Đề kiểm tra 15 phút Chương 8 Đại số tổ hợp

Mô tả thêm: Đề kiểm tra 15 phút Toán 10 Đại số tổ hợp gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Đếm số tập con gồm 3 phần tử được lấy ra từ tập A = \left\{ a;b;c;d;e;f ight\}?

    Mỗi tập con tập gồm 3phần tử được lấy ra từ tập A6 phần tử là một tổ hợp chập 3 của 6 phần tử.

    Vậy số tập con gồm 3 phần tử của AC_{6}^{3} = 20 tập con.

  • Câu 2: Nhận biết

    Hệ số của x^{2} trong khai triển (x + 1)^{5} là:

     Ta có: {(x + 1)^5} ={x^5} + 5{x^4} + 10{x^3} + 10{x^2} + 5x + 1.

    Hệ số của x^2 là 10.

  • Câu 3: Vận dụng

    Từ 20 người cần chọn ra một đoàn đại biểu gồm 1 trưởng đoàn, 1 phó đoàn, 1 thư kí và 3 ủy viên. Số cách chọn thỏa mãn là:

    Số cách chọn 1 người trong 20 người làm trưởng đoàn là. C_{20}^{1} cách.

    Số cách chọn 1 người trong 19 người còn lại làm phó đoàn là. C_{19}^{1} cách.

    Số cách chọn 1 người trong 18 người còn lại làm thư kí là. C_{18}^{1} cách.

    Số cách chọn 3 người trong 17 người còn lại làm ủy viên là. C_{17}^{3} cách.

    Vậy số cách chọn đoàn đại biểu là C_{20}^{1} \times C_{19}^{1} \times C_{18}^{1}
\times C_{17}^{3} = 4651200.

  • Câu 4: Nhận biết

    Có bao nhiêu số tự nhiên nhỏ hơn 100 chia hết cho 2 và 3.

    Số các số tự nhiên lớn nhất nhỏ hơn 100 chia hết cho 2 và 3 là 96.

    Số các số tự nhiên nhỏ nhất nhỏ hơn 100 chia hết cho 2 và 3 là 0.

    Số các số tự nhiên nhỏ hơn 100 chia hết cho 2 và 3 là \frac{96 - 0}{6} + 1 = 17.

  • Câu 5: Nhận biết

    Cho k, n là các số nguyên dương, k ≤ n. Trong các phát biểu sau, phát biểu nào sai?

     Công thức sai là: A_{n}^{k}=\frac{n!}{k!}.

  • Câu 6: Nhận biết

    Có bao nhiêu cách xếp 5 bạn ABCDE vào 1 chiếc ghế dài sao cho bạn A ngồi chính giữa?

    Xếp bạn A ngồi chính giữa: có 1 cách.

    Khi đó xếp 4 bạn BCDE vào 4 vị trí còn lại, có 4! = 24 cách.

    Vậy có tất cả 24 cách xếp.

  • Câu 7: Vận dụng

    Cho tập A =
\left\{ 0;1;2;3;4;5;6 ight\}. Hỏi lập được bao nhiêu số tự nhiên có năm chữ số đôi một khác nhau và chia hết cho 2.

    Gọi \overline{abcde} là số số tự nhiên có năm chữ số đôi một khác nhau và chia hết cho 2.

    + TH1. e = 0. Chọn a,b,c,d \in A\backslash\left\{ 0
ight\}: A_{6}^{4} = 360
\Rightarrowcó 360 số.

    + TH2. e eq 0:Chọn e \in \left\{ 2;4;6 ight\}:3 (cách).

    Chọn a \in A\backslash\left\{ 0;e
ight\}:5 (cách).

    Chọn b,c,d \in A\backslash\left\{ a;e
ight\}: A_{5}^{3} = 60 (cách).

    \Rightarrow3.5.60 = 900 số.

    Vậy có. 900 + 360 = 1260số tự nhiên có năm chữ số đôi một khác nhau và chia hết cho 2.

