Đề kiểm tra 15 phút Toán 11 Chương 5 Cánh Diều

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Một số yếu tố thống kê và xác suất gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng cao

    Lấy ngẫu nhiên 3 số từ tập T = \left\{ 1;2;3;4;6;8 ight\} . Xác định số phần tử của biến cố F lấy được ba số là số đo ba cạnh của một tam giác có góc tù? 4||8||10||5

    Đáp án là:

    Lấy ngẫu nhiên 3 số từ tập T = \left\{ 1;2;3;4;6;8 ight\} . Xác định số phần tử của biến cố F lấy được ba số là số đo ba cạnh của một tam giác có góc tù? 4||8||10||5

    Giả sử lấy được ba số là: (a;b;c) với a
< b < c do đó c \geq 4
\Rightarrow c \in \left\{ 4;6;8 ight\}

    Lại có a;b;c là ba cạnh của tam giác ABC, với BC = a;AC = b;AB = a có góc C tù.

    \Rightarrow \left\{ \begin{gathered}
  \cos C = \frac{{{a^2} + {b^2} - {c^2}}}{{2ab}} \hfill \\
  4 \leqslant c < a + b \hfill \\ 
\end{gathered}  ight. \Rightarrow \left\{ \begin{gathered}
  {a^2} + {b^2} < {c^2} \hfill \\
  4 \leqslant c < a + b \hfill \\ 
\end{gathered}  ight.

    \Rightarrow \sqrt{a^{2} + b^{2}} < c
< a + b với c \in \left\{ 4;6;8
ight\}

    Xét c = 4 thì bộ (a;b) = (2;3) thỏa mãn

    Xét c = 6 do \left\{ \begin{matrix}
a < b < c \\
6 = c < a + b < 2b \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
b = 4 \\
a = 3 \\
\end{matrix} ight.

    \Rightarrow (a;b) = 3;4 thỏa mãn

    Xét c = 8 do \left\{ \begin{matrix}
a < b < c \\
8 = c < a + b < 2b \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
b = 6 \\
\left\lbrack \begin{matrix}
a = 3 \\
a = 4 \\
\end{matrix} ight.\  \\
\end{matrix} ight.

    \Rightarrow \left\lbrack \begin{matrix}
(a;b) = (3;6) \\
(a;b) = (4;6) \\
\end{matrix} ight. thỏa mãn

    Vậy số phần tử của biến cố F là n(F) =
4

  • Câu 2: Nhận biết

    Khảo sát thời gian sử dụng điện thoại di động trong 1 ngày của một số học sinh khối 10 thu được mẫu số liệu ghép nhóm sau:

    Thời gian (phút)

    [0; 20)

    [20; 40)

    [40; 60)

    [60; 80)

    [80; 100)

    Số học sinh

    3

    5

    14

    15

    5

    Nhóm chứa tứ phân vị thứ nhất của mẫu số liệu trên là:

    Mẫu số liệu trên có 3 + 5 + 14 + 15 + 5 =
42 (học sinh).

    Tứ phân vị thứ nhất là x_{11} \in \lbrack
40;\ 60).

    Vậy nhóm chứa tứ phân vị thứ nhất của mẫu số liệu trên là: \lbrack 40;\ 60).

  • Câu 3: Thông hiểu

    Sắp xếm 4 bạn nam và 4 bạn nữ vào một bàn tròn. Biết mỗi bạn chỉ ngồi 1 chỗ và bàn có đủ 8 chỗ ngồi. Tính xác suất sao cho hai bạn cùng giới không ngồi cạnh nhau?

    Gọi A là biến cố 2 người không cùng giới ngồi cạnh nhau

    n là số cách sắp xếp người xung quanh bàn tròn

    Mỗi cách sắp xếm là hoán vị của 8 vị trí, khi đó số hoán vị cần tìm là 8!

    Mỗi hoán vị không đổi nếu ta thực hiện vòng quanh nên mỗi hoán vị đã được tính 8 lần.

    Vậy n = \frac{8!}{8} = 7!

    Xếp 4 nữ vào 4 vị trí ta có: \frac{4!}{4}
= 3! cách

    Xếp 4 nam vào 4 vị trí qua 4 khoảng, số cách sắp xếp 4!

