Đề kiểm tra 15 phút Toán 11 Chương 6 Chân trời sáng tạo

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Hàm số mũ và hàm số lôgarit gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Chân trời sáng tạo.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng cao

    Cho S_{1} =\left( 2 + \sqrt{3} ight)^{2^{2} + 4^{2} + ... + 2018^{2}};S_{1} =\left( 2 - \sqrt{3} ight)^{1^{2} + 3^{2} + ... + 2017^{2}}. Kết quả của \log_{26 + 15\sqrt{3}}\left(S_{1}.S_{2} ight) là:

    Ta có:

    (2k)^{2} - (2k - 1)^{2} = 4k -
1

    \Rightarrow S_{1}S_{2} = (2 +
\sqrt{3})^{2^{2} - 1^{2} + 4^{2} - 3^{2} + ... + 2018^{2} -
2017^{2}}

    = (2 + \sqrt{3})^{4.1 - 1 + 4.2 - 1 +
... + 4.1009 - 1} = (2 + \sqrt{3})^{2037171}

    \Rightarrow \log_{26 + 15\sqrt{3}}\left(S_{1}.S_{2} ight) = \dfrac{1}{3}\log_{2 + \sqrt{3}}\left( 2 + \sqrt{3}ight)^{2037171} = 679057

  • Câu 2: Thông hiểu

    Xét tính đúng, sai của các phát biểu sau?

    a) Hàm số y = \left( \frac{2021}{2020}
ight)^{x} nghịch biến trên tập số thực. Đúng||Sai

    b) Tập xác định của hàm số y = \log(x -
1)\lbrack 1; + \infty) Sai||Đúng

    c) Có 7 giá trị nguyên thuộc tập xác định của hàm số y = \log\left\lbrack (6 - x)(x + 2)
ightbrack Đúng||Sai

    d) Đồ thị của hàm số y = 2^{x}y = log_{2}x đối xứng với nhau qua đường thẳng y = - x. Sai||Đúng

    Đáp án là:

    Xét tính đúng, sai của các phát biểu sau?

    a) Hàm số y = \left( \frac{2021}{2020}
ight)^{x} nghịch biến trên tập số thực. Đúng||Sai

    b) Tập xác định của hàm số y = \log(x -
1)\lbrack 1; + \infty) Sai||Đúng

    c) Có 7 giá trị nguyên thuộc tập xác định của hàm số y = \log\left\lbrack (6 - x)(x + 2)
ightbrack Đúng||Sai

    d) Đồ thị của hàm số y = 2^{x}y = log_{2}x đối xứng với nhau qua đường thẳng y = - x. Sai||Đúng

    Hàm số y = \left( \frac{2021}{2020}
ight)^{x} nghịch biến trên tập số thực. (đúng) vì 0 < a < 1.

    Tập xác định của hàm số y = \log(x -
1)(1; + \infty).

    Xét hàm số y = \log\left\lbrack (6 - x)(x
+ 2) ightbrack có điều kiện xác định là:

    (6 - x)(x + 2) > 0 \Leftrightarrow x
\in ( - 2;6)

    Vậy có 7 giá trị nguyên thuộc tập xác định của hàm số y = \log\left\lbrack (6 - x)(x + 2)
ightbrack.

    Đồ thị của hàm số y = 2^{x}y = log_{2}x đối xứng với nhau qua đường thẳng y = x

  • Câu 3: Nhận biết

    Giải phương trình \log_{2}a + \log_{2}3 = 0 thu được nghiệm là:

    Điều kiện xác định: a > 0

    \log_{2}a + \log_{2}3 = 0

    \Leftrightarrow \log_{2}3a = 0\Leftrightarrow 3a = 2^{0} \Leftrightarrow a =\frac{1}{3}(tm)

    Vậy phương trình có nghiệm là a =
\frac{1}{3}.

  • Câu 4: Nhận biết

    Biết a là số thực dương khác 1. Viết và thu gọn biểu thức a^{\frac{3}{2022}}.\sqrt[2022]{a} dưới dạng lũy thừa với số mũ hữu tỉ. Tìm số mũ của biểu thức rút gọn đó?

    Ta có:

    a^{\frac{3}{2022}}.\sqrt[2022]{a} =
a^{\frac{3}{2022}}.a^{\frac{1}{2022}} = a^{\frac{3}{2022} +
\frac{1}{2022}} = a^{\frac{4}{2022}} = a^{\frac{2}{1011}}

  • Câu 5: Thông hiểu

    Giả sử phương trình \log_{3}(x - 1) + \log_{3}(x - 5) = 1 có nghiệm là x = p + \sqrt{q};\left(p;q\in\mathbb{ Z} ight). Tính giá trị biểu thức H = p + q?

