Số các số tự nhiên gồm chữ số chia hết cho
là:
Gọi số cần tìm có dạng: .
Chọn : có 1 cách
Chọn : có 9 cách
Chọn : có
cách
Theo quy tắc nhân, có (số).
Đề kiểm tra 15 phút Toán 10 Chương 8 Đại số tổ hợp sách Kết nối tri thức giúp bạn học tổng hợp lại kiến thức của cả nội dung chương. Cùng nhau luyện tập nha!
Số các số tự nhiên gồm chữ số chia hết cho
là:
Gọi số cần tìm có dạng: .
Chọn : có 1 cách
Chọn : có 9 cách
Chọn : có
cách
Theo quy tắc nhân, có (số).
Có thể lập được bao nhiêu số tự nhiên có 4 chữ số từ tập hợp các chữ số ?
Gọi số tự nhiên có 4 chữ số là: .
Mỗi chữ số có 6 cách chọn.
Mà số cần lập gồm 4 chữ số nên theo quy tắc nhân có thể lập được số.
Quan sát mạch điện như sau:
Mạch điện có 6 công tắc khác nhau, trong đó mỗi công tắc có 2 trạng thái đóng và mở. Hỏi có bao nhiêu cách đóng mở 6 công tắc để mạch điện thông mạch từ E đến F?
Cả 3 công tắc của nhánh trên đóng còn 1 trong 3 công tắc của nhánh dưới mở có:
Cả 3 công tắc của nhánh trên đóng còn 2 trong 3 công tắc của nhánh dưới mở có:
Cả 3 công tắc của nhánh trên đóng còn 3 công tắc của nhánh dưới mở có:
Cả 3 công tắc của nhánh dưới đóng còn 1 trong 3 công tắc của nhánh trên mở có: Cả 3 công tắc của nhánh trên đóng còn 2 trong 3 công tắc của nhánh dưới mở có:
Cả 3 công tắc của nhánh dưới đóng còn 3 công tắc nhánh trên mở có:
Cả 3 công tắc của nhánh trên đóng và cả 3 công tắc nhánh dưới đóng có:
Vậy có tất cả 15 cách.
Có thể lập được bao nhiêu số tự nhiên có bốn chữ số đôi một khác nhau từ tập hợp và không vượt quá
?
TH1: Số cần tìm có dạng
Chữ số d có 7 cách chọn là một trong các chữ số .
Suy ra có 7 số thỏa mãn.
TH2: Số cần tìm có dạng
3 vị trí còn lại có cách chọn
Suy ra có 504 số thỏa mãn
Kết hợp cả hai trường hợp ta có: 504 + 7 = 511 số được tạo thành thỏa mãn yêu cầu đề bài.
Cho tập . Hỏi lập được tất cả bao nhiêu số có 5 chữ số đôi một khác nhau và chia hết cho 2 từ tập A.
Gọi số cần tìm có dạng . Vì
chia hết cho 2 suy ra
.
TH1. Với , khi đó
số.
TH2. Với , khi đó có 4 cách chọn a, 4 cách chọn b, 3 cách chọn c, 2 cách chọn
.
Suy ra có số. Vậy có tất cả
số cần tìm.
Cho tập gồm
phần tử. Số tập con có
phần tử của tập A là:
Theo định nghĩa tổ hợp. “ Giả sử tập có
phần tử
. Mỗi tập con gồm
phần tử của
được gọi là một tổ hợp chập
của
phần tử đã cho”.
Do đó theo yêu cầu bài toán số tập con có phần tử của tập A là
.
Có bao nhiêu cách xếp 40 học sinh gồm 20 học sinh trường A và 20 học sinh trường B thành 4 hàng dọc, mỗi hàng 10 người (tức 10 hàng ngang, mỗi hàng 4 người) trong đó không có học sinh cùng trường đứng kề nhau trong mỗi hàng dọc cũng như trong mỗi hàng ngang?
