Đề kiểm tra 15 phút Toán 11 Chương 6 Cánh Diều

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Hàm số mũ và hàm số lôgarit gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Có bao nhiêu giá trị nguyên của tham số m trên đoạn \lbrack -
2018;2018brack để hàm số y =
\ln\left( x^{2} - 2x - m + 1 ight) có tập xác định \mathbb{R}?

    Hàm số y = \ln\left( x^{2} - 2x - m + 1
ight) xác định trên \mathbb{R} khi và chỉ khi

    x^{2} - 2x - m + 1 > 0;\forall x \in
\mathbb{R}

    \Leftrightarrow \left\{ \begin{matrix}
a > 0 \\
\Delta' < 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
1 > 0 \\
1 + m - 1 < 0 \\
\end{matrix} ight.\  \Rightarrow m < 0

    Do \left\{ \begin{matrix}
m\mathbb{\in Z} \\
m \in \lbrack - 2018;2018brack \\
\end{matrix} ight.

    \Rightarrow m \in \left\{ - 2018; -
2017;...; - 1 ight\}

    Vậy có 2018 giá trị của m thỏa mãn yêu cầu bài toán.

  • Câu 2: Nhận biết

    Tìm tập xác định của hàm số \log_{2}(x - 1)?

    Điều kiện xác định x - 1 > 0
\Rightarrow x > 1

    Suy ra tập xác định của hàm số là: D =
(1; + \infty).

  • Câu 3: Vận dụng

    Cho biết a,b >
0,a eq 1;b eq 1;n \in \mathbb{N}^{*}. Một học sinh đã thực hiện tính giá trị biểu thức P =\frac{1}{\log_{a}b} + \frac{1}{\log_{a^{2}}b} + ... +\frac{1}{\log_{a^{n}}b} như sau:

    Bước 1: P = \log_{b}a + \log_{b}a^{2} + ...+ \log_{b}a^{n}

    Bước 2: P = \log_{b}\left( a.a^{2}...a^{n}ight)

    Bước 3: P = \log_{b}\left( a^{1 + 2 + 3 +.... + n} ight)

    Bước 4: P = n(n -1)\log_{b}\sqrt{a}

    Hỏi bạn học sinh giải toán sai từ bước nào?

    Ta có:

    P = \dfrac{1}{\log_{a}b} +\dfrac{1}{\log_{a^{2}}b} + ... + \dfrac{1}{\log_{a^{n}}b}

    P = \log_{b}a + \log_{b}a^{2} + ... +\log_{b}a^{n}

    P = \log_{b}\left( a.a^{2}...a^{n}ight)

    P = \log_{b}\left( a^{1 + 2 + 3 + .... +n} ight)

    P = n(n + 1)\log_{b}\sqrt{a}

    Vậy bài toán sai từ bước 4.

  • Câu 4: Nhận biết

    Tìm tập nghiệm của phương trình \log_{2}\left( x^{2} - 2x + 4 ight) =0?

    Điều kiện xác định:

    x^{2} - 2x + 4 > 0

    Ta có:

    \log_{2}\left( x^{2} - 2x + 4 ight) =0

    \Leftrightarrow x^{2} - 2x + 4 =
2^{2}

    \Leftrightarrow \left\lbrack
\begin{matrix}
x = 0 \\
x = 2 \\
\end{matrix} ight.\ (tm)

    Vậy tập nghiệm phương trình là S =
\left\{ 0;2 ight\}

  • Câu 5: Vận dụng

    Rút gọn biểu thức H = \frac{x - 3.x^{\frac{1}{3}} + 2}{\sqrt[3]{x} -1} + \frac{\sqrt{x} - x^{\frac{5}{6}} +\sqrt[6]{x}}{\sqrt[6]{x}}.

    Ta có:

    H = \frac{x - 3.x^{\frac{1}{3}} +2}{\sqrt[3]{x} - 1} + \frac{\sqrt{x} - x^{\frac{5}{6}} +\sqrt[6]{x}}{\sqrt[6]{x}}

    H = \frac{\left( \sqrt[3]{x} - 1ight)\left( x^{\frac{2}{3}} + \sqrt[3]{x} - 2 ight)}{\sqrt[3]{x} -1} + \frac{\sqrt[6]{x}\left( \sqrt[3]{x} - x^{\frac{2}{3}} + 1ight)}{\sqrt[6]{x}}

    H = x^{\frac{2}{3}} + \sqrt[3]{x} - 2 +\sqrt[3]{x} - x^{\frac{2}{3}} + 1 = 2\sqrt[3]{x} - 1