    Vậy P(A) = \frac{3!.4!}{7!} =
\frac{1}{35}

  • Câu 4: Thông hiểu

    Kết quả đo chiều cao một nhóm các học sinh nam lớp 11 được thống kê như sau:

    160

    161

    161

    162

    162

    162

    163

    163

    163

    164

    164

    164

    164

    165

    165

    165

    165

    165

    166

    166

    166

    166

    167

    167

    168

    168

    168

    168

    169

    169

    170

    171

    171

    172

    172

    174

    Khi chuyển mẫu dữ liệu trên sang mẫu dữ liệu ghép nhóm gồm 5 nhóm số liệu theo các nửa khoảng có độ dài bằng nhau ta được các nhóm là:

    Ta có:

    Khoảng biến thiên là 174 - 160 =14

    Để chia số liệu thành 5 nhóm theo các nửa khoảng có độ dài bằng nhau, ta chia các nhóm có độ dài bằng 3

    Ta sẽ chọn đầu mút phải của nhóm cuối cùng là 175.

    Khi đó ta có các nhóm là: \lbrack160;163),\lbrack 163;166),\lbrack 166;169),\lbrack 169;172),\lbrack172;175)

  • Câu 5: Nhận biết

    Gieo ngẫu nhiên một con súc sắc. Xác suất để mặt 6 chấm xuất hiện:

    Số phần tử không gian mẫu là: n\left( \Omega  ight) = 6

    Biến cố A là biến cố "mặt 6 chấm xuất hiện"

    => n\left( A ight) = 1

    => Xác suất để mặt 6 chấm xuất hiện: P\left( A ight) = \frac{{n\left( A ight)}}{{n\left( \Omega  ight)}} = \frac{1}{6}

  • Câu 6: Nhận biết

    Thực hiện gieo con xúc xắc sau đó gieo một đồng tiền xu. Mô tả không gian mẫu.

    Mỗi kết quả của phép thử là cặp kết quả của phép thử gieo xúc xắc viết trước và gieo đồng tiền viết sau nên không gian mẫu là:

    \Omega =
\{(1,S);(1,N);(2,S);(2,N);(3,S);(3,N);(4,S);(4,N);(5,S);(5,N);(6,S);(6,N)\}

  • Câu 7: Thông hiểu

    Với 4 chữ số 1; 2; 3; 4 có thể lập được bao nhiêu số có các chữ số phân biệt?

     Với 4 chữ số 1; 2; 3; 4 có thể lập được số có tối đa 4 chữ số 

    Trường hợp số có 1 chữ số ta được 4 số

    Trường hợp số có 2 chữ số ta được 4 . 3 = 12 số

    Trường hợp số có 3 chữ số ta được: 4 . 3 . 2 = 24 số

    Trường hợp số có 4 chữ số ta được: 4! = 24 số

    => Có thể lập được số các số có các chữ số phân biệt là: 4 + 12 + 24 + 24 = 64 số

  • Câu 8: Nhận biết

    Cho hai biến cố xung khắc với nhau. Biết xác suất của hai biến cố có giá trị lần lượt là \frac{1}{3}\frac{1}{4}. Tính xác suất của biến cố hợp hai biến cố đã cho?

    Gọi hai biến cố là A, B có P(A) =
\frac{1}{3};P(B) = \frac{1}{4}

    Vì hai biến cố A và B là hai biến cố xung khắc nên P(A \cup B) = P(A) + P(B) = \frac{1}{3} +
\frac{1}{4} = \frac{7}{12}

  • Câu 9: Vận dụng

    Chiều cao của 50 học sinh đo chính xác đến centimet được biểu diễn như sau:

    161

    150

    154

    165

    168

    161

    154

    162

    150

    151

    162

    164

    171

    165

    158

    154

    156

    172

    160

    170

    153

    159

    161

    170

    162

    165

    166

    168

    165

    164

    154

    152

    153

    156

    158

    162

    160

    161

    173

    166

    161

    159

    162

    167

    168

    159

    158

    153

    154

    159

    Biểu diễn dữ liệu trên thành bảng dữ liệu ghép nhóm, lấy các khoảng chiều cao [160; 165); [165; 170); ... Khi đó số học sinh trong nhóm có khoảng chiều cao cao nhất là bao nhiêu học sinh?

