Đề kiểm tra 15 phút Toán 11 Chương 1 Cánh Diều

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Hàm số lượng giác và phương trình lượng giác gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Trong các hàm số sau, hàm số nào có đồ thị đối xứng qua gốc tọa độ?

    Thực hiện kiểm tra đáp án ta thấy:

    Hàm số y = \cot x là hàm số lẻ nên có đồ thị đối xứng qua gốc tọa độ

    Hàm số y = \frac{\sin x + 1}{\cosx} không chẵn không lẻ

    Hàm số y = tan^{2}x và hàm số y = \left| \cot x ight| là hàm số chẵn.

  • Câu 2: Vận dụng

    Gọi \alpha là nghiệm trong khoảng (\pi ; 2 \pi) của phương trình \cos x = \frac{{\sqrt 3 }}{2}, nếu biểu diễn \alpha  = \frac{{a\pi }}{b} với a, b là hai số nguyên và \frac {a}{b} là phân số tối giản thì a.b bằng bao nhiêu?

    Phương trình \cos x = \frac{{\sqrt 3 }}{2} \Leftrightarrow x =  \pm \frac{\pi }{6} + k2\pi \,\left( {k \in \mathbb{Z}} ight).

    Với x \in \left( {\pi ;2\pi } ight) \Rightarrow x = \frac{{11\pi }}{6}.

    Suy ra a =11 và b = 6 .

    Vậy a.b=66.

  • Câu 3: Thông hiểu

    Phương trình \sin x =
\frac{\sqrt{3}}{2} có nghiệm là:

    Ta có \sin x = \dfrac{\sqrt{3}}{2}\Leftrightarrow \left\lbrack \begin{matrix}x = \dfrac{\pi}{3} + k2\pi \\x = \dfrac{2\pi}{3} + k2\pi \\\end{matrix} ight., với k\mathbb{\in Z}.

  • Câu 4: Thông hiểu

    Đổi số đo của góc - \frac{3\pi}{16}rad sang đơn vị độ, phút, giây

    Cách 1: Từ công thức \alpha =
\frac{m\pi}{180} \Rightarrow m = \left( \frac{\alpha.180}{\pi}
ight)^{0}khi đó:

    m = \left( \dfrac{\dfrac{-3\pi}{16}.180}{\pi} ight)^{0} = \left( - \dfrac{135}{4} ight)^{0} = -33^{0}45'

    Cách 2: Bấm máy tính:

    Bước 1. Bấm shift mode 3 để chuyển về chế độ độ, phút, giây.

    Bước 2. Bấm (shift -3π ÷16) shift DRG 2 =

  • Câu 5: Thông hiểu

    Trong các hàm số sau, hàm số nào là hàm số lẻ?

    Ta kiểm tra được y = \cos x +
sin^{2}xy = - \cos x là hàm số chẵn

    Hàm số y = \sin x + \cos x không chẵn không lẻ

    => Hàm số y = \sin x.cos3x là hàm số lẻ.

  • Câu 6: Vận dụng cao

    Hình chữ nhật ABCD có hai đỉnh A, B thuộc trục Ox, hai đỉnh C, D thuộc đồ thị hàm số y = cos x (như hình vẽ). Biết rằng AB = \frac{2\pi}{3}. Diện tích hình chữ nhật ABCD bằng bao nhiêu?

    Gọi C(a;cosa) \Rightarrow D\left( a +\frac{2\pi}{3};cos\left( a + \frac{2\pi}{3} ight) ight)

    Do ABCD là hình chữ nhật nên AB // CD

    => y_{C} = y_{D} \Rightarrow \cos a =\cos\left( a + \frac{2\pi}{3} ight)

    => a = - a - \frac{2\pi}{3}\Rightarrow a = - \frac{\pi}{3} \Rightarrow AD = \left| \cos\left( -\frac{\pi}{3} ight) ight| = \frac{1}{2}

    Diện tích hình chữ nhật ABCD bằng AB.BC =\frac{\pi}{3}

  • Câu 7: Nhận biết

    Khẳng định nào sau đây đúng?

