Đề kiểm tra 15 phút Chương 8 Đại số tổ hợp Chân trời sáng tạo

Mô tả thêm: Đề kiểm tra 15 phút Toán 10 Đại số tổ hợp gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Chân trời sáng tạo.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Giả sử có một công việc có thể tiến hành theo hai công đoạn M và N. Công đoạn M có a cách, công đoạn N có b cách mà không trùng với cách nào của công đoạn M. Khi đó công việc có thể thực hiện bằng:

    Khi đó công việc có thể được thực hiện bằng a + b (cách) (theo quy tắc nhân)

  • Câu 2: Nhận biết

    Cho tập hợp M = {a; b; c}. Số hoán vị của ba phần tử của M là:

     Số hoán vị của ba phần tử của M là: 3! = 6.

  • Câu 3: Nhận biết

    Khai triển (x +
3y)^{4} thành đa thức ta được biểu thức gồm mấy số hạng?

    Biểu thức (x + 3y)^{4} khai triển thành đa thức có 5 hạng tử.

  • Câu 4: Thông hiểu

    Khai triển nhị thức {(2x - y)^5} ta được kết quả là:

    Khai triển nhị thức {(2x - y)^5} ta có:

    \begin{matrix}  {(2x - y)^5} = \sumolimits_{k = 0}^5 {C_5^k.{{\left( {2x} ight)}^{5 - k}}.{{\left( { - y} ight)}^k}}  \hfill \\  k = 1 \Rightarrow C_5^1.{\left( {2x} ight)^4}.{\left( { - y} ight)^1} =  - 80{x^4}y \hfill \\  k = 2 \Rightarrow C_5^2.{\left( {2x} ight)^3}.{\left( { - y} ight)^2} = 80{x^3}{y^2} \hfill \\  k = 3 \Rightarrow C_5^3.{\left( {2x} ight)^2}.{\left( { - y} ight)^3} =  - 40{x^2}{y^3} \hfill \\  k = 4 \Rightarrow C_5^4.{\left( {2x} ight)^1}.{\left( { - y} ight)^4} = 10x{y^4} \hfill \\  k = 5 \Rightarrow C_5^5.{\left( {2x} ight)^0}.{\left( { - y} ight)^5} =  - {y^5} \hfill \\  {(2x - y)^5} =  - 80{x^4}y + 80{x^3}{y^2} - 40{x^2}{y^3} + 10x{y^4} - {y^5} \hfill \\ \end{matrix}

  • Câu 5: Vận dụng

    Có 7 nam 5 nữ xếp thành một hàng ngang. Hỏi có bao nhiêu cách xếp, biết rằng 2 vị trí đầu và cuối là nam và không có 2 nữ nào đứng cạnh nhau?

    Số cách chọn 2 nam đứng ở đầu và cuối là. A_{7}^{2}. Lúc này còn lại 5 nam và 5 nữ, để đưa 10 người này vào hàng thì trước tiên sẽ cho 5 nam đứng riêng thành hàng ngang, số cách đứng là 5!. Sau đó lần lượt “nhét” 5 nữ vào các khoảng trống ở giữa hoặc đầu, hoặc cuối của hàng 5 nam này, mỗi khoảng trống chỉ “nhét” 1 nữ hoặc không “nhét”, có tất cả 6 khoảng trống nên số cách xếp vào là A_{6}^{5}. Số cách xếp 10 người này thành hàng ngang mà 2 nữ bất kì không đứng cạnh nhau là. 5!.A_{6}^{5}

    Đưa 10 người này vào giữa 2 nam đầu và cuối đã chọn, số cách xếp là. A_{7}^{2}.5!.A_{6}^{5} =
3628800.

  • Câu 6: Nhận biết

    Khai triển biểu thức (x + 1)^{4} ta thu được kết quả là:

     Ta có: (x + 1)^{4} =x^{4}+4x^{3}+6x^{2}+4x+1.

  • Câu 7: Vận dụng

    Trong một tuần, bạn A dự định mỗi ngày đi thăm một người bạn trong 12 người bạn của mình. Hỏi bạn A có thể lập được bao nhiêu kế hoạch đi thăm bạn của mình (Có thể thăm một bạn nhiều lần).