  • Câu 8: Vận dụng

    Cho n là số tự nhiên thỏa mãn 3^{n}C_{n}^{0} -
3^{n - 1}C_{n}^{1} + 3^{n - 2}C_{n}^{2} - ..... + ( - 1)^{n}C_{n}^{n} =
2048. Tìm hệ số của x^{10} trong khai triển (x + 2)^{n}.

    Ta có (3 - 1)^{n} = 3^{n}C_{n}^{0} - 3^{n
- 1}C_{n}^{1} + 3^{n - 2}C_{n}^{2} - ..... + ( -
1)^{n}C_{n}^{n}

    \Leftrightarrow 2^{n} = 2048
\Leftrightarrow 2^{n} = 2^{11} \Leftrightarrow n = 11.

    Xét khai triển (x + 2)^{11} = \sum_{k =
0}^{11}{C_{11}^{k}x^{11 - k}.2^{k}}

    Tìm hệ số của x^{10}
\Leftrightarrowtìm k\mathbb{\in N\
\ }(k \leq 11) thỏa mãn 11 - k = 10
\Leftrightarrow k = 1.

    Vậy hệ số của x^{10} trong khai triển (x + 2)^{11}C_{11}^{1}.2 = 22.

  • Câu 9: Thông hiểu

    Có 5 nhà toán học nam, 3 nhà toán học nữ và 4 nhà vật lý nam. Lập một đoàn công tác có 3 người, cần có cả nam và nữ, cần có cả nhà toán học và nhà vật lý. Hỏi có bao nhiêu cách?

    Trường hợp 1: 2 nhà toán học nữ và 1 nhà vật lý nam có C_{3}^{2}.C_{4}^{1} = 12 cách

    Trường hợp 2: 1 nhà toán học nữ và 2 nhà vật lý nam có C_{3}^{1}.C_{4}^{2} = 18 cách

    Trường hợp 3: 1 nhà toán học nữ, 1 nhà toán học nam và 1 nhà vật lý nam có C_{3}^{1}.C_{5}^{1}.C_{4}^{1} =
60 cách

    Theo quy tắc cộng có: 12 + 18 + 60 =
90 cách lập.

  • Câu 10: Nhận biết

    Có tất cả bao nhiêu số hạng trong khai triển nhị thức Newton của (3 -
2x)^{5}?

    Khi viết nhị thức (3 - 2x)^{5} dưới dạng khai triển 5 + 1 = 6 số hạng.

  • Câu 11: Thông hiểu

    Cho biết hệ số của x^{2} trong khai triển (1 + 2x)^{n} bằng 180.Tìm n.

    Ta có: T_{k + 1} =
C_{n}^{k}.2^{k}x^{k}..

    Hệ số của x^{2} trong khai triển bằng 180

    C_{n}^{2}.2^{2} = 180 \Leftrightarrow\frac{n!}{(n - 2).2}.2^{2} = 180 \Leftrightarrow n(n - 1) = 90

    \Leftrightarrow n^{2} - n - 90 = 0 \Leftrightarrow \left\lbrack\begin{matrix}n = 10 \ = - 9(l) \\\end{matrix} ight.

  • Câu 12: Nhận biết

    Cho hai số tự nhiên k,x sao cho 0
\leq k \leq n. Chọn khẳng định đúng sau đây?

    Khẳng định đúng là: C_{x}^{k} =
\frac{x!}{k!(x - k)!}.

  • Câu 13: Thông hiểu

    Có bao nhiêu số tự nhiên gồm 3 chữ số khác nhau và là số lẻ?

    Gọi số thỏa mãn đề bài có dạng \overline{ABC}.

    Vị trí C: có 5 cách chọn, đó là các số 1, 3, 5, 7, 9.

    Vị tri A: có 8 cách chọn, bỏ số 0 và khác 1 số ở vị trí C.

    Vị trí B: có 8 cách chọn, khác 1 số ở vị trí C, 1 số ở vị trí A.

    Áp dụng quy tắc nhân, có 5.8.8 = 320 (số).