    Ta có:

    \sin(2018a) =2\sin(1009a).\cos(1009a)

  • Câu 8: Vận dụng

    Cho \frac{\pi}{2} < \alpha < \pi. Xác định dấu của biểu thức M = \cos\left( -
\frac{\pi}{2} + \alpha ight).tan(\pi - \alpha)

    Ta có:

    \frac{\pi}{2} < \alpha < \pi
ightarrow 0 < - \frac{\pi}{2} + \alpha <
\frac{\pi}{2}

    \Rightarrow \cos\left( - \frac{\pi}{2} +
\alpha ight) > 0

    \frac{\pi}{2} < \alpha < \pi
ightarrow 0 < \pi - \alpha < \frac{\pi}{2}

    \Rightarrow \tan(\pi - \alpha) >
0

    => M = \cos\left( - \frac{\pi}{2} +
\alpha ight).tan(\pi - \alpha) > 0

  • Câu 9: Nhận biết

    Tập nghiệm của phương trình \cot x = -
\frac{\sqrt{3}}{3}

    Ta có

    \cot x = -
\frac{\sqrt{3}}{3}

    \Leftrightarrow \cot x = \cot\left( -
\frac{\pi}{3} ight)

    \Leftrightarrow x = - \frac{\pi}{3} +
k\pi,\left( k\mathbb{\in Z} ight).

  • Câu 10: Thông hiểu

    Cho hàm số f(x) = \cos xg(x) = \sin x. Trong các mệnh đề sau, mệnh đề nào đúng, mệnh đề nào sai?

    a) Hàm số g(x) là hàm số chẵn. Sai||Đúng

    b) Trong khoảng (0 ; 2\pi) đồ thị hai hàm số y = f(x)y = g(x) cắt nhau tại hai điểm. Đúng||Sai

    c) Giá trị lớn nhất của hàm số y = f(x) +
g(x) bằng 2. Sai||Đúng

    d) Hàm số y = f(x) + g(x) đạt giá trị nhỏ nhất khi x = - \frac{3\pi}{4} +
k2\pi\ \ \left( k\mathbb{\in Z} ight). Đúng||Sai

    Đáp án là:

    Cho hàm số f(x) = \cos xg(x) = \sin x. Trong các mệnh đề sau, mệnh đề nào đúng, mệnh đề nào sai?

    a) Hàm số g(x) là hàm số chẵn. Sai||Đúng

    b) Trong khoảng (0 ; 2\pi) đồ thị hai hàm số y = f(x)y = g(x) cắt nhau tại hai điểm. Đúng||Sai

    c) Giá trị lớn nhất của hàm số y = f(x) +
g(x) bằng 2. Sai||Đúng

    d) Hàm số y = f(x) + g(x) đạt giá trị nhỏ nhất khi x = - \frac{3\pi}{4} +
k2\pi\ \ \left( k\mathbb{\in Z} ight). Đúng||Sai

    a) Sai

    TXĐ: D\mathbb{= R}. Do đó \forall x \in D \Rightarrow - x \in
D.

    Ta có \forall x \in D:g( - x) = \sin( -
x) = - \sin(x) = - g(x) \Rightarrow g(x) là hàm số lẻ.

    b) Đúng

    Phương trình \sin x = \cos x trong khoảng (0 ; 2\pi) có hai nghiệm x = \frac{\pi}{4}x = \frac{5\pi}{4}

    c) Sai

    Ta có: y = \sin x + \cos x =
\sqrt{2}\sin\left( x + \frac{\pi}{4} ight) , mà \forall x: - 1 \leq \sin\left( x + \frac{\pi}{4}
ight) \leq 1

    \Leftrightarrow - \sqrt{2} \leq
\sqrt{2}\sin\left( x + \frac{\pi}{4} ight) \leq \sqrt{2}.

    Vậy giá trị lớn nhất của hàm số y = \sin
x + \cos x bằng \sqrt{2}, khi \sin\left( x + \frac{\pi}{4} ight) =
1.

    d) Đúng

    Giá trị nhỏ nhất của hàm số y = \sin x +
\cos x bằng - \sqrt{2}, khi \sin\left( x + \frac{\pi}{4} ight) = -
1

    \Leftrightarrow x + \frac{\pi}{4} = -\frac{\pi}{2} + k2\pi\left( k\mathbb{\in Z} ight)

    \Leftrightarrow x = - \frac{3\pi}{4} +
k2\pi\ \ \left( k\mathbb{\in Z} ight).