    Điều kiện xác định \left\{ \begin{matrix}
x - 1 > 0 \\
x - 5 > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x > 1 \\
x > 5 \\
\end{matrix} ight.\  \Rightarrow x > 5

    Phương trình đã cho tương đương:

    \Leftrightarrow \log_{3}\left\lbrack (x -1).(x - 5) ightbrack = \log_{3}3

    \Leftrightarrow (x - 1).(x - 5) =
3

    \Leftrightarrow x^{2} - 6x + 5 = 3
\Leftrightarrow x^{2} - 6x + 2 = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
x = 3 - \sqrt{7}(ktm) \\
x = 3 + \sqrt{7}(tm) \\
\end{matrix} ight.

    Nghiệm của phương trình là

    x = 3 + \sqrt{7} \Rightarrow \left\{
\begin{matrix}
p = 3 \\
q = 7 \\
\end{matrix} ight.\  \Rightarrow H = 3 + 7 = 10

  • Câu 6: Nhận biết

    Tìm tập xác định của hàm số y = - \log\left( 2x - x^{2} ight)?

    Điều kiên xác định:

    2x - x^{2} > 0 \Leftrightarrow 0 <
x < 2

    Vậy tập xác định của hàm số là: D = (0;2)

  • Câu 7: Thông hiểu

    Biết rằng hai số tự nhiên m,n thỏa mãn m\log_{28}2 + n\log_{28}7 = 2 . Tính tổng giá trị của mn ?

    Đáp án: 6

    Đáp án là:

    Biết rằng hai số tự nhiên m,n thỏa mãn m\log_{28}2 + n\log_{28}7 = 2 . Tính tổng giá trị của mn ?

    Đáp án: 6

    Ta có:

    m\log_{28}2 + n\log_{28}7 = 2

    \Leftrightarrow \log_{28}\left(2^{x}.7^{y} ight) = 2 \Leftrightarrow 2^{x}.7^{y} =28^{2}

    \Leftrightarrow 2^{x}.7^{y} = \left(2^{2}.7 ight)^{2} \Leftrightarrow 2^{x}.7^{y} =2^{4}.7^{2}

    \Leftrightarrow \left\{ \begin{matrix}x = 4 \\y = 2 \\\end{matrix} ight.\  \Rightarrow x + y = 6

  • Câu 8: Vận dụng

    Cho các hàm số y
= log_{a}x;y = log_{b}x;y = log_{c}x có đồ thị như hình vẽ dưới đây:

    Kết luận nào sau đây đúng?

    Dựa vào đồ thị hàm số y =
log_{b}x là một hàm số nghịch biến trên tập xác định của nó nên 0 < b < 1

    Hàm số y = log_{a}x;y = log_{c}x là các hàm số đồng biến trên tập xác định của nó nên a;c > 1

    Kẻ đường thẳng y = 1 cắt đồ thị hàm số y = log_{c}x;y = log_{a}x lần lượt tại các điểm A(c;1),B(a;1)

    Dựa vào đồ thị ta thấy x_{A} < x_{B}
\Leftrightarrow c < a

    Vậy kết luận đúng là: a > c >
b

  • Câu 9: Nhận biết

    Tính tổng tất cả các nghiệm của phương trình 2^{x^{2}} = 4^{2x}?

    Ta có:

    2^{x^{2}} = 4^{2x} \Leftrightarrow
2^{x^{2}} = \left( 2^{2} ight)^{2x}

    \Leftrightarrow 2^{x^{2}} = 2^{4x}
\Leftrightarrow x^{2} = 4x \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = 4 \\
\end{matrix} ight.\ (tm)

    \Rightarrow S = 0 + 4 = 4

    Vậy phương trình có tổng nghiệm bằng 4.

  • Câu 10: Nhận biết

    Tính 2^{3 -\sqrt{2}}.4^{\sqrt{2}}.

