
Trong hệ trục tọa độ cho đường thẳng
. Một đường tròn
tiếp xúc với các trục tọa độ và có tâm nằm trên đường thẳng
. Kết quả nào dưới đây đúng?
Ta có tâm đường tròn thuộc đường thẳng d nên . Theo giả thiết để bài ta có:
Với
Vậy phương trình đường tròn là:
Với
Vậy phương trình đường tròn là: .
Viết phương trình tham số của đường thẳng đi qua hai điểm và
.
Trong mặt phẳng tọa độ , cho hình chữ nhật
có điểm
. Gọi
đối xứng với điểm
qua
, điểm
là hình chiếu vuông góc của
lên đường thẳng
. Biết rằng tọa độ điểm
thuộc đường thẳng
. Khi đó:
Ta có: ADB’C là hình bình hành
Mà
Tam giác vuông cân tại I
là hình thang cân =>
đi qua điểm
và có vecto pháp tuyến
Phương trình CI:
Tọa độ tâm I và bán kính R của đường tròn (C): là:
Tâm và bán kính đường tròn (C) là:
Trong mặt phẳng tọa độ , cho tam giác
có
. Phương trình tổng quát của đường trung tuyến kẻ từ đỉnh
của tam giác
là:
Gọi I là trung điểm của AC. Ta có:
Đường trung tuyến BI đi qua điểm B và nhận làm vectơ chỉ phương nên có vectơ pháp tuyến
.
Phương trình tổng quát của đường thẳng là:
Xác định vị trí tương đối của hai đường thẳng và
cắt nhau nhưng không vuông góc.