Giả sử 4 hàng dọc được kí hiệu là
Mỗi hàng các vị trí lại được kí hiệu từ 1 đến 10
Theo yêu cầu bài toán thì:
Các bạn trường A được xếp ở D1 ghi số chẵn, D2 ghi số lẽ, D3 ghi số chẵn, D4 ghi số lẽ.
Các bạn trường B ở các vị trí còn lại hoặc ngược lại.
Nên số cách xếp là cách.
Biết hệ số của trong khai triển của
là – 270. Giá trị của n là
Khai triển biểu thức như sau:
Hệ số của x3 trong khai triển bằng -270
=>
Cho biểu thức với
,
. Số hạng không chứa
trong khai triển Niu-tơn của
là:
Ta có .
Nên .
Số hạng tổng quát của khai triển là: .
Khi thì số hạng không chứa
là
.
Tìm tất cả các số tự nhiên có đúng 5 chữ số sao cho trong mỗi số đó chữ số đứng sau lớn hơn chữ số đứng liền trước?
Gọi số có 5 chữ cố có dạng là . Điều kiện
Ta chuyển bài toán về tìm số các số tự nhiên có 5 chữ số khác nhau lập từ các chữ số để lập số thoả yêu cầu của bài toán.
Do đó sẽ có số các số có 5 chữ số khác nhau lập từ là
số
Số số hạng trong khai triển là:
Số số hạng trong khai triển là: .
Xác định số hạng không chứa x trong khai triển nhị thức Newton . Biết rằng
.
Ta có:
Xét khai triển
Số hạng tổng quát
Số hạng không chứa x ứng với
Suy ra số hạng không chứa x là .
Khai triển nhị thức ta được kết quả là:
Ta có: .
Từ 6 chữ số 0, 1, 2, 3, 4, 5 có thể lập được bao nhiêu số gồm 4 chữ số khác nhau và chia hết cho 3?
Gọi số tự nhiên có 4 chữ số là
Bộ bốn chữ số có tổng chia hết cho 3 là:
Trường hợp 1:
Chọn a: 3 cách (vì a ≠ 0).
Chọn b, c, d: cách chọn.
Khi đó: 3.6=18 (cách).
Trường hợp 2:
Chọn :
Vậy 6 + 24 = 30 (số)
Có bao nhiêu số tự nhiên lẻ trong khoảng (2000; 3000) có thể tạo nên bằng các chữ số nếu các chữ số không nhất thiết khác nhau?
Gọi số tự nhiên trong khoảng có dạng
Vì là số tự nhiên lẻ nên c có 3 lựa chọn là
a, b có 6 lựa chọn.
Vậy có số tự nhiên thỏa mãn yêu cầu bài toán.
Từ các chữ số 6; 7; 8; 9. có thể lập được bao nhiêu chữ số tự nhiên có 3 chữ số.
Gọi số cần lập có dạng .
A: có 4 cách chọn.
B: có 4 cách chọn.
C: có 4 cách chọn.
Vậy có 4.4.4 = 64 (số) tự nhiên có 3 chữ số.
Trong balo của học sinh A có 8 bút chì khác, 6 bút bi và 10 quyển vở. Số cách chọn một đồ vật trong balo là:
Áp dụng quy tắc cộng, số cách chọn một đồ vật trong balo là: 8 + 6 + 10 = 24 cách.
Có bao nhiêu cách sắp xếp chỗ ngồi cho năm người gồm 3 nam và 2 nữ vào năm cái ghế xếp thành một dãy nếu hai nữ ngồi ở đầu và cuối dãy ghế?
2 nữ ngồi ở đầu và cuối dãy ghế có 2! cách.
3 nam ngồi ở 3 ghế giữa có 3! cách.
Vậy có cách xếp.
Một hộp có 5 bi đỏ và 4 bi vàng. Số cách lấy ra hai viên bi từ hộp là:
Số cách lấy 2 viên bi từ 9 viên bi là: (cách).
Biểu thức là khai triển của nhị thức nào dưới đây?
Ta có: