Đề kiểm tra 15 phút Toán 11 Chương 8 Cánh Diều

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Quan hệ vuông góc trong không gian. Phép chiếu vuông góc gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O, cạnh bằng 4a. Cạnh bên hình chóp SA = 2a. Hình chiếu vuông góc của đỉnh S trên mặt phẳng đáy là trung điểm M của OA. Gọi α là góc giữa SD và mặt phẳng đáy. Chọn mệnh đề đúng trong các mệnh đề dưới đây.

    Hình vẽ minh họa:

    Ta có: SM ⊥ (ABCD)

    => Hình chiếu vuông góc của SD trên mặt phẳng (ABCD) là cạnh MD.

    \Rightarrow \alpha = \left( SD,(ABCD)
ight) = (SD;MD) = \widehat{SDM}

    Ta tính được: SM = \sqrt{SA^{2} - AM^{2}}
= a\sqrt{2}

    Xét tam giác ADM có:

    MD = \sqrt{AM^{2} + AD^{2} -
2AM.AD.cos45^{0}} = a\sqrt{10}

    => \tan\alpha = \tan\widehat{SDM} =
\frac{SM}{MD} = \frac{\sqrt{5}}{5}

  • Câu 2: Vận dụng

    Cho hình chóp S.ABC có đáy là tam giác vuông ABC cân với cạnh huyền AB = 4\sqrt 2, cạnh bên SC \bot \left( {ABC} ight)SC = 2. Gọi M là trung điểm AC, N là trung điểm AB. Tính góc giữa hai đường thẳng SM và CN.

    Tính góc giữa hai đường thẳng SM và CN

    Đặt \overrightarrow {CA}  = \overrightarrow x ;\overrightarrow {CB}  = \overrightarrow y ;\overrightarrow {CS}  = \overrightarrow z

    Do tam giác vuông cân ABC tại C có AB = 4\sqrt 2 suy ra:

    CA = CB = 4;CN = 2\sqrt 2 ;SM = 2\sqrt 2

    Ta có:

    \begin{matrix}  \overrightarrow {CN}  = \dfrac{1}{2}\left( {\overrightarrow {CA}  + \overrightarrow {CB} } ight) = \dfrac{1}{2}\left( {\overrightarrow x  + \overrightarrow y } ight) \hfill \\  \overrightarrow {SM}  = \overrightarrow {SC}  + \overrightarrow {CM}  =  - \overrightarrow z  + \dfrac{1}{2}\overrightarrow x  \hfill \\ \end{matrix}

    Vậy \overrightarrow {CN} .\overrightarrow {SM}  = \frac{1}{4}\left( {\overrightarrow x  + \overrightarrow y } ight)\left( {\overrightarrow x  - 2\overrightarrow z } ight)

    Mặt khác: \left\{ \begin{gathered}  {\overrightarrow x ^2} = {\overrightarrow y ^2} = 16 \hfill \\  {\overrightarrow z ^2} = 4 \hfill \\  \overrightarrow x .\overrightarrow y  = \overrightarrow y .\overrightarrow z  = \overrightarrow z .\overrightarrow x  = 0 \hfill \\ \end{gathered}  ight.

    \Rightarrow \overrightarrow {CN} .\overrightarrow {SM}  = \frac{1}{4}\left( {{{\overrightarrow x }^2} - 2\overrightarrow x .\overrightarrow z  + \overrightarrow y .\overrightarrow x  - 2\overrightarrow y .\overrightarrow z } ight) = 4

    Gọi \alpha góc giữa hai véctơ \overrightarrow {SM}\overrightarrow {CN}

    Theo công thức tích vô hướng của hai véctơ ta có:

    \begin{matrix}  \overrightarrow {CN} .\overrightarrow {SM}  = \left| {\overrightarrow {CN} } ight|.\left| {\overrightarrow {SM} } ight|.{\text{cos}}\alpha  \hfill \\   \Rightarrow {\text{cos}}\alpha  = \dfrac{{\overrightarrow {CN} .\overrightarrow {SM} }}{{\left| {\overrightarrow {CN} } ight|.\left| {\overrightarrow {SM} } ight|}} = \dfrac{4}{8} = \dfrac{1}{2} \hfill \\   \Rightarrow \alpha  = {60^o} \hfill \\ \end{matrix}

    Vậy góc giữa hai đường thẳng SM và CN bằng {60^o}

  • Câu 3: Thông hiểu

    Cho tứ diện ABCD có độ dài các cạnh AB =
AC = AD = BC = BD = aCD =
a\sqrt{2}. Tính góc giữa hai đường thẳng AD và BC.

