Cho khối lăng trụ đứng , đáy
có
. Tính thể tích của khối lăng trụ đã cho biết
.
Hình vẽ minh họa
Gọi H là trung điểm của B’C’, khi đó góc giữa mặt phẳng (AB’C’) và (ABCD) là góc
Ta có:
Vậy
Cho khối lăng trụ đứng , đáy
có
. Tính thể tích của khối lăng trụ đã cho biết
.
Hình vẽ minh họa
Gọi H là trung điểm của B’C’, khi đó góc giữa mặt phẳng (AB’C’) và (ABCD) là góc
Ta có:
Vậy
Cho tứ diện ABCD có AB, BC, CD đôi một vuông góc với nhau và AB = a, BC = b, CD = c. Độ dài đoạn thẳng AD bằng bao nhiêu?
Hình vẽ minh họa:
Ta có:
=> Tam giác ABD vuông tại B.
Ta có:
=> Tam giác BCD vuông tại C.
Ta có:
Cho tứ diện ABCD với các đường thẳng AB, AC, AD đôi một vuông góc, H là trực tâm tam giác BCD. Góc giữa mặt phẳng (BCD) và mặt phẳng (ACD) bằng góc nào trong các góc sau đây?
Dễ thấy rằng BA⊥(ACD), AH⊥(BCD), suy ra góc giữa mặt phẳng (BCD) và mặt phẳng (ACD) bằng góc giữa hai đường thẳng BA và AH, tức là bằng góc
Cho hình lăng trụ tam giác có đáy
là tam giác đều,
là trung điểm của
. Khẳng định nào sau đây đúng?
Hình vẽ minh họa
Ta có tam giác ABC đều và M là trung điểm của BC nên
Ta có:
Cho hình chóp S.ABC, tam giác ABC vuông tại B, cạnh bên SA vuông góc với mặt đáy (ABC). Gọi H là hình chiếu vuông góc của A lên SB (tham khảo hình vẽ bên). Mệnh đề nào sau đây sai?
Ta có: SA ⊥ (ABC) => SA ⊥ BC
Mặt khác BC ⊥ AB
Suy ra BC ⊥ (SAB) nên hình chiếu vuông góc của SC trên (SAB) là SB
Vậy (vì tam giác SBC vuông tại B)
Cho hình lập phương ABCD.A’B’C’D’ có tâm O. Gọi I là tâm của hình vuông A’B’C’D’ và điểm M thuộc đoạn OI sao cho MO = 2MI (tham khảo hình vẽ). Khi đó sin của góc tạo bởi hai mặt phẳng (MC’D’) và (MAB) bằng:
Hình ảnh minh họa:
Do AB // C’D’ nên giao tuyến của (MAB) và (MC’D’) là đường thẳng ∆ // AB // C’D’.
Gọi P, Q lần lượt là trung điểm của D’C’ và AB ta có:
=> MP ⊥ ∆, MQ ⊥ ∆.
Như vậy góc giữa (MAB) và (MC0’’) là góc giữa MP và MQ.
Không mất tính tổng quát, ta cho cạnh hình lập phương là 6.
Khi đó
Áp dụng định lí cosin cho tam giác MPQ ta được:
Góc α là góc giữa hai mặt phẳng (MC’D’) và (MAB) ta có:
Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại A và AB = a, SA ⊥ (ABC), SA = a. Góc giữa đường thẳng SB và mặt phẳng đáy là:
Hình vẽ minh họa:
Theo bài ta có AB là hình chiếu của SB trên (ABC)
Vậy
Mà ∆SBA vuông cân tại A nên
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, . Biết diện tích tam giác SBD bằng
. Khi đó SA bằng:
Hình vẽ minh họa
Gọi O là tâm của đáy.
Khi đó
Trong không gian cho ba đường thẳng phân biệt a, b, c. Khẳng định nào sau đây sai?
Mệnh đề đúng: Nếu a và b cùng vuông góc với c thì a // b
Tính thể tích khối lập phương có cạnh bằng ?
Ta có:
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, SA ⊥ (ABCD). Gọi AM, AN lần lượt là đường cao của tam giác SAB và tam giác SAD. Khẳng định nào dưới đây là khẳng định đúng?
Hình vẽ minh họa:
Ta có: SA ⊥ (ABCD) => SA ⊥ BC
Mà AB ⊥ BC => BC ⊥ (SAB)
=> BC ⊥ AE
Mà AM nằm trong mặt phẳng (SAB)
Xét tam giác SAB có:
AM ⊥ SB
Mà BC ⊥ AM => AM ⊥ (SBC) => AM ⊥ SC
Chứng minh tương tự ta được: AN ⊥ SC
=> SC ⊥ (AMN)
Cho hai mặt phẳng (P) và (Q) cắt nhau theo giao tuyến ∆. Gọi ϕ là góc giữa (P) và (Q). Có tất cả bao nhiêu mệnh đề đúng trong các mệnh đề sau?