  • Câu 6: Thông hiểu

    Cho 4^{x} + 4^{-
x} = 14, khi đó Q = \frac{2 + 2^{x}
+ 2^{- x}}{7 - 2^{x} - 2^{- x}} có giá trị bằng:

    Ta có:

    4^{x} + 4^{- x} = 14

    \Leftrightarrow \left( 2^{x} + 2^{- x}
ight)^{2} - 2.2^{x}.2^{- x} = 14

    \Leftrightarrow \left( 2^{x} + 2^{- x}
ight)^{2} = 16

    \Leftrightarrow 2^{x} + 2^{- x} =
4

    Vậy Q = \frac{2 + 2^{x} + 2^{- x}}{7 -
2^{x} - 2^{- x}} = \frac{2 + 4}{7 - 4} = 2

  • Câu 7: Thông hiểu

    Cho phương trình 2\log_{2}(2x - 2) + \log_{2}(x - 3)^{2} =2. Giả sử T là tổng giá trị tất cả các nghiệm của phương trình. Giá trị của T là:

    Điều kiện \left\{ \begin{matrix}
2x - 2 > 0 \\
(x - 3)^{2} > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x > 1 \\
\forall x\mathbb{\in R} \\
\end{matrix} ight.\  \Rightarrow x > 1

    Ta có:

    2\log_{2}(2x - 2) + \log_{2}(x - 3)^{2} =2

    \Leftrightarrow \log_{2}(2x - 2)^{2} +\log_{2}(x - 3)^{2} = 2

    \Leftrightarrow \log_{2}\left\lbrack (2x- 2)^{2}(x - 3)^{2} ightbrack = 2

    \Leftrightarrow log_{2}\left\lbrack
\left( 4x^{2} - 8x + 4 ight)\left( x^{2} - 6x + 9 ight)
ightbrack = 2

    \Leftrightarrow 4x^{4} - 32x^{3} +
88x^{2} - 96x + 32 = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
x = 2 + \sqrt{2}(tm) \\
x = 2(tm) \\
x = 2 - \sqrt{2}(ktm) \\
\end{matrix} ight.

    \Rightarrow T = 2 + \sqrt{2} + 2 = 4 +
\sqrt{2}

  • Câu 8: Nhận biết

    Tìm tập xác định của hàm số y = \log(x - 1)?

    Điều kiện xác định của hàm số y = \log(x
- 1) là:

    x - 1 > 0 \Rightarrow x >
1

    Vậy tập xác định của hàm số là D = (1; +
\infty)

  • Câu 9: Thông hiểu

    Giả sử phương trình \log_{\sqrt{3}}(x - 2) + \log_{3}(x - 4)^{2} =0 có hai nghiệm x_{1};x_{2} với x_{1} > x_{2} . Khi đó giá trị của biểu thức T = \left( x_{1} - x_{2} ight)^{2}= 2||9||-1||-7

    Đáp án là:

    Giả sử phương trình \log_{\sqrt{3}}(x - 2) + \log_{3}(x - 4)^{2} =0 có hai nghiệm x_{1};x_{2} với x_{1} > x_{2} . Khi đó giá trị của biểu thức T = \left( x_{1} - x_{2} ight)^{2}= 2||9||-1||-7

    Điều kiện xác định \left\{ \begin{matrix}(x - 4)^{2} > 0 \\x - 2 > 0 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x eq 4 \\x > 2 \\\end{matrix} ight.

    Phương trình đã cho tương đương:

    \Leftrightarrow \log_{3^{\frac{1}{2}}}(x- 2) + 2\log_{3}|x - 4| = 0

    \Leftrightarrow 2\log_{3}(x - 2) +2\log_{3}|x - 4| = 0

    \Leftrightarrow \log_{3}\left\lbrack (x -2).|x - 4| ightbrack = \log_{3}1

    \Leftrightarrow (x - 2).|x - 4| =1

    \Leftrightarrow \left\lbrack\begin{matrix}\left\{ \begin{matrix}x \geq 4 \\(x - 2)(x - 4) = 1 \\\end{matrix} ight.\  \\\left\{ \begin{matrix}x < 4 \\(x - 2)(x - 4) = - 1 \\\end{matrix} ight.\  \\\end{matrix} ight.

    \Leftrightarrow \left\lbrack\begin{matrix}\left\{ \begin{matrix}x \geq 4 \\x^{2} - 6x + 7 = 0 \\\end{matrix} ight.\  \\\left\{ \begin{matrix}x < 4 \\x^{2} - 6x + 9 = 0 \\\end{matrix} ight.\  \\\end{matrix} ight.