    Hình vẽ minh họa

    Gọi I, K, H lần lượt là trung điểm các cạnh DC, DB, AB.

    Khi đó: KH//AD,KI//BC \Rightarrow (AD;BC)
= (KH;KI).

    Xét \Delta BIC,BI = \sqrt{BC^{2} -
AC^{2}} = \sqrt{a^{2} - \frac{a^{2}}{2}} =
\frac{a}{\sqrt{2}}.

    Ta có \left\{ \begin{matrix}
AB\bot DH \\
AB\bot HC \\
\end{matrix} \Rightarrow AB\bot(DHC) \Rightarrow AB\bot HI ight..

    Xét \Delta BIH,HI = \sqrt{IB^{2} -
HB^{2}} = \sqrt{\frac{a^{2}}{2} - \frac{a^{2}}{4}} =
\frac{a}{2}. (1)

    Xét \Delta IHK, ta có: \left\{ \begin{matrix}
IK = \frac{BC}{2} = \frac{a}{2} \\
HK = \frac{AD}{2} = \frac{a}{2} \\
\end{matrix} \Rightarrow IK = HK = \frac{a}{2} ight.. (2)

    Từ (1),(2) \Rightarrow HI = IK = HK
\Rightarrow \Delta IHK là tam giác đều

    \Rightarrow \widehat{IKH} = 60^{0} \Rightarrow
(KH;KI) = 60^{0}.

  • Câu 4: Vận dụng

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng 10. Cạnh bện SA vuông góc với mặt phẳng (ABCD) và SC =10\sqrt{5}. Gọi M, N lần lượt là trung điểm của SA và CD. Tính khoảng cách d giữa BD và MN.

    Hình vẽ minh họa:

    Gọi P là trung điểm BC và E = NP ∩ AC

    => PN // BD => BD // (MNP)

    => d(BD, MN) = d(BD, (MNP)) = d(O, (MNP)) = \frac{1}{3}d(A, (MNP))

    Kẻ AK ⊥ ME

    Khi đó d(A, (MNP)) = AK.

    Ta tính được:

    \begin{matrix}SA = \sqrt{SC^{2} - AC^{2}} = 10\sqrt{3} \\\Rightarrow MA = 5\sqrt{3};AE = \dfrac{3}{4}AC = \dfrac{15\sqrt{2}}{2} \\\end{matrix}

    Xét tam giác vuông MAE ta có:

    AK = \frac{MA.AE}{\sqrt{MA^{2} +AE^{2}}} = 3\sqrt{5}

    \Rightarrow d(BD;MN) = \frac{1}{3}AK =\sqrt{5}

  • Câu 5: Thông hiểu

    Cho hình lâp phương ABCD.EFGH. Hãy xác định góc giữa cặp vecto \overrightarrow {AB} và \overrightarrow {EG}?

    Hình vẽ minh họa

    Hãy xác định góc giữa cặp vecto

    Ta có: AEGC là hình chữ nhật nên EG // AC

    Vì ABCD là hình vuông nên

    => \left( {\overrightarrow {AB} ,\overrightarrow {EG} } ight) = \left( {\overrightarrow {AB} ;\overrightarrow {AC} } ight) = \widehat {BAC} = {45^0}

  • Câu 6: Thông hiểu

    Cho ba vecto \vec{n}, \vec{a}, \vec{b} bất kì đều khác với vecto \vec{0}. Nếu vecto \vec{n} vuông góc với cả hai vecto \vec{a}\vec{b} thì \vec{n}, \vec{a}\vec{b}:

    Nếu vecto \vec{n} vuông góc với cả hai vecto \vec{a}\vec{b} thì \vec{n}, \vec{a}\vec{b} thì có thể đồng phẳng.