  • Câu 11: Thông hiểu

    Xét tính đúng, sai của các phát biểu sau?

    Tập D\mathbb{= R}\backslash\left\{
\frac{k\pi}{2};k\mathbb{\in Z} ight\} là tập xác định của hàm số y = \cot2x. Đúng||Sai

    Số nghiệm của phương trình \sin x +
\cos x = 0 trên khoảng (0;\pi) là 3 nghiệm.Sai||Đúng

    Có 5 giá trị nguyên của tham số m để phương trình \sqrt{3}\cos x + m = 1 có nghiệm. Đúng||Sai

    Số vị trí biểu diễn của phương trình \sin\left( x - \frac{2\pi}{3} ight) =
\frac{1}{2} trên đường tròn lượng giác là 3.Sai||Đúng

    Đáp án là:

    Xét tính đúng, sai của các phát biểu sau?

    Tập D\mathbb{= R}\backslash\left\{
\frac{k\pi}{2};k\mathbb{\in Z} ight\} là tập xác định của hàm số y = \cot2x. Đúng||Sai

    Số nghiệm của phương trình \sin x +
\cos x = 0 trên khoảng (0;\pi) là 3 nghiệm.Sai||Đúng

    Có 5 giá trị nguyên của tham số m để phương trình \sqrt{3}\cos x + m = 1 có nghiệm. Đúng||Sai

    Số vị trí biểu diễn của phương trình \sin\left( x - \frac{2\pi}{3} ight) =
\frac{1}{2} trên đường tròn lượng giác là 3.Sai||Đúng

    a) Điều kiện xác định của hàm số y =
cot2xlà:

    2x eq k\pi \Rightarrow x eq
\frac{k\pi}{2};\left( k\mathbb{\in Z} ight)

    b) Ta có:

    \sin x + \cos x = 0 \Leftrightarrow
\sqrt{2}\sin\left( x + \frac{\pi}{4} ight) = 0

    \Leftrightarrow \sin\left( x +
\frac{\pi}{4} ight) = 0 \Leftrightarrow x = - \frac{\pi}{4} +
k\pi;\left( k\mathbb{\in Z} ight)

    x \in (0;\pi) \Rightarrow 0 < -
\frac{\pi}{4} + k\pi < \pi

    \Rightarrow \frac{1}{4} < k <
\frac{5}{4}k\mathbb{\in
Z} suy ra k = 1

    Vậy phương trình đã cho chỉ có 1 nghiệm thuộc khoảng (0;\pi).

    c) Ta có: \sqrt{3}\cos x + m = 1 \Leftrightarrow
\cos x = \frac{1 - m}{\sqrt{3}}

    Phương trình đã cho có nghiệm khi và chỉ khi

    - 1 \leq \frac{1 - m}{\sqrt{3}} \leq 1
\Leftrightarrow - \sqrt{3} \leq 1 - m \leq \sqrt{3}

    \Leftrightarrow 1 - \sqrt{3} \leq m \leq
1 + \sqrt{3}

    m\mathbb{\in Z \Rightarrow}m = \left\{
- 2; - 1;0;1;2 ight\}

    Vậy có 5 giá trị nguyên của tham số m thỏa mãn điều kiện bài toán.

    d) Ta có:

    \sin\left( x - \frac{2\pi}{3} ight) =
\frac{1}{2} \Leftrightarrow \sin\left( x - \frac{2\pi}{3} ight) =
\sin\left( \frac{\pi}{6} ight)

    \Leftrightarrow \left\lbrack\begin{matrix}x - \dfrac{2\pi}{3} = \dfrac{\pi}{6} + k2\pi \\x - \dfrac{2\pi}{3} = \pi - \dfrac{\pi}{6} + k2\pi \\\end{matrix} ight.\ ;\left( k\mathbb{\in Z} ight)

    \Leftrightarrow \left\lbrack\begin{matrix}x = \dfrac{5\pi}{6} + k2\pi \\x = \dfrac{3\pi}{2} + k2\pi \\\end{matrix} ight.\ ;\left( k\mathbb{\in Z} ight)

    Số điểm biểu diễn mỗi họ nghiệm là số vị trí biểu diễn nghiệm của phương trình \sin\left( x - \frac{2\pi}{3}
ight) = \frac{1}{2} trên đường tròn lượng giác là 2.

