Đề kiểm tra 15 phút Toán 11 Chương 4 Cánh Diều

Cùng nhau thử sức với bài kiểm tra 15 phút Toán 11 Cánh Diều Chương 4: Đường thẳng và mặt phẳng trong không gian. Quan hệ song song nha!

  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Cho hai hình bình hành ABCD và ABEF nằm trong hai mặt phẳng phân biệt. Xét tính đúng sai của các mệnh đề sau:

    a) AD//(ABF). Sai||Đúng

    b) (AFD)//(BEC). Đúng||Sai

    c) (ABD)//(EFC). Sai||Đúng

    d) Sáu điểm A,B,C,D,E,F là 6 đỉnh của một hình lăng trụ tam giác. Đúng||Sai

    Đáp án là:

    Cho hai hình bình hành ABCD và ABEF nằm trong hai mặt phẳng phân biệt. Xét tính đúng sai của các mệnh đề sau:

    a) AD//(ABF). Sai||Đúng

    b) (AFD)//(BEC). Đúng||Sai

    c) (ABD)//(EFC). Sai||Đúng

    d) Sáu điểm A,B,C,D,E,F là 6 đỉnh của một hình lăng trụ tam giác. Đúng||Sai

    Hình vẽ minh họa

    a) Sai: AD và (ABF) cắt nhau tại A.

    b) Đúng.

    Vì ABCD là hình bình hành nên AD \parallel BC, suy ra AD \parallel (BEC).

    Vì ABEF là hình bình hành nên AF \parallel BE, suy ra AF \parallel (BEC).

    ADAFcắt nhau nên (AFD) \parallel (BEC).

    c) Sai: Vì (ABD) và (EFC) có điểm C chung.

    d) Đúng:

    Vì ABCDABEF là hình bình hành nên AB,\ CD,\ FE đôi một song song

    Mặt khác (AFD) \parallel (BEC) (theo câu b)

    Do đó 6 điểm A,B,C,D,E,F là 6 đỉnh của một hình lăng trụ tam giác

  • Câu 2: Nhận biết

    Có một và chỉ một mặt phẳng đi qua

    Hoàn thiện mệnh đề: "Có một và chỉ một mặt phẳng đi qua một điểm và một đường thẳng không chứa điểm đó."

  • Câu 3: Nhận biết

    Cho hai mặt phẳng (∝), (β) cắt nhau và cùng song song với đường thẳng d. Khẳng định nào sau đây là đúng?

    Khảng định đúng là: "Giao tuyến của (∝), (β) song song với d".

  • Câu 4: Thông hiểu

    Cho tứ diện ABCDE,F lần lượt là trọng tâm hai tam giác BCDACD. Khẳng định nào sau đây sai?

    Hình vẽ minh họa:

    Ta có: E,F lần lượt là trọng tâm hai tam giác BCDACD

    Suy ra BE, AF cắt nhau tại điểm Q.

    Vậy BE,AF,CD đồng quy.

    Lại có: \frac{QF}{QA} = \frac{1}{3} =\dfrac{QE}{QB} \Rightarrow \left\{ \begin{matrix}EF//AB \\\dfrac{EF}{AB} = \dfrac{1}{3} \\\end{matrix} ight.

    Từ đó suy ra EF//(ABD)EF//(ABC).

  • Câu 5: Nhận biết

    Cho hai đường thẳng phân biệt m,n và mặt phẳng (\beta). Giả sử m//(\beta);n//(\beta). Mệnh đề nào sau đây đúng?

    Ta có:

    m//(\beta) \Rightarrow \exists
m':\left\{ \begin{matrix}
m'//m \\
m' \subset (\beta) \\
\end{matrix} ight.

    n//(\beta) \Rightarrow \exists
n':\left\{ \begin{matrix}
n'//n \\
n' \subset (\beta) \\
\end{matrix} ight.

    Theo giả thiết m, n là hai đường thẳng phân biệt.