  • Câu 7: Nhận biết

    Cho lăng trụ đều ABC.A’B’C’ có tất cả các cạnh bằng a. Góc giữa đường thẳng A’B và mặt phẳng (A’B’C’) bằng:

    Hình vẽ minh họa:

    Vì BB’ ⊥ (A’B’C’) nên A’B’ là hình chiếu vuông góc của A’B lên (A’B’C’)

    => Góc giữa đường thẳng A’B và mặt phẳng (A’B’C’) là \widehat{BA'B'}

    Ta có: A’B’ = BB’ = a nên tam giác B’A’B vuông cân tại B’

    => \widehat{BA'B'} =45^{0}

  • Câu 8: Nhận biết

    Biết khối chóp có diện tích đáy và chiều cao lần lượt bằng 9;4. Thể tích khối chóp bằng:

    Ta có: \left\{ \begin{matrix}
B = 9 \\
h = 4 \\
\end{matrix} ight.

    Thể tích khối chóp là: V = \frac{1}{3}B.h
= \frac{1}{3}.9.4 = 12

  • Câu 9: Vận dụng cao

    Cho hình chóp tứ giác đều S.ABCD đáy ABCD là hình vuông, E là điểm đối xứng với D qua trung điểm SA. Gọi M, N lần lượt là trung điểm của AE và BC. Góc giữa hai đường thẳng MN và BD bằng:

    Hình vẽ minh họa:

    Do D đối xứng với E qua trung điểm của SA nên SDAE là hình bình hành

    => AE // SD. Ta có:

    \begin{matrix}\overrightarrow{MN} = \dfrac{\overrightarrow{AB} +\overrightarrow{EC}}{2} = \dfrac{\overrightarrow{AB} +\overrightarrow{ED} + \overrightarrow{DC}}{2}\hfill \\= \dfrac{\overrightarrow{AB} + \overrightarrow{AD} + \overrightarrow{SD}+ \overrightarrow{DC}}{2} \hfill\\= \dfrac{\overrightarrow{AC} + \overrightarrow{SC}}{2} \hfill\\\end{matrix}

    BD\bot AC;BD\bot SC

    => \overrightarrow{MN}.\overrightarrow{BD} =
\frac{\overrightarrow{AC} + \overrightarrow{SC}}{2}.\overrightarrow{BD}
= 0

    => (MN,BD) = 90^{0}

  • Câu 10: Thông hiểu

    Cho hình chóp tứ giác S.ABCD có đáy ABCD là hình vuông cạnh a. Biết \left( (SAB);(ABCD) ight) = 90^{0} và tam giác SAB đều. Xác định thể tích hình chóp S.ABCD?

    Hình vẽ minh họa

    Gọi H là trung điểm của AB

    Tam giác SAB đều nên SH\bot
AB

    Ta có: \left\{ \begin{matrix}
SH\bot AB \\
(SAB)\bot(ABCD) \\
SH \subset (SAB) \\
AB = (SAB) \cap (ABCD) \\
\end{matrix} ight.\  \Rightarrow SH\bot(ABCD)

    Vậy SH là đường cao của hình chóp

    Xét tam giác AHS vuông tại H ta có:

    SH = \sqrt{SA^{2} - AH^{2}} =
\sqrt{a^{2} - \left( \frac{a}{2} ight)^{2}} =
\frac{a\sqrt{3}}{2}

    Thể tích khối chóp là: V = \frac{1}{3}B.h
= \frac{1}{3}.a^{2}.\frac{a\sqrt{3}}{2} =
\frac{a^{3}\sqrt{3}}{6}

  • Câu 11: Nhận biết

    Mệnh đề nào là mệnh đề đúng?

    Khẳng định đúng: “Khoảng cách từ một điểm A bất kì đến mặt phẳng (P) bằng độ dài đoạn AH với H là hình chiếu vuông góc của A trên (P).”

  • Câu 12: Nhận biết

    Cho hình chóp S.ABCDSA\bot(ABCD). Kết luận nào sau đây sai về góc giữa SB(ABC)

    SA\bot(ABCD) nên AB là hình chiếu của SB trên (ABC)

    Vậy \widehat{\left( SB;(ABC) ight)} =
\widehat{SBA}.

  • Câu 13: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh x; SA\bot(ABCD). Góc tạo bởi cạnhSC và mặt phẳng (SAB) bằng 30^{0}. Xác định thể tích khối chóp S.ABCD.