    \Leftrightarrow \left\lbrack\begin{matrix}x_{1} = 3 + \sqrt{2} \\x_{2} = 3 \\\end{matrix} ight.\  \Rightarrow S = 2

  • Câu 10: Thông hiểu

    Cho {5^x} = 2. Tính A = {25^x} + {5^{2 - x}}

    Ta có: A = {25^x} + {5^{2 - x}} = {\left( {{5^x}} ight)^2} + \frac{{25}}{{{5^x}}} = \frac{{33}}{2}

  • Câu 11: Nhận biết

    Với một số thực dương a tùy ý, khi đó \sqrt{a^{2}.\sqrt[5]{a}} bằng:

    Với a > 0 ta có: \sqrt{a^{2}.\sqrt[5]{a}} =
\sqrt{a^{2}.a^{\frac{1}{5}}} = \sqrt{a^{2 + \frac{1}{5}}} =
\sqrt{a^{\frac{11}{5}}} = a^{\frac{11}{10}}

  • Câu 12: Nhận biết

    Với a là số thực dương tùy ý, điền biểu thức thích hợp vào chỗ chấm: \sqrt{a^{3}.\sqrt[4]{a}} = ...

    Ta có:

    \sqrt{a^{3}.\sqrt[4]{a}} =
\sqrt{a^{3}.a^{\frac{1}{4}}} = \sqrt{a^{3 + \frac{1}{4}}} =
\sqrt{a^{\frac{13}{4}}} = a^{\frac{13}{8}}.

  • Câu 13: Vận dụng

    Cho hàm số f(x) =
\frac{9^{x} - 2}{9^{x} + 3}. Tính giá trị của biểu thức:

    P = f\left( \frac{1}{2017} ight) +
f\left( \frac{2}{2017} ight) + ... + f\left( \frac{2016}{2017} ight)
+ f\left( \frac{2017}{2017} ight)

    Ta có:

    f(x) + f(1 - x) = \frac{9^{x} - 2}{9^{x}
+ 3} + \frac{9^{1 - x} - 2}{9^{1 - x} + 3} = \frac{1}{3}

    Khi đó:

    P = f\left( \frac{1}{2017} ight) +
f\left( \frac{2}{2017} ight) + ... + f\left( \frac{2016}{2017} ight)
+ f\left( \frac{2017}{2017} ight)

    P = \sum_{k = 1}^{1008}\left\lbrack
f\left( \frac{k}{2017} ight) + f\left( 1 - \frac{k}{2017} ight)
ightbrack + f\left( \frac{2017}{2017} ight)

    P = \sum_{k = 1}^{1008}\frac{1}{3} +
f(1) = \frac{4039}{12}

  • Câu 14: Vận dụng

    Tìm tất cả các giá trị của tham số m để phương trình \left( \frac{1}{5}
ight)^{\left| x^{2} - 4x + 3 ight|} = m^{4} - m^{2} + 1 có bốn nghiệm phân biệt.

    Phương trình đã cho viết lại như sau:

    \left| x^{2} - 4x + 3 ight| =\log_{\frac{1}{5}}\left( m^{4} - m^{2} + 1 ight)

    Xét đồ thị hàm số y = \left| x^{2} - 4x +
3 ight| như hình vẽ.

    Phương trình đã cho có bốn nghiệm phân biệt khi và chỉ khi:

    0 < {\log _{\frac{1}{5}}}\left( {{m^4} - {m^2} + 1} ight) < 1

    \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}
  {{m^4} - {m^2} < 0} \\ 
  {{m^4} - {m^2} + \dfrac{4}{5} > 0} 
\end{array}} ight.

    \Leftrightarrow \left\{ \begin{matrix}
m eq 0 \\
- 1 < m < 1 \\
\end{matrix} ight.

  • Câu 15: Thông hiểu

    Tìm tập xác định của hàm số y = \left( x^{2} - 3x - 4 ight)^{\sqrt{2 -
\sqrt{3}}}.

    Điều kiện xác định của hàm số x^{2} - 3x
- 4 > 0 \Leftrightarrow \left\lbrack \begin{matrix}
x > 4 \\
x < - 1 \\
\end{matrix} ight.

    Vậy tập xác định của hàm số là C = ( -
\infty; - 1) \cup (4; + \infty)

  • Câu 16: Thông hiểu

    Biết \log_{m^{2}}\left( \frac{m^{3}}{\sqrt[5]{n^{3}}}ight) = 3 với m,n > 0;m eq
1. Hỏi giá trị của biểu thức \log_{m}n bằng bao nhiêu?