    Thứ 2: có 12 cách chọn bạn đi thăm

    Thứ 3: có 12 cách chọn bạn đi thăm

    Thứ 4: có 12 cách chọn bạn đi thăm

    Thứ 5: có 12 cách chọn bạn đi thăm

    Thứ 6: có 12 cách chọn bạn đi thăm

    Thứ 7: có 12 cách chọn bạn đi thăm

    Chủ nhật: có 12 cách chọn bạn đi thăm

    Vậy theo quy tắc nhân, có 12^{7} =
35831808 (kế hoạch).

  • Câu 8: Nhận biết

    Một hộp chứa 5 viên bi đỏ và 4 viên bi xanh. Lấy ngẫu nhiên 1 viên bi trong hộp. Số khả năng xảy ra là:

    Áp dụng quy tắc cộng ta có số khả năng xảy ra là: 5 + 4 = 9 khả năng.

  • Câu 9: Nhận biết

    Kết quả của phép tính C_{6}^{2}-C_{6}^{3} là:

     Ta có: C_{6}^{2}-C_{6}^{3} =-5.

  • Câu 10: Thông hiểu

    Tìm hệ số của x^{3} trong khai triển f(x) = (1 + x)^{3} + (1 + x)^{4} + (1 +
x)^{5} thành đa thức?

    Số hạng chứa x^{3} trong khai triển (1 + x)^{3}x^{3}

    Số hạng chứa x^{3} trong khai triển (1 + x)^{4}C_{4}^{3}x^{3} = 4x^{3}

    Số hạng chứa x^{3} trong khai triển (1 + x)^{5}C_{5}^{3}x^{3} = 10x^{3}

    Do đó tổng các số hạng chứa x^{3} trong khai triển đã cho là: x^{3} + 4x^{3} + 10x^{3} = 15x^{3}

    Vậy hệ số cần tìm là 15.

  • Câu 11: Nhận biết

    Số hạng thứ 13 trong khai triển (2 - x)^{15} bằng?

    Ta có (2 - x)^{15} = \sum_{k =
0}^{15}{C_{15}^{k}.2^{15 - k}.( - x)^{k}}

    Số hạng thứ 13 trong khai triển tương ứng với k = 12.\Rightarrow C_{15}^{12}.2^{15 - 12}.( - x)^{12} =
3640x^{12}.

  • Câu 12: Thông hiểu

    Cho tập hợp E ={0; 1; 2; 3; 4; 5; 6; 7}. Có thể lập bao nhiêu số gồm 5 chữ số khác nhau đôi một lấy từ E trong đó một trong ba chữ số đầu tiên bằng 1?

    Gọi số cần tìm là \overline{abcde}

    Trường hợp 1: a = 1.

    Chọn b: 7 cách.

    Chọn c: 6 cách.

    Chọn d: 5 cách.

    Chọn e: 4 cách.

    ⇒ Theo Quy tắc nhân có: 7.6.5.4 840 = số.

    Trường hợp 2: b =1.

    Chọn a: 6 cách.

    Chọn c: 6 cách.

    Chọn d: 5 cách.

    Chọn e: 4 cách.

    ⇒ Theo quy tắc nhân có: 6.6.5.4 720 = số.

    Trường hợp 3: c =1.

    Chọn a: 6 cách.

    Chọn b: 6 cách.

    Chọn d: 5 cách.

    Chọn e: 4 cách.

    ⇒ Theo quy tắc nhân có: 6.6.5.4 =720 số.

    ⇒ Theo quy tắc cộng có tất cả 840 + 720 +720 = 2280 số

  • Câu 13: Thông hiểu

    Trong một hộp chứa 5 viên bi màu trắng đánh số từ 1 đến 5, 7 viên bi xanh đánh số từ 1 đến 7 và 9 viên bi vàng đánh số từ 1 đến 9. Chọn ngẫu nhiên hai viên bi. Số cách chọn được hai viên bi khác màu là:

    Chọn được 1 viên bi trắng + 1 viên bi xanh ta có: 5.7 = 35 cách chọn.

    Chọn được 1 viên bi trắng + 1 viên bi vàng ta có: 5.9 = 45 cách chọn.

    Chọn được 1 viên bi xanh + 1 viên bi vàng ta có: 7.9 = 63 cách chọn.

    Vậy số cách chọn được hai viên bi khác màu là 35 + 45 + 63 = 143 cách chọn.