    Độ dài nhóm: 170 – 165 = 5

    Khoảng biến thiên: 173 – 150 = 23

    Ta có: \frac{23}{5} = 4,6 vậy ta chia thành 5 nhóm như sau:

    Chiều cao (tính bằng cm)

    Tần số

    [150; 155)

    12

    [155; 160)

    9

    [160; 165)

    14

    [165; 170)

    10

    [170; 175)

    5

    Tổng

    50

    Vậy số học sinh trong nhóm có khoảng chiều cao cao nhất là 5 học sinh.

  • Câu 10: Nhận biết

    Có bao nhiêu số tự nhiên gồm 5 chữ số khác nhau được lập từ các số 1, 2, . . ., 9?

    Mỗi cách xếp số tự nhiên có 5 chữ số khác nhau từ các số 1, 2, . . . , 9 là một chỉnh hợp chập 5 của 9 phần tử.

    Vậy có A_9^5 = 15120 số được tạo thành.

  • Câu 11: Thông hiểu

    Số lượng người đi xem một bộ phim mới theo độ tuổi trong một rạp chiếu phim (sau 1\ h đầu công chiếu) được ghi lại theo bảng phân phối ghép nhóm sau:

    Độ tuổi

    [10; 20)

    [20; 30)

    [30; 40)

    [40; 50)

    [50; 60)

    Số người

    30

    48

    11

    9

    2

    Độ tuổi được dự báo là thích xem phim đó nhiều nhất là

    Ta có mốt là:

    M_{0} = 20 + \frac{48 - 30}{(48 - 30) +
(48 - 11)} \cdot 10 = \frac{256}{11} \approx 23,27.

    Vậy độ tuổi được dự báo là thích xem phim đó nhiều nhất là 23 tuổi.

  • Câu 12: Vận dụng

    Có ba chiếc hộp:

    Hộp 1 gồm 4 viên bi đỏ và 5 viên bi xanh.

    Hộp 2 gồm 3 viên bi đỏ và 2 viên bi đen.

    Hộp 3 gồm 5 viên bi đỏ và 3 viên bi vàng.

    Lấy ngẫu nhiên ra một hộp rồi lấy một viên bi từ hộp đó. Xác suất để viên bi lấy được có màu đỏ bằng:

    Lấy ngẫu nhiên một hộp:

    Gọi B là biến cố lấy được hộp 1

    C là biến cố lấy được hộp 2

    D là biến cố lấy được hộp 3

    Suy ra P(B) = P(C) = P(D) =
\frac{1}{3}

    Gọi A là biến cố lấy ngẫu nhiên một hộp, trong hộp đó lấy ngẫu nhiên một viên bi và được bi màu đỏ.

    Ta có:

    A = (A \cap B) \cup (A \cap C) \cup (A
\cap D)

    => P(A) = P(A \cap B) + P(A \cap C) +
P(A \cap D)

    = \frac{1}{3}.\frac{4}{9} +
\frac{1}{3}.\frac{3}{5} + \frac{1}{3}.\frac{5}{8} =
\frac{601}{1080}

  • Câu 13: Thông hiểu

    Điểm kết quả kiểm tra môn Tiếng Anh của 4 lớp 11 được ghi trong bảng sau:

    Lớp 11A

    Điểm

    (0; 5]

    (5; 6]

    (6; 7]

    (7; 8]

    (8; 10]

    Số học sinh

    4

    8

    12

    10

    6

    Lớp 11B

    Điểm

    (0; 5]

    (5; 6]

    (6; 7]

    (7; 8]

    (8; 10]

    Số học sinh

    5

    12

    10

    8

    4

    Lớp 11C

    Điểm

    (0; 5]

    (5; 6]

    (6; 7]

    (7; 8]

    (8; 10]

    Số học sinh

    4

    10

    15

    9

    3

    Lớp 11D

    Điểm

    (0; 5]

    (5; 6]

    (6; 7]

    (7; 8]

    (8; 10]

    Số học sinh

    4

    9

    16

    11

    3

    Lớp nào có tỉ lệ học sinh giỏi thấp nhất?