    Ta có:

    2^{3 - \sqrt{2}}.4^{\sqrt{2}} = 2^{3 -\sqrt{2}}.\left( 2^{2} ight)^{\sqrt{2}}

    = 2^{3 - \sqrt{2}}.2^{2\sqrt{2}} = 2^{3- \sqrt{2} + 2\sqrt{2}} = 2^{3 + \sqrt{2}}

  • Câu 11: Vận dụng

    Cho các số thực dương a,b và biểu thức

    P = 2(a + b)^{-
1}.(ab)^{\frac{1}{2}}.\left\lbrack 1 + \frac{1}{4}\left(
\sqrt{\frac{a}{b}} - \sqrt{\frac{b}{a}} ight)^{2}
ightbrack^{\frac{1}{2}}

    Tính giá trị biểu thức P?

    Ta có:

    P = 2(a + b)^{-
1}.(ab)^{\frac{1}{2}}.\left\lbrack 1 + \frac{1}{4}\left(
\sqrt{\frac{a}{b}} - \sqrt{\frac{b}{a}} ight)^{2}
ightbrack^{\frac{1}{2}}

    P = 2(a + b)^{-
1}.(ab)^{\frac{1}{2}}.\left\lbrack 1 + \frac{1}{4}\left( \frac{a}{b} - 2
+ \frac{b}{a} ight) ightbrack^{\frac{1}{2}}

    P = 2(a + b)^{-
1}.(ab)^{\frac{1}{2}}.\left\lbrack \frac{1}{4}\left( \frac{a +
b}{\sqrt{ab}} ight) ightbrack^{\frac{1}{2}}

    P = 2\frac{1}{a +
b}.\sqrt{ab}.\frac{1}{2}.\frac{a + b}{\sqrt{ab}} = 1

  • Câu 12: Thông hiểu

    Giả sử phương trình \log_{\sqrt{3}}(x - 2) + \log_{3}(x - 4)^{2} =0 có hai nghiệm x_{1};x_{2} với x_{1} > x_{2} . Khi đó giá trị của biểu thức T = \left( x_{1} - x_{2} ight)^{2}= 2||9||-1||-7

    Đáp án là:

    Giả sử phương trình \log_{\sqrt{3}}(x - 2) + \log_{3}(x - 4)^{2} =0 có hai nghiệm x_{1};x_{2} với x_{1} > x_{2} . Khi đó giá trị của biểu thức T = \left( x_{1} - x_{2} ight)^{2}= 2||9||-1||-7

    Điều kiện xác định \left\{ \begin{matrix}(x - 4)^{2} > 0 \\x - 2 > 0 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x eq 4 \\x > 2 \\\end{matrix} ight.

    Phương trình đã cho tương đương:

    \Leftrightarrow \log_{3^{\frac{1}{2}}}(x- 2) + 2\log_{3}|x - 4| = 0

    \Leftrightarrow 2\log_{3}(x - 2) +2\log_{3}|x - 4| = 0

    \Leftrightarrow \log_{3}\left\lbrack (x -2).|x - 4| ightbrack = \log_{3}1

    \Leftrightarrow (x - 2).|x - 4| =1

    \Leftrightarrow \left\lbrack\begin{matrix}\left\{ \begin{matrix}x \geq 4 \\(x - 2)(x - 4) = 1 \\\end{matrix} ight.\  \\\left\{ \begin{matrix}x < 4 \\(x - 2)(x - 4) = - 1 \\\end{matrix} ight.\  \\\end{matrix} ight.

    \Leftrightarrow \left\lbrack\begin{matrix}\left\{ \begin{matrix}x \geq 4 \\x^{2} - 6x + 7 = 0 \\\end{matrix} ight.\  \\\left\{ \begin{matrix}x < 4 \\x^{2} - 6x + 9 = 0 \\\end{matrix} ight.\  \\\end{matrix} ight.

    \Leftrightarrow \left\lbrack\begin{matrix}x_{1} = 3 + \sqrt{2} \\x_{2} = 3 \\\end{matrix} ight.\  \Rightarrow S = 2

  • Câu 13: Thông hiểu

    Cho {5^x} = 2. Tính A = {25^x} + {5^{2 - x}}

    Ta có: A = {25^x} + {5^{2 - x}} = {\left( {{5^x}} ight)^2} + \frac{{25}}{{{5^x}}} = \frac{{33}}{2}

  • Câu 14: Thông hiểu

    Cho hai số thực dương a,b thỏa mãn 2\log_{3}2.\log_{2}a - 3\log_{\sqrt{3}}b =4. Tìm khẳng định đúng dưới đây?