    Ta có:

    \log_{m^{2}}\left(\frac{m^{3}}{\sqrt[5]{n^{3}}} ight) = 3

    \Leftrightarrow \frac{1}{2}\left(\log_{m}m^{3} - \log_{m}n^{\frac{3}{5}} ight) = 3

    \Leftrightarrow 3 - \frac{3}{5}\log_{m}n= 6

    \Leftrightarrow \log_{m}n = -5

  • Câu 17: Nhận biết

    Tính tổng tất cả các nghiệm của phương trình 2^{x^{2}} = 4^{2x}?

    Ta có:

    2^{x^{2}} = 4^{2x} \Leftrightarrow
2^{x^{2}} = \left( 2^{2} ight)^{2x}

    \Leftrightarrow 2^{x^{2}} = 2^{4x}
\Leftrightarrow x^{2} = 4x \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = 4 \\
\end{matrix} ight.\ (tm)

    \Rightarrow S = 0 + 4 = 4

    Vậy phương trình có tổng nghiệm bằng 4.

  • Câu 18: Nhận biết

    Biết p > 0;p
eq 1. Tính \log_{p}\sqrt[1021]{p^{1022}}?

    Ta có:

    \log_{p}\sqrt[1021]{p^{1022}} =\log_{p}(p)^{\frac{1022}{1021}}

    = \frac{1022}{1021}log_{p}p =
\frac{1022}{1021}

  • Câu 19: Thông hiểu

    Tính giá trị biểu thức: W = x^{2} - y^{2}. Biết x,y là các số thực dương khác 1 và thỏa mãn \log_{\sqrt[3]{x}}y =\dfrac{3y}{8};\log_{\sqrt{2}}x = \dfrac{32}{y}?

    Ta có:

    \log_{\sqrt{2}}x = \dfrac{32}{y}\Leftrightarrow 2\log_{2}x = \dfrac{32}{y}

    \Leftrightarrow y = \dfrac{16}{\log_{2}x}= 16\log_{x}2(*)

    Lại có \log_{\sqrt[3]{x}}y = \dfrac{3y}{8}\Leftrightarrow 3\log_{x}y = \dfrac{3y}{8}

    \Leftrightarrow \log_{x}y = \frac{y}{8}\Leftrightarrow \log_{x}\left( 16\log_{x}2 ight) =2\log_{x}2

    \Leftrightarrow \log_{x}\left( 16\log_{x}2ight) = \log_{x}2^{2}

    \Leftrightarrow 16\log_{x}2 = 4\Leftrightarrow \log_{x}2 = \frac{1}{4}

    \Leftrightarrow \log_{2}x = 4\Leftrightarrow x = 16 \Rightarrow y = 4

    \Rightarrow W = x^{2} - y^{2} =
240

  • Câu 20: Vận dụng cao

    Cho các số thực dương phân biệt a và b. Biểu thức thu gọn của biểu thức

    P = \frac{{\sqrt a  - \sqrt b }}{{\sqrt[4]{a} - \sqrt[4]{b}}} - \frac{{\sqrt {4a}  + \sqrt[4]{{16ab}}}}{{\sqrt[4]{a} + \sqrt[4]{b}}}

    có dạng P = m\sqrt[4]{a} + n\sqrt[4]{b}. Khi đó biểu thức liên hệ giữa n và m là:

    Ta có:

    \begin{matrix}  P = \dfrac{{\sqrt a  - \sqrt b }}{{\sqrt[4]{a} - \sqrt[4]{b}}} - \dfrac{{\sqrt {4a}  + \sqrt[4]{{16ab}}}}{{\sqrt[4]{a} + \sqrt[4]{b}}} \hfill \\  P = \dfrac{{{{\left( {\sqrt[4]{a}} ight)}^2} - {{\left( {\sqrt[4]{b}} ight)}^2}}}{{\sqrt[4]{a} - \sqrt[4]{b}}} - \dfrac{{2\sqrt[4]{a}\sqrt[4]{a} + 2\sqrt[4]{a}\sqrt[4]{b}}}{{\sqrt[4]{a} + \sqrt[4]{b}}} \hfill \\  P = \dfrac{{\left( {\sqrt[4]{a} - \sqrt[4]{b}} ight)\left( {\sqrt[4]{a} + \sqrt[4]{b}} ight)}}{{\sqrt[4]{a} - \sqrt[4]{b}}} - \dfrac{{2\sqrt[4]{a}\left( {\sqrt[4]{a} + \sqrt[4]{b}} ight)}}{{\sqrt[4]{a} + \sqrt[4]{b}}} \hfill \\  P = \sqrt[4]{a} + \sqrt[4]{b} - 2\sqrt[4]{a} = \sqrt[4]{b} - \sqrt[4]{a} \hfill \\   \Rightarrow m =  - 1;n = 1 \hfill \\ \end{matrix}

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 6 Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 14 lượt xem
Sắp xếp theo