Tổng các nghiệm của phương trình bằng 3||-3||-4||5
Tổng các nghiệm của phương trình bằng 3||-3||-4||5
Ta có:
Vậy tổng các nghiệm của phương trình là 3
Tổng các nghiệm của phương trình bằng 3||-3||-4||5
Tổng các nghiệm của phương trình bằng 3||-3||-4||5
Ta có:
Vậy tổng các nghiệm của phương trình là 3
Cho ba số thực dương x, y, z thwo thứ tự lập thành một cấp số nhân, đồng thời với mỗi số thực dương thì
theo thứ tự lập thành một cấp số cộng. Tính giá trị của biểu thức
?
Theo đề bài ta có:
Do đó:
Xét tính đúng, sai của các phát biểu sau?
a) Hàm số luôn nghịch biến trên tập số thực. Đúng||Sai
b) Tập xác định của hàm số là
Sai||Đúng
c) Ta có: suy ra
Sai||Đúng
d) Với thì hàm số
xác định trên
. Đúng||Sai
Xét tính đúng, sai của các phát biểu sau?
a) Hàm số luôn nghịch biến trên tập số thực. Đúng||Sai
b) Tập xác định của hàm số là
Sai||Đúng
c) Ta có: suy ra
Sai||Đúng
d) Với thì hàm số
xác định trên
. Đúng||Sai
a) Vì nên hàm số
luôn nghịch biến trên tập số thực đúng.
b) Điều kiện xác định của hàm số:
Vậy tập xác định của hàm số là
c) Ta có: nên
hay
d) Điều kiện xác định:
TH1:
TH2:
Suy ra tập xác định của hàm số
Khi đó yêu cầu bài toán trở thành
Th3:
Suy ra tập xác định của hàm số
Do đó không tồn tại giá trị m thỏa mãn yêu cầu bài toán.
Đầu mỗi tháng cô H gửi vào ngân hàng 4 triệu đồng với lãi suất kép là 0,5% mỗi tháng. Hỏi sau ít nhất bao nhiêu tháng (khi ngân hàng đã tính lãi) thì cô H có được số tiền cả lãi và gốc nhiều hơn 100 triệu, biết lãi suất không đổi trong quá trình gửi.
Ta có:
Giả sử sau n tháng sau anh A nhận được số tiền nhiều hơn 100 triệu, khi đó ta có:
Vậy cần ít nhất 24 tháng để cô H có được số tiền cả lãi và gốc nhiều hơn 100 triệu.
Tìm giá trị tham số m để bất phương trình có nghiệm đúng với mọi x.
Ta có:
Bất phương trình đã cho có nghiệm đúng với mọi x khi cả (1) và (2) đúng với mọi x.
Với hoặc
không thỏa mãn đề bài.
Với hoặc
để thỏa mãn đề bài thì:
Tính giá trị của với mọi giá trị
?
Ta có:
Cho . Nếu viết
thì giá trị
bằng bao nhiêu?
Ta có:
Giải phương trình ta được:
Ta có:
Vậy phương trình đã cho có nghiệm
Với thì
bằng:
Ta có:
Tìm điều kiện xác định của hàm số
Điều kiện xác định của hàm số là:
Cho các số thực dương bất kì thỏa mãn
. Tính giá trị biểu thức
.
Ta có:
Hình bên là đồ thị hàm số nào trong các hàm số dưới đây?
Đồ thị đã cho là của một hàm số nghịch biến trên tập xác định của nó.
Trong bốn phương án đã cho, chỉ có hàm số thỏa mãn.
Nếu thì giá trị
là:
Ta có:
Biết là số thực dương khác 1. Viết và thu gọn biểu thức
dưới dạng lũy thừa với số mũ hữu tỉ. Tìm số mũ của biểu thức rút gọn đó?
Ta có:
Biết rằng . Khi đó biểu thức
với
là phân số tối giản,
. Kết luận nào sau đây đúng?
Ta có:
Cho a và b là các số thực thỏa mãn điều kiện và
. Chọn khẳng định đúng trong các khẳng định sau:
Ta có:
Cho hàm số . Tính tổng
Với hàm số ta có:
Khi đó:
Cho hàm số với
là tham số. Tìm tất cả các giá trị thực của tham số
để hàm số đã
xác định với mọi
?
Hàm số xác định với mọi
khi và chỉ khi
Vậy
Hàm số nào sau đây đồng biến trên ?
Do nên hàm số
đồng biến trên
.
Cho phương trình . Xác định nghiệm của phương trình đã cho?
Ta có:
Vậy phương trình có nghiệm x = 2.