    Số học sinh lớp 11A là:

    4 + 8 + 12 + 10 + 6 = 40 (học sinh)

    Số học sinh giỏi lớp 11A là 6 học sinh

    => Tỉ lệ học sinh giỏi lớp 11A là: \frac{6}{40}.100\% = 15\%

    Số học sinh lớp 11B là:

    5 + 12 + 10 + 8 + 4 = 39 (học sinh)

    Số học sinh giỏi lớp 11B là 4 học sinh

    => Tỉ lệ học sinh giỏi lớp 11B là: \frac{4}{39}.100\% \approx 10,3\%

    Số học sinh lớp 11C là:

    4 + 10 + 15 + 9 + 3 = 41 (học sinh)

    Số học sinh giỏi lớp 11C là 3 học sinh

    => Tỉ lệ học sinh giỏi lớp 11C là: \frac{3}{41}.100\% \approx 7,3\%

    Số học sinh lớp 11D là:

    4 + 9 + 16 + 11 + 3 = 43 (học sinh)

    Số học sinh giỏi lớp 11D là 3 học sinh

    => Tỉ lệ học sinh giỏi lớp 11D là: \frac{3}{43}.100\% \approx 7\%

    Vậy lớp 11D có tỉ lệ học sinh giỏi thấp nhất.

  • Câu 14: Thông hiểu

    Có bao nhiêu số tự nhiên gồm 4 chữ số khác nhau:

    Số tự nhiên có 4 chữ số khác nhau có dạng: \overline {abcd} ,\left( {a e b e c e d} ight)

    Số cách chọn a là 9 cách

    Số cách chọn b là 9 cách

    Số cách chọn c là 8 cách

    Số cách chọn d là 7 cách

    => Số các số tự nhiên có 4 chữ số được tạo thành là: 9 . 9 . 8 . 7 = 4536 số

  • Câu 15: Thông hiểu

    Dưới đây là sự phân bố một nhóm người theo mức thu nhập khác nhau:

    Thu nhập (triệu đồng)

    [0; 8)

    [8; 16)

    [16; 24)

    [24; 32)

    [32; 40)

    [40; 48)

    Số người

    8

    7

    16

    24

    15

    7

    Tính mức thu nhập trung bình của nhóm người.

    Mức thu nhập

    {f_i}{x_i}{f_i}{x_i}

    [0; 8)

    8

    4

    32

    [8; 16)

    7

    12

    84

    [16; 24)

    16

    20

    320

    [24; 32)

    24

    28

    672

    [32; 40)

    15

    36

    540

    [40; 48)

    7

    44

    308

     

    N = 77

    1956

    Mức thu nhập trung bình của nhóm người là: \overline{x} = \frac{\sum_{i =1}^{n}{f_{i}x_{i}}}{N} = \frac{1956}{77} = 25,4

  • Câu 16: Thông hiểu

    Đầu giờ học cô giáo gọi 3 bạn A, B, C và một vài bạn khác để kiểm tra miệng. Cô giáo sẽ ngừng kiểm tra khi đã cho 2 bạn thuộc bài. Biết xác suất thuộc bài của A, B, C lần lượt là \frac{9}{10};\frac{7}{10};\frac{4}{5} . Tính xác suất để cô giáo chỉ kiểm tra đúng 3 bạn A, B, C?

    Đáp án: 0,398

    (Kết quả ghi dưới dạng số thập phân)

    Đáp án là:

    Đầu giờ học cô giáo gọi 3 bạn A, B, C và một vài bạn khác để kiểm tra miệng. Cô giáo sẽ ngừng kiểm tra khi đã cho 2 bạn thuộc bài. Biết xác suất thuộc bài của A, B, C lần lượt là \frac{9}{10};\frac{7}{10};\frac{4}{5} . Tính xác suất để cô giáo chỉ kiểm tra đúng 3 bạn A, B, C?

    Đáp án: 0,398

    (Kết quả ghi dưới dạng số thập phân)

    TH1: A thuộc bài, B không thuộc bài, C thuộc bài có xác suất là:

    P_{1} = 0,9.(1 - 0,7).0,8 =
0,216

    TH2: A không thuộc bài, B thuộc bài, C thuộc bài có xác suất là:

    P_{2} = (1 - 0,9).0,7.0,8 =
0,056

    TH2: A thuộc bài, B thuộc bài, C không thuộc bài có xác suất là:

    P_{3} = 0,9.0,7.(1 - 0,8) =
0,126

    Vậy xác suất cần tìm là: P = 0,216 +
0,056 + 0,126 = 0,398

  • Câu 17: Vận dụng

    Từ tập hợp các chữ số 1;2;3;4;5;6;7;8;9 có thể lập được bao nhiêu số tự nhiên có 4 chữ số đôi một khác nhau sao cho không có hai chữ số liên tiếp nào cùng lẻ?