    Nếu m song song với n thì m’ // n’.

    Nếu m’, n’ cắt nhau thì m, n cắt nhau hoặc chéo nhau.

  • Câu 6: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Gọi M,N lần lượt là trung điểm các cạnh ABCD, P là trung điểm cạnh SA. Khi đó:

    a) MN//BC Đúng||Sai

    b) PN//SD Sai||Đúng

    c) MN//(SAD) Đúng||Sai

    d) SC cắt mặt phẳng (MNP) Sai||Đúng

    Đáp án là:

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Gọi M,N lần lượt là trung điểm các cạnh ABCD, P là trung điểm cạnh SA. Khi đó:

    a) MN//BC Đúng||Sai

    b) PN//SD Sai||Đúng

    c) MN//(SAD) Đúng||Sai

    d) SC cắt mặt phẳng (MNP) Sai||Đúng

    Hình vẽ minh họa

    a) Đúng

    M,N lần lượt là trung điểm các cạnh ABCD nên MNCB là hình bình hành nên MN//BC.

    b) Sai

    Do PN,\ \ SD không đồng phẳng nên PN không thể song song với SD

    c) Đúng

    Do MN//BC \Rightarrow MN//ADAD \subset (SAD) \Rightarrow
MN//(SAD).

    d) Sai

    Do OP là đường trung bình của tam giác SAC nên SC//OP, mà OP
\subset (MNP) nên SC//(MNP).

  • Câu 7: Vận dụng

    Cho tứ diện ABCD. Các cạnh AC,BD,AB,CD,AD,BC có trung điểm lần lượt là M,N,P,Q,R,S. Bốn điểm nào sau đây không cùng thuộc một mặt phẳng?

    Hình vẽ minh họa

    Ta có:

    MP // BC // NQ, MP = \frac{1}{2}BC =
NQ

    => MPNQ là hình bình hành

    => M, N, P, Q thuộc một mặt phẳng.

    MR // CD // SN, MR = \frac{1}{2}CD =
SN

    => MRNS là hình bình hành

    => M, R, S, N thuộc một mặt phẳng.

    PS // AC // RQ, PS = \frac{1}{2}AC =
RQ

    => PSQR là hình bình hành nên P, Q, R, S thuộc một mặt phẳng.

    Vậy M,P,R,S không thuộc cùng một mặt phẳng.

  • Câu 8: Nhận biết

    Cho hình chóp S.MNPQ. Có bao nhiêu cạnh của hình chóp chéo nhau với cạnh MN?

    Hình vẽ minh họa

    Các cạnh của hình chóp chéo nhau với cạnh MNSP;SQ.

  • Câu 9: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Gọi M,N,K lần lượt là trung điểm của CD,CB,SA. Gọi H là giao điểm của ACMN. Giao điểm của SO với (MNK) là điểm E. Hãy chọn cách xác định điểm E đúng nhất trong bốn phương án sau.

    Hình vẽ minh họa

    Trong mặt phẳng (SAC) gọi E = KH \cap SO.

    HK \subset (MNK) nên E = SO \cap (MNK)

  • Câu 10: Nhận biết

    Cho hình lăng trụ ABCD.A'B'C'D' có đáy ABCDA'B'C'D' là hình bình hành. Lấy trung điểm của các cạnh AD,BC,CC' lần lượt là các điểm M,N,P. Xét các khẳng định sau:

    a) (MNP) cắt A'D'.

    b) (MNP) cắt DD' tại trung điểm của DD'.

    c) (MNP)//(ABC'D').

    Số khẳng định đúng là:

    Hình vẽ minh họa

    Mặt phẳng(MNP) cắt DD' tại trung điểm của DD'.

    Từ đó thấy rằng ba khẳng định trong đề bài đều đúng.