  • Câu 14: Vận dụng

    Cho tập A =
\left\{ 0,1,2,3,4,5,6 ight\}. Từ tập A có thể lập được bao nhiêu số tự nhiên gồm 5 chữ số và chia hết cho 5.

    Gọi x = \overline{abcde} là số cần lập, e \in \left\{ 0,5 ight\},a eq
0

    \bullet e = 0 \Rightarrow e có 1 cách chọn, cách chọn a,b,c,d:6.5.4.3

    Trường hợp này có 360 số

    e = 5 \Rightarrow e có một cách chọn, số cách chọn a,b,c,d:5.5.4.3 =
300

    Trường hợp này có 300 số.

    Vậy có 660 số thỏa yêu cầu bài toán.

  • Câu 15: Nhận biết

    Giá trị của C_{n}^{0}-C_{n}^{1}+C_{n}^{n-1}-C_{n}^{n} bằng:

    Ta có:

    \begin{matrix}  C_n^0 - C_n^1 + C_n^{n - 1} - C_n^n \hfill \\   = 1 - C_n^1 + C_n^1 - 1 = 0 \hfill \\ \end{matrix}

  • Câu 16: Vận dụng

    Có 8 nhà khoa học Toán (6 nam, 2 nữ) và 5 nhà khoa học Vật Lí (toàn nam). Hỏi có bao nhiêu cách lập một đội gồm 4 nhà khoa học trong đó có cả nam, nữ, cả Toán, Vật Lí?

    +TH1. Có đúng 1 nữ nhà khoa học Toán, có 2 cách chọn. Lúc này chỉ cần có nhà khoa học Vật Lí là thỏa mãn đề bài, có thể có hoặc không nhà khoa học Toán nam nào khác, số cách chọn 3 nhà khoa học còn lại là C_{5}^{1}.C_{6}^{2} + C_{5}^{2}.C_{6}^{1} +
C_{5}^{3}. Vậy số cách lập nhóm trong trường hợp này là. 2.\left( C_{5}^{1}.C_{6}^{2} + C_{5}^{2}.C_{6}^{1}
+ C_{5}^{3} ight)

    +TH2. Có đúng 2 nữ nhà khoa học Toán, có 1 cách chọn. Cũng với ý tưởng như trên, chỉ cần có nhà khoa học Vật Lí là thỏa mãn, số cách chọn 2 nhà khoa học còn lại là C_{5}^{1}C_{6}^{1}
+ C_{5}^{2}. Vậy số cách lập nhóm trong trường hợp này là. C_{5}^{1}.C_{6}^{1} +
C_{5}^{2}.

    Vậy số cách lập cần tìm là. 2.\left(
C_{5}^{1}.C_{6}^{2} + C_{5}^{2}.C_{6}^{1} + C_{5}^{3} ight) +
C_{5}^{1}.C_{6}^{1} + C_{5}^{2} = 375.

  • Câu 17: Thông hiểu

    Từ các chữ số 1, 2, 3, 4, 5, 6 có thể lập được bao nhiêu số tự nhiên lẻ có 6 chữ số khác nhau và trong mỗi số đó tổng của ba chữ số đầu lớn hơn tổng của ba chữ số cuối một đơn vị?

    Gọi \overline{a_{1}a_{2}a_{3}a_{4}a_{5}a_{6}} là số cần tìm

    Ta có a_{6} \in \left\{ 1;\ 3;\ 5ight\}\left( a_{1} + a_{2} +a_{3} ight) - \left( a_{4} + a_{5} + a_{6} ight) = 1

    Với a_{6} = 1 thì \left( a_{1} + a_{2} + a_{3} ight) - \left(a_{4} + a_{5} ight) = 2 \Rightarrow \left\{ \begin{matrix}a_{1},\ a_{2},\ a_{3} \in \left\{ 2,\ 3,\ 6 ight\} \\a_{4},\ a_{5} \in \left\{ 4,\ 5 ight\} \\\end{matrix} ight. hoặc \left\{\begin{matrix}a_{1},\ a_{2},\ a_{3} \in \left\{ 2,\ 4,\ 5 ight\} \\a_{4},\ a_{5} \in \left\{ 3,\ 6 ight\} \\\end{matrix} ight.