    Ta có:

    2\log_{3}2.\log_{2}a - 3\log_{\sqrt{3}}b =4

    \Leftrightarrow 2\log_{3}a -3.\log_{3^{\frac{1}{2}}}b = 4

    \Leftrightarrow \log_{3}a - 3.\log_{3}b =2

    \Leftrightarrow \log_{3}a - \log_{3}b^{3}= 2

    \Leftrightarrow \log_{3}\frac{a}{b^{3}} =2 \Leftrightarrow \frac{a}{b^{3}} = 9

  • Câu 15: Thông hiểu

    Cho số thực a dương. Rút gọn biểu thức P = \sqrt[5]{{a.\sqrt[4]{{a.\sqrt[3]{{a\sqrt a }}}}}}

    Ta có:

    P = \sqrt[5]{{a.\sqrt[4]{{a.\sqrt[3]{{{a^{\frac{3}{2}}}}}}}}} = {\left( {a\sqrt[4]{{a.{a^{\frac{1}{2}}}}}} ight)^{\frac{1}{5}}} = {\left( {a\sqrt[4]{{{a^{\frac{3}{2}}}}}} ight)^{\frac{1}{5}}} = {\left( {a.{a^{\frac{3}{8}}}} ight)^{\frac{1}{5}}} = {\left( {{a^{\frac{{11}}{8}}}} ight)^{\frac{1}{5}}} = {a^{\frac{{11}}{{40}}}}

  • Câu 16: Vận dụng

    Chị Minh đến ngân hàng để gửi tiết kiệm 400 triệu đồng theo hai loại kỳ hạn khác nhau. Với loại kỳ hạn 3 tháng lãi suất x% một quý chị gửi 250 triệu đồng, số tiền còn lại chị gửi theo kỳ hạn 1 tháng lãi suất 0,25% một tháng. Sau một năm số tiền cả gốc và lãi chị Minh nhận được là 416,78 triệu đồng. Biết rằng nếu không rút lãi suất thì số lãi sẽ được nhập vào số gốc để tính lãi cho kỳ hạn tiếp theo. Tìm giá trị của x.

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Chị Minh đến ngân hàng để gửi tiết kiệm 400 triệu đồng theo hai loại kỳ hạn khác nhau. Với loại kỳ hạn 3 tháng lãi suất x% một quý chị gửi 250 triệu đồng, số tiền còn lại chị gửi theo kỳ hạn 1 tháng lãi suất 0,25% một tháng. Sau một năm số tiền cả gốc và lãi chị Minh nhận được là 416,78 triệu đồng. Biết rằng nếu không rút lãi suất thì số lãi sẽ được nhập vào số gốc để tính lãi cho kỳ hạn tiếp theo. Tìm giá trị của x.

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 17: Nhận biết

    Cho hàm số y =\log_{\frac{1}{2}}(x + 1). Tìm tập xác định của hàm số.

    Điều kiện xác định của hàm số y =\log_{\frac{1}{2}}(x + 1) là:

    x + 1 > 0 \Rightarrow x > -
1

    Vậy tập xác định của hàm số là: D = ( -
1; + \infty)

  • Câu 18: Nhận biết

    Biết p > 0;p
eq 1. Tính \log_{p}\sqrt[1021]{p^{1022}}?

    Ta có:

    \log_{p}\sqrt[1021]{p^{1022}} =\log_{p}(p)^{\frac{1022}{1021}}

    = \frac{1022}{1021}log_{p}p =
\frac{1022}{1021}

  • Câu 19: Thông hiểu

    Có bao nhiêu giá trị nguyên của dương của tham số m để hàm số y = (6 - m)^{x} đồng biến trên tập số thực?

    Đáp án: 4

    Đáp án là:

    Có bao nhiêu giá trị nguyên của dương của tham số m để hàm số y = (6 - m)^{x} đồng biến trên tập số thực?

    Đáp án: 4

    Hàm số y = (6 - m)^{x} đồng biến trên \mathbb{R} khi và chỉ khi 6 - m > 1 \Leftrightarrow m <
5

    m \in \mathbb{Z}^{+} \Rightarrow m \in
\left\{ 1;2;3;4 ight\}

    Vậy có 4 giá trị của tham số m thỏa mãn điều kiện đề bài.

  • Câu 20: Nhận biết

    Với m > 0;m
eq 1 thì giá trị của \log_{\sqrt[3]{m}}m bằng bao nhiêu?

    Ta có: \log_{\sqrt[3]{m}}m =\log_{m^{\frac{1}{3}}}m = 3\log_{m}m = 3

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 6 Chân trời sáng tạo Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 116 lượt xem
Sắp xếp theo