  • Câu 12: Thông hiểu

    Nếu \cos(a + b) =
0 thì khẳng định nào sau đây đúng?

    Ta có:

    \cos(a + b) = 0

    \Leftrightarrow a + b = \frac{\pi}{2} +
k\pi

    \Leftrightarrow a = - b + \frac{\pi}{2}
+ k\pi

    \Rightarrow \left| \sin(a + 2b) ight|
= \left| \sin\left( - b + 2b + \frac{\pi}{2} + k\pi ight) ight| =
\left| \cos(b + k\pi) ight| = \left| \cos b ight|

  • Câu 13: Nhận biết

    Từ thời điểm đồng hồ chỉ đúng 12 giờ đến khi kim giờ chỉ 1 giờ đúng thì kim phút quay được góc bao nhiêu độ?

    Khi kim giờ chỉ đúng 1 giờ thì kim phút đã quay được 1 vòng ứng với góc lượng giác là: - 360^{0}

  • Câu 14: Nhận biết

    Cung tròn có số đo là π. Hãy chọn số đo độ của cung tròn đó trong các cung tròn sau đây:

    Ta có: m = \frac{\alpha.180^{0}}{\pi} =
\frac{\pi.180^{0}}{\pi} = 180^{0}

  • Câu 15: Vận dụng

    Số nghiệm thuộc đoạn \left[ {0;15\pi } ight] của phương trình: \tan x - 1 = 0

    Điều kiện xác định x e \dfrac{\pi}{2}+k\pi,(k \in \mathbb{Z})

    \begin{matrix}  \tan x - 1 = 0 \Rightarrow \tan x = 1 \hfill \\   \Rightarrow x = \dfrac{\pi }{4} + k\pi ;\left( {k \in \mathbb{Z}} ight) \hfill \\  x \in \left[ {0;15\pi } ight];k \in \mathbb{Z} \Rightarrow 0 \leqslant \dfrac{\pi }{4} + k\pi  \leqslant 15\pi  \hfill \\   \Rightarrow k \in \left\{ {0;1;...;14} ight\} \hfill \\ \end{matrix}

    Vậy có tất cả 15 nghiệm.

  • Câu 16: Vận dụng

    Tìm tập xác định D của hàm số y =
\tan\left( \frac{\pi}{2}.cosx ight)

    Hàm số xác định khi và chỉ khi

    \begin{matrix}\dfrac{\pi}{2}.cosx eq \dfrac{\pi}{2} + k\pi \\\cos x eq 1 + 2k(*) \\\end{matrix}

    Do k là số nguyên => \cos x eq \pm 1\Rightarrow \sin x eq 0 \Rightarrow x eq k\pi,k \in\mathbb{Z}

    Vậy tập xác định D\mathbb{=R}\backslash\left\{ k\pi,k\in\mathbb{ Z} ight\}

  • Câu 17: Thông hiểu

    Trong các phương trình sau có bao nhiêu phương trình có nghiệm?

    \sin x = \frac{1}{2};{\text{ }}\sin x = \frac{{ - \sqrt 2 }}{2};{\text{ }}\sin x = \frac{{1 + \sqrt 3 }}{2}

      Do y = sin (x) có tập giá trị là [-1;1] nên các phương trình \sin x = \frac{1}{2};{\text{ }}\sin x = \frac{{ - \sqrt 2 }}{2} có nghiệm;

    phương trình {\text{ }}\sin x = \frac{{1 + \sqrt 3 }}{2} vô nghiệm do  \frac{{1 + \sqrt 3 }}{2} > 1

  • Câu 18: Nhận biết

    Trong các hàm số sau hàm số nào là hàm số lẻ?