    Với a_{6} = 3 thì \left( a_{1} + a_{2} + a_{3} ight) - \left(a_{4} + a_{5} ight) = 4 \Rightarrow \left\{ \begin{matrix}a_{1},\ a_{2},\ a_{3} \in \left\{ 2;\ 4;\ 5 ight\} \\a_{4},\ a_{5} \in \left\{ 1,\ 6 ight\} \\\end{matrix} ight. hoặc \left\{\begin{matrix}a_{1},\ a_{2},\ a_{3} \in \left\{ 1,\ 4,\ 6 ight\} \\a_{4},\ a_{5} \in \left\{ 2,\ 5 ight\} \\\end{matrix} ight.

    Với a_{6} = 5 thì \left( a_{1} + a_{2} + a_{3} ight) - \left(a_{4} + a_{5} ight) = 6 \Rightarrow \left\{ \begin{matrix}a_{1},\ a_{2},\ a_{3} \in \left\{ 2,\ 3,\ 6 ight\} \\a_{4},\ a_{5} \in \left\{ 1,\ 4 ight\} \\\end{matrix} ight. hoặc \left\{\begin{matrix}a_{1},\ a_{2},\ a_{3} \in \left\{ 1,\ 4,\ 6 ight\} \\a_{4},\ a_{5} \in \left\{ 2,\ 3 ight\} \\\end{matrix} ight.

    Mỗi trường hợp có 3!.2! = 12 số thỏa mãn yêu cầu

    Vậy có tất cả 6.12 = 72 số cần tìm.

  • Câu 18: Thông hiểu

    Có bao nhiêu cách lập các nhóm gồm 2, 3, 5 học sinh từ một tổ có 10 học sinh?

     Số cách lập nhóm có hai học sinh là: C_{10}^2 cách

    Số học sinh còn lại 8 học sinh (vì 2 học sinh lập nhóm đầu tiên)

    => Số cách lập nhóm có 3 học sinh là: C_8^3 cách

    Số học sinh còn lại còn 5 học sinh để lập nhóm 5 học sinh 

    => Số cách lập nhóm 5 học sinh là: C_5^5 cách

    Mà các cách lập nhóm liên quan đến nhau

    => Số cách lập các nhóm gồm 2, 3, 5 học sinh từ một tổ có 10 học sinh là

    C_{10}^{2}\times C_{8}^{3}\times C_{5}^{5} cách.

  • Câu 19: Nhận biết

    Có bao nhiêu số tự nhiên gồm 5 chữ số chia hết cho 5?

    Số tự nhiên có 5 chữ số có dạng: \overline {abcde} ;\left( {a e 0} ight)

    Do số cần tìm chia hết cho 5 => e \in \left\{ {0;5} ight\} => e có 2 cách chọn.

    a có 9 cách chọn

    b, c, d có 10 cách chọn

    => Số các số tạo thành là: 2.9.10.10.10 = 18 000 số.

  • Câu 20: Vận dụng

    Cho n là số nguyên dương thỏa mãn A_{n}^{2} =
C_{n}^{2} + C_{n}^{1} + 4n + 6. Tìm hệ số của số hạng chứa x^{9} của khai triển biểu thức P(x) = \left( x^{2} + \frac{3}{x}
ight)^{n}.

    A_{n}^{2} = C_{n}^{2} + C_{n}^{1} + 4n +
6 \Leftrightarrow \frac{n!}{(n - 2)!} = \frac{n!}{(n - 2)!.2!} +
\frac{n!}{(n - 1)!.1!} + 4n + 6

    \Leftrightarrow n(n - 1) = \frac{n(n -
1)}{2} + n + 4n + 6 \Leftrightarrow n^{2} - 11n - 12 = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
n = - 1\ (l) \\
n = 12\ (n) \\
\end{matrix} ight..

    Khi đó P(x) = \left( x^{2} + \frac{3}{x}
ight)^{12}.

    Công thức số hạng tổng quát: T_{k + 1} =
C_{12}^{k}.\left( x^{2} ight)^{12 - k}.\left( \frac{3}{x} ight)^{k}
= C_{12}^{k}.3^{k}.x^{24 - 3k}.

    Số hạng chứa x^{9} \Rightarrow 24 - 3k =
9 \Leftrightarrow k = 5.

    Vậy hệ số của số hạng chứa x^{9} trong khai triển là C_{12}^{5}.3^{5} =
192456.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 8 Đại số tổ hợp Chân trời sáng tạo Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 4 lượt xem
Sắp xếp theo