  • Câu 11: Vận dụng cao

    Cho hình lập phương ABCD.A'B'C'D' cạnh a. Mặt phẳng (\alpha) đi qua tâm của hình lập phương và song song với (ABC). Xác định các giao tuyến của mặt phẳng (\alpha) và tứ diện AB'CD'. Hình tạo bởi các giao tuyến đó có diện tích bằng bao nhiêu?

    Hình vẽ minh họa:

    Gọi I là tâm của hình lập phương

    => I là trung điểm của AC’.

    Gọi (P) là mặt phẳng qua I và song song với (ABC).

    Khi đó (P) cắt các đường thẳng AB’, B’C, CD’, AD’ lần lượt tại các trung điểm M, N, P, Q.

    Khi đó \left\{ \begin{matrix}MN = QP = \dfrac{1}{2}AC = \dfrac{a\sqrt{2}}{2} \\NP = MQ = \dfrac{1}{2}B'D' = \dfrac{a\sqrt{2}}{2} \\\end{matrix} ight.

    => Hình tạo bởi các giao tuyến của mặt phẳng (\alpha) và tứ diện AB'CD' là hình thoi MNPQ cạnh bằng \frac{a\sqrt{2}}{2}

    Mặt khác NQ = MP = BC = a

    Diện tích hình thoi MNPQ là S =
\frac{1}{2}NQ.MP = \frac{a^{2}}{2}

  • Câu 12: Nhận biết

    Tìm phát biểu sai trong các phát biểu sau?

    Phát biểu: "Mặt phẳng hoàn toàn xác định khi nó đi qua 3 điểm." đúng

    Phát biểu: "Mặt phẳng hoàn toàn xác định khi biết một điểm và một đường thẳng." đúng

    Phát biểu: "Mặt phẳng hoàn toàn xác định khi biết nó chứa hai đường thẳng cắt nhau." đúng.

  • Câu 13: Thông hiểu

    Cho tứ diện ABCD. Gọi E,F lần lượt là trung điểm của ADBC, G là trọng tâm tam giác BCD. Khi đó, giao điểm của EG(ABC) là:

    Hình vẽ minh họa

    Kéo dài EG cắt AF tại I.

    Khi đó I là giao điểm của EG(ABC).

  • Câu 14: Vận dụng

    Cho hình lăng trụ ABC.A’B’C’. Gọi I. J. K lần lượt là trọng tâm của các tam giác ABC, ACC’, A’B’C’. Mặt phẳng nào sau đây song song với (IJK)

    Hình vẽ minh họa

    Mặt phẳng nào song song với (IJK)

    Gọi M, N, E lần lượt là trung điểm của BC, CC' và B'C'.

    => \frac{{AI}}{{IM}} = \frac{{AJ}}{{JN}} = 2 (tính chất trọng tâm tam giác)

    => IJ//MN(1)

    Xét mặt phẳng (AA'EM) ta có: \frac{{AI}}{{IM}} = \frac{{A'K}}{{KE}} = 2

    => IK//ME

    ME //BB'

    => IK//BB'(2)

    Từ (1) và (2) => (IJK)(BB'C)là hai mặt phẳng phân biệt. Khi đó ta có:

    \begin{matrix}  \left\{ {\begin{array}{*{20}{c}}  {\left( {IJK} ight) e \left( {BB'C'} ight)} \\   {IJ,IK \subset \left( {IJK} ight)} \\   {MN,BB' \subset \left( {BB'C'} ight)} \end{array}} ight. \hfill \\   \Rightarrow \left( {IJK} ight)//\left( {BB'C'} ight) \hfill \\ \end{matrix}

  • Câu 15: Thông hiểu

    Cho hình chóp S.ABCD. Gọi A′,B′,C′,D′lần lượt là trung điểm của các cạnh SA,SB,SCSD. Trong các đường thẳng sau đây, đường thẳng nào không song song với A'B'?