    Xét hàm số y = sinx:

    Lấy x \in D \Rightarrow  - x \in D ta có:

    \sin \left( { - x} ight) =  - \sin x \Rightarrow f\left( { - x} ight) =  - x

    Vậy hàm số y = sinx là hàm số lẻ.

  • Câu 19: Nhận biết

    Tìm tất cả các giá trị của tham số m để phương trình \left( {m + 1} ight)\sin x + 2 - m = 0 có nghiệm?

     Phương trình \left( {m + 1} ight)\sin x + 2 - m = 0

    \Leftrightarrow \left( {m + 1} ight)\sin x = m - 2 \Leftrightarrow \sin x = \frac{{m - 2}}{{m + 1}}

    Để phương trình có nghiệm \Leftrightarrow  - \,1 \leqslant \frac{{m - 2}}{{m + 1}} \leqslant 1

    \Leftrightarrow \left\{ \begin{gathered}  0 \leqslant 1 + \frac{{m - 2}}{{m + 1}} \hfill \\  \frac{{m - 2}}{{m + 1}} - 1 \leqslant 0 \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left\{ \begin{gathered}  \frac{{2m - 1}}{{m + 1}} \geqslant 0 \hfill \\   - \frac{3}{{m + 1}} \leqslant 0 \hfill \\ \end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}  \left[ \begin{gathered}  m \geqslant \frac{1}{2} \hfill \\  m <  - \,1 \hfill \\ \end{gathered}  ight. \hfill \\  m >  - \,1 \hfill \\ \end{gathered}  ight. \Leftrightarrow m \geqslant \frac{1}{2}

    là giá trị cần tìm.

  • Câu 20: Vận dụng cao

    Tính diện tích của đa giác tạo bởi các điểm trên đường tròn lượng giác biểu diễn các nghiệm của phương trình \tan x + \tan\left( x + \frac{\pi}{4} ight) =1.

    Hình vẽ minh họa

    Điều kiện \left\{ \begin{matrix}\cos x eq 0 \\\cos\left( x + \dfrac{\pi}{4} ight) eq 0 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x eq \dfrac{\pi}{2} + k\pi \\x eq \dfrac{\pi}{4} + k\pi \\\end{matrix} ight.\ ;\left( k\mathbb{\in Z} ight)

    Ta có:

    \tan x + \tan\left( x + \frac{\pi}{4}ight) = 1

    \Leftrightarrow \tan x + \frac{\tan x +1}{1 - \tan x} = 1

    \Leftrightarrow \tan x - tan^{2}x + \tanx + 1 = 1 - \tan x

    \Leftrightarrow tan^{2}x - 3tanx =0

    \Leftrightarrow \left[ \begin{gathered}  \tan x = 0 \hfill \\  \tan x = 3 \hfill \\ \end{gathered}  ight.

    Với tanx = 0 ta được nghiệm x=k\pi

    Kết hợp với điều kiện ở đầu bài và chọn 2 điểm có nghiệm trên đường tròn lượng giác lần lượt biểu diễn bởi điểm A và B.

    Với tanx = 3 ta được x = acrtan 3 + kπ

    Kết hợp với điều kiện ở đầu bài và chọn hai nghiệm biểu diễn lần lượt bởi điểm C và D.

    Tính diện tích hình chữ nhật ABCD.

    \begin{matrix}   \Rightarrow \sin \alpha  = \dfrac{{AT}}{{OT}} = \dfrac{3}{{\sqrt {10} }} \hfill \\  \widehat {ADC} = \dfrac{\alpha }{2} \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {\sin \dfrac{\alpha }{2} = \dfrac{{AC}}{2}} \\   {\cos \dfrac{\alpha }{2} = \dfrac{{AD}}{2}} \end{array}} ight. \hfill \\   \Rightarrow 2\sin \dfrac{\alpha }{2}\cos \dfrac{\alpha }{2} = \dfrac{3}{{\sqrt {10} }} \hfill \\   \Rightarrow AC.AD = \dfrac{6}{{\sqrt {10} }} \hfill \\   \Rightarrow {S_{ABCD}} = \dfrac{{3\sqrt {10} }}{5} \hfill \\ \end{matrix}

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 1 Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 156 lượt xem
Sắp xếp theo