    Gọi \left\{ \begin{matrix}
A = \left\{ 1;3;5;7;9 ight\} \\
B = \left\{ 2;4;6;8 ight\} \\
\end{matrix} ight.

    Gọi số có 4 chữ số là \overline{abcd} khi đó có 3 trường hợp xảy ra:

    TH1: Số cần tìm có 2 chữ số chẵn và 2 chữ số lẻ

    C_{4}^{2} cách chọn 2 chữ số chẵn.

    C_{5}^{2} cách chọn 2 chữ số lẻ.

    Có 2! cách xếp 2 chữ số chẵn (tạo ra 3 khoảng trống kể cả hai đầu)

    A_{3}^{2} cách sắp xếp 2 chữ số lẻ vào 3 khoảng trống.

    Vậy trường hợp này có: C_{4}^{2}.C_{5}^{2}.2!.A_{3}^{2} = 720 cách.

    TH2: Số cần tìm có 3 chữ số chẵn và 1 chữ số lẻ

    C_{4}^{3} cách chọn 3 chữ số chẵn.

    5 cách chọn 1 chữ số lẻ.

    Có 4! cách xếp các số sau khi chọn

    Vậy trường hợp này có: C_{4}^{3}.5.4! =
480 cách.

    TH3: Số cần tìm có 4 chữ số chẵn

    Có 4! = 24 cách xếp các số sau khi chọn

    Suy ra số các số thỏa mãn yêu cầu bài toán là 720 + 480 + 24 = 1224 số.

  • Câu 18: Nhận biết

    Kết quả kiểm tra cân nặng của học sinh lớp 11A được ghi trong bảng sau:

    Cân nặng

    Số học sinh

    [40,5; 45,5)

    7

    [45,5; 50,5)

    16

    [50,5; 55,5)

    10

    [55,5; 60,5)

    5

    [60,5; 65,5)

    4

    [65,5; 70,5)

    2

    Số học sinh lớp 11A kiểm tra cân nặng là: 44||50||52||48

    Đáp án là:

    Kết quả kiểm tra cân nặng của học sinh lớp 11A được ghi trong bảng sau:

    Cân nặng

    Số học sinh

    [40,5; 45,5)

    7

    [45,5; 50,5)

    16

    [50,5; 55,5)

    10

    [55,5; 60,5)

    5

    [60,5; 65,5)

    4

    [65,5; 70,5)

    2

    Số học sinh lớp 11A kiểm tra cân nặng là: 44||50||52||48

    Số học sinh lớp 11A kiểm tra cân nặng là

    7 + 16 + 10 + 5 + 4 + 2 = 44 (học sinh)

  • Câu 19: Nhận biết

    Thực hiện khảo sát chi phí thanh toán cước điện thoại trong 1 tháng của cư dân trong một chung cư thu được kết quả ghi trong bảng sau:

    Số tiền (nghìn đồng)

    Số người

    [0; 50)

    5

    [50; 100)

    12

    [100; 150)

    23

    [150; 200)

    17

    [200; 250)

    3

    Số cư dân phải thanh toán cước phí không quá 150 nghìn đồng trong tháng là: 40 cư dân

    Đáp án là:

    Thực hiện khảo sát chi phí thanh toán cước điện thoại trong 1 tháng của cư dân trong một chung cư thu được kết quả ghi trong bảng sau:

    Số tiền (nghìn đồng)

    Số người

    [0; 50)

    5

    [50; 100)

    12

    [100; 150)

    23

    [150; 200)

    17

    [200; 250)

    3

    Số cư dân phải thanh toán cước phí không quá 150 nghìn đồng trong tháng là: 40 cư dân

    Số cư dân phải thanh toán cước phí không quá 150 nghìn đồng mỗi tháng là:

    5 + 12 + 23 = 40 (cư dân)

  • Câu 20: Nhận biết

    Thực hiện khảo sát chi phí thanh toán cước điện thoại trong 1 tháng của cư dân trong một chung cư thu được kết quả ghi trong bảng sau:

    Số tiền (nghìn đồng)

    Số người

    [0; 50)

    5

    [50; 100)

    12

    [100; 150)

    23

    [150; 200)

    17

    [200; 250)

    3

    Nhóm nào chứa mốt của mẫu số liệu?

    Nhóm chứa mốt của dấu hiệu là: [100; 150)

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 5 Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 48 lượt xem
Sắp xếp theo