    Hình vẽ minh họa

    Tìm đường thẳng không song song với A'B'

    Ta có: A′,B′,C′,D′ lần lượt là trung điểm của các cạnh SA,SB,SC,SD

    => A'B', B'C', C'D', A'D' lần lượt là đường trung bình của tam giác SAB, SBC, SCD, SAD.

    ABCD là hình bình hành

    => \left\{ \begin{gathered}  AB//A\prime B\prime  \hfill \\  CD//A\prime B\prime  \hfill \\  C'D'//A\prime B\prime  \hfill \\ \end{gathered}  ight.

    Vậy SC không song song với A'B'.

  • Câu 16: Nhận biết

    Cho hai đường thẳng song song ab. Có bao nhiêu mặt phẳng chứa a và song song với b?

    Có vô số mặt phẳng chứa a và song song với b (đó là tất cả các mặt phẳng chứa a nhưng không chứa b).

  • Câu 17: Vận dụng

    Cho hình hộp ABCD.A_{1}B_{1}C_{1}D_{1}. Mặt phẳng (P) qua AB cắt hình hộp theo là hình gì?

    Hình vẽ minh họa

    Luyện tập đường thẳng song song với mặt phẳng

    Giả sử (P) qua AB cắt \left( {{A_1}{B_1}{C_1}{D_1}} ight) theo giao tuyến MN, khi đó thiết diện là tứ giác ABNM.

    AB//{A_1}{B_1}{C_1}{D_1} nên MN // AB.

    Mặt khác MN = {A_1}{B_1} = AB nên ABNM là hình bình hành.

    Lập luận tương tự cho trường hợp (P) qua AB cắt \left( {DC{C_1}{D_1}} ight) theo giao tuyến MN.

  • Câu 18: Vận dụng

    Cho tứ diện đều ABCD cạnh a. I, J lần lượt là trung điểm của AC và BC. Gọi K là giao điểm trên cạnh BD với KB = 2KD. Thiết diện của tứ diện với mặt phẳng (IJK) là hình gì?

    Hình vẽ minh họa

    Xác định thiết diện

    Vì I, J lần lượt là trung điểm của AC và BC nên IJ là đường trung bình của tam giác ABC

    => IJ // AB

    2 mp( IJK) và mp ( ABD) chứa 2 đường thẳng song song là IJ; AB và có điểm K chung

    => Giao tuyến của (IJK) với (ABD) là đường thẳng đi qua K và song song với AB cắt AD tại H.

    Vậy IJ // KH // AB.

    Ta có ∆BJK = ∆AIH ⇒ JK = IH

    Mặt khác KH ≠ IJ

    Vậy thiết diện là hình thang cân IJKH.

  • Câu 19: Thông hiểu

    Cho tứ diện ABCD. Gọi M,N là hai điểm phân biệt cùng thuộc đường thẳng AB, hai điểm P,Q phân biệt thuộc đường thẳng CD. Khi đó vị trí tương đối của hai đoạn thẳng MPNQ là:

    Giả sử đường thẳng MPNQ không chéo nhau, tức là cùng thuộc một mặt phẳng.

    Khi đó ABCD cùng thuộc một mặt phẳng hay ABCD là một tứ giác (trái giả thiết).

    Vậy đường thẳng MPNQ chéo nhau.

  • Câu 20: Thông hiểu

    Cho hình chóp tứ giác S.ABCD, I =
AC \cap BD. Giả sử mặt phẳng (\alpha) bất kì cắt các cạnh SA,SB,SC,SD lần lượt tại A',B',C',D'. Chọn khẳng định đúng trong các khẳng định sau.

    Hình vẽ minh hoạ

    Ta thấy: \left\{ \begin{matrix}
A'C' = (\alpha) \cap (SAC) \\
B'D' = (\alpha) \cap (SBD) \\
SI = (SBD) \cap (SAC) \\
\end{matrix} ight.

    => Các đường thẳng A'C',B'D',SI đồng quy.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 4 Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 21 lượt xem
Sắp xếp theo