  • Câu 14: Nhận biết

    Cho tập M gồm 10 phần tử. Số tập con gồm 4 phần tử của M là:

    Số tập con gồm 4 phần tử của M là số cách chọn 4 phần tử bất kì trong 10 phần tử của M.

    Do đó số tập con gồm 4 phần tử của MC_{10}^{4}.

  • Câu 15: Nhận biết

    Có bao nhiêu số hạng trong khai triển nhị thức (2x - 3)^{2018}?

    Trong khai triển nhị thức (a +
b)^{n} thì số các số hạng là n +
1 nên trong khai triển (2x -
3)^{2018}2019 số hạng.

  • Câu 16: Thông hiểu

    Tìm hệ số của x^{3} trong khai triển f(x) = (1 + x)^{3} + (1 + x)^{4} + (1 +
x)^{5} thành đa thức?

    Số hạng chứa x^{3} trong khai triển (1 + x)^{3}x^{3}

    Số hạng chứa x^{3} trong khai triển (1 + x)^{4}C_{4}^{3}x^{3} = 4x^{3}

    Số hạng chứa x^{3} trong khai triển (1 + x)^{5}C_{5}^{3}x^{3} = 10x^{3}

    Do đó tổng các số hạng chứa x^{3} trong khai triển đã cho là: x^{3} + 4x^{3} + 10x^{3} = 15x^{3}

    Vậy hệ số cần tìm là 15.

  • Câu 17: Vận dụng

    Cho tập A =
\left\{ 0,1,2,3,4,5,6 ight\}. Từ tập A có thể lập được bao nhiêu số tự nhiên gồm 5 chữ số và chia hết cho 5.

    Gọi x = \overline{abcde} là số cần lập, e \in \left\{ 0,5 ight\},a eq
0

    \bullet e = 0 \Rightarrow e có 1 cách chọn, cách chọn a,b,c,d:6.5.4.3

    Trường hợp này có 360 số

    e = 5 \Rightarrow e có một cách chọn, số cách chọn a,b,c,d:5.5.4.3 =
300

    Trường hợp này có 300 số.

    Vậy có 660 số thỏa yêu cầu bài toán.

  • Câu 18: Thông hiểu

    Cho đa giác n cạnh. Tìm n để đa giác có số đường chéo gấp đôi số cạnh.

    Đa giác n cạnh có n đỉnh.

    Mỗi đỉnh nối với n - 3 đỉnh khác để tạo ra đường chéo

    Do đó n đỉnh sẽ có n(n -
3)đường

    Mà 1 đường chéo được nối bởi 2 đỉnh nên số đường chéo thực là: \frac{n(n - 3)}{2}

    Theo bài ra ta có: \frac{n(n - 3)}{2} =
2n \Leftrightarrow n^{2} - 7n = 0 \Leftrightarrow \left\lbrack
\begin{matrix}
n = 0(ktm) \\
n = 7(tm) \\
\end{matrix} ight.

    Vậy n = 7.

  • Câu 19: Thông hiểu

    Cho tập hợp các chữ số B = \left\{ 1,2,3,4,5 ight\}. Hỏi có thể lập được bao nhiêu số tự nhiên gồm 3 chữ số khác nhau là:

    Mỗi số tự nhiên có 3 chữ số khác nhau được lập từ tập hợp B là chỉnh hợp chập 3 của 5 nghĩa.

    Suy ra có thể lập được A_{5}^{3} số thỏa mãn yêu cầu đề bài.

  • Câu 20: Thông hiểu

    Số các số tự nhiên gồm 5 chữ số chia hết cho 10 là:

    Gọi số cần tìm có dạng \overline{abcde};(a eq 0)

    Số cách chọn e là 1 cách, (e = 0)

    Số cách chọn a là 9 cách; (a eq 0)

    Số cách chọn \overline{bcd}10^{3} cách

    Vậy có 1.9.10^{3} = 9000 số.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 8 Đại số tổ hợp Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 4 lượt xem
Sắp xếp theo