(1) ϕ bằng góc giữa hai đường thẳng a và b cùng vuông góc với ∆.
(2) ϕ bằng góc giữa hai đường thẳng a và b cùng vuông góc với ∆, lần lượt nằm trên (P) và (Q).
(3) ϕ bằng góc giữa hai đường thẳng a và b đồng quy với ∆, cùng vuông góc với ∆, lần lượt nằm trên (P) và (Q).
Ta có: a và b chỉ cần lần lượt nằm trong (P), (Q) cùng vuông góc với ∆ là đủ, thêm đồng quy với ∆ càng tốt nên có tất cả 2 mệnh đề đúng.
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng 10. Cạnh bện SA vuông góc với mặt phẳng (ABCD) và . Gọi M, N lần lượt là trung điểm của SA và CD. Tính khoảng cách d giữa BD và MN.
Hình vẽ minh họa:
Gọi P là trung điểm BC và E = NP ∩ AC
=> PN // BD => BD // (MNP)
=> d(BD, MN) = d(BD, (MNP)) = d(O, (MNP)) = d(A, (MNP))
Kẻ AK ⊥ ME
Khi đó d(A, (MNP)) = AK.
Ta tính được:
Xét tam giác vuông MAE ta có:
Tính thể tích khối lập phương có cạnh bằng ?
Ta có:
Cho hình chóp có
là hình vuông cạnh
;
. Khoảng cách giữa hai đường thẳng
bằng bao nhiêu?
Hình vẽ minh họa
Dựng
Dựng . Dễ thấy
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Dựng mặt phẳng (P) cách đều năm điểm A, B, C, D và S. Hỏi có tất cả bao nhiêu mặt phẳng (P) như vậy?
Gọi O là tâm hình bình hành ABCD.
Các mặt phẳng cách đều A, B, C, D và S là
1) Mặt phẳng qua trung điểm của SA, SB, SC, SD
2) Mặt phẳng qua O và song song (SAB)
3) Mặt phẳng qua O và song song (SAD)
4) Mặt phẳng qua O và song song (SCD)
5) Mặt phẳng qua O và song song (SBC)
Cho hình chóp S.ABC có SA = SB và CA = CB. Tính số đo góc giữa hai đường thẳng chéo nhau SC và AB.
Hình vẽ minh họa:
Cho hình vuông ABCD và tam giác đều SAB cạnh a nằm trong hai mặt phẳng vuông góc với nhau. Tính sin góc giữa đường thẳng SC và mặt phẳng (SAD).
Gọi I là trung điểm của AB. Khi đó
Ta có mà
Dựng tại H suy ra
Trong mặt phẳng (SAD) kẻ Hx // AD. Trong mặt phẳng (BC, Hx) qua C kẻ đường thẳng song song với BH cắt Hx tại K thì
Suy ra SK là hình chiếu vuông góc của SC trên mặt phẳng (SAD) nên góc giữa đường thẳng SC và mặt phẳng (SAD) là góc
Ta có
Trong tam giác SCI có
Suy ra
Cho hình chóp có đáy
là tam giác vuông tại B, cạnh bên SA vuông góc với đáy. Gọi H, K lần lượt là hình chiếu vuông góc của A trên các cạnh SB, SC. Giả sử HK cắt BC tại D. Khi đó:
a) Đúng||Sai
b) Đúng||Sai
c) Đúng||Sai
d) Tam giác SBC cân tại B. Sai||Đúng
Cho hình chóp có đáy
là tam giác vuông tại B, cạnh bên SA vuông góc với đáy. Gọi H, K lần lượt là hình chiếu vuông góc của A trên các cạnh SB, SC. Giả sử HK cắt BC tại D. Khi đó:
a) Đúng||Sai
b) Đúng||Sai
c) Đúng||Sai
d) Tam giác SBC cân tại B. Sai||Đúng
đúng
đúng
đúng
Tam giác SBC cân tại B. sai
Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và B , SA vuông góc với mặt phẳng (ABCD), AB = BC = a, AD = 2a. Biết góc giữa SC và mặt phẳng (ABCD) bằng 450. Tính góc giữa mặt phẳng (SAD) và (SCD).
Tam giác ABC vuông cân tại B, suy ra
Vì nên AC là hình chiếu của SC trên mặt phẳng (ABCD).
Khi đó
Gọi M là trung điểm của AD => CM ⊥ AD.
Mà CM ⊥ SA nên CM ⊥ (SAD) => CM ⊥ SD
Hạ CH ⊥ SD . Khi đó SD ⊥ (CMH) => MH ⊥ SD
Ta có:
Ta lại có:
Tam giác MHC vuông tại M
Vậy