    Hình vẽ minh họa

    Do ABCD là hình vuông cạnh bằng x nên S_{ABCD} = x^{2}

    Dễ dàng chứng minh được BC\bot(SAB)

    \Rightarrow \left( SC;(SAB) ight) =
\widehat{CSB} = 30^{0}

    Đặt SA = m \Rightarrow SB = \sqrt{m^{2} +
x^{2}}

    Tam giác SBC vuông tại B nên \tan\widehat{CSA} = \tan30^{0} = \frac{1}{\sqrt{3}}= \frac{BC}{SB}

    Ta được:

    BC = SB\sqrt{3} \Leftrightarrow
\sqrt{m^{2} + x^{2}} = x\sqrt{3} \Rightarrow m = x\sqrt{2}

    Vậy diện tích hình chóp là:

    V = \frac{1}{3}SA.S_{ABCD} =
\frac{1}{3}.x\sqrt{2}.x^{2} = \frac{x^{3}\sqrt{2}}{3}

  • Câu 14: Vận dụng

    Cho hình lập phương ABCD.A’B’C’D’. Gọi M là trung điểm của BB’. Tính cosin của góc giữa hai đường thẳng AM và A’C’.

    Tính cosin của góc giữa hai đường thẳng

    + Ta có AC // A’C’ nên góc giữa AM và A’C’ là góc giữa AC và AM.

    + Xét tam giác AMC có:

    MA = MC = \sqrt {M{B^2} + A{B^2}}

    = \sqrt {{{\left( {\frac{a}{2}} ight)}^2} + {a^2}}  = \frac{{a\sqrt 5 }}{2}

    AC = \sqrt {A{B^2} + B{C^2}}  = a\sqrt 2

    Áp dụng định lí cosin trong tam giác AMC, ta có:

    \begin{gathered}  cos\left( {AM\,,\,AC} ight) = \left| {\dfrac{{A{M^2} + A{C^2} - M{C^2}}}{{2MA.AC}}} ight| \hfill \\   = \dfrac{{AC}}{{2MA}} = \dfrac{{a\sqrt 2 }}{{2.\dfrac{{a\sqrt 5 }}{2}}} = \dfrac{{\sqrt {10} }}{5} \hfill \\ \end{gathered}

  • Câu 15: Nhận biết

    Cho hai đường thẳng a và a’ lần lượt có vecto chỉ phương là \overrightarrow u ;\overrightarrow {u'}. Nếu \varphi là góc giữa hai đường thẳng a và a’ thì

    Do góc giữa hai đường thẳng bằng hoặc bù với góc giữa hai vecto chỉ phương của chúng nên đáp án đúng là: \cos \varphi  = \left| {\cos \left( {\overrightarrow u ;\overrightarrow {u'} } ight)} ight|

  • Câu 16: Nhận biết

    Cho hai đường thẳng a, b và mặt phẳng (P). Mệnh đề nào sau đây đúng?

    Mệnh đề: “Nếu a ⊥ (P) và a ⊥ b thì b // (P).” sai vì b có thể nằm trong (P).

    Mệnh đề: “Nếu a // (P) và a ⊥ b thì b // (P).” sai vì b có thể cắt P hoặc b nằm trong P.

    Mệnh đề: “Nếu a // (P) và a ⊥ b thì b ⊥ (P).” sai vì b có thể nằm trong (P).

  • Câu 17: Vận dụng

    Giả sử V là thể tích khối tứ diện đều ABCD . Trung điểm tất cả các cạnh của tứ diện tạo thành một đa diện có thể tích V' . Tỉ số \frac{V'}{V} = 1/2

    (Kết quả được ghi dưới dạng phân số tối giản a/b)

    Đáp án là:

    Giả sử V là thể tích khối tứ diện đều ABCD . Trung điểm tất cả các cạnh của tứ diện tạo thành một đa diện có thể tích V' . Tỉ số \frac{V'}{V} = 1/2

    (Kết quả được ghi dưới dạng phân số tối giản a/b)

    Hình vẽ minh họa

    Giả sử tứ diện đều cạnh bằng a

    Hình đa diện cần tính có được bằng cách cắt 4 góc tứ diện

    Mỗi góc cũng là một tứ diện đều có cạnh bằng \frac{a}{2}

    Do đó thể tích phần cắt bỏ là V''
= 4.\frac{V}{8} = \frac{V}{2}

    (Vì tứ diện cạnh giảm một nưả thì thể tích giảm \left( \frac{1}{2} ight)^{3} =
\frac{1}{8}

    Vậy V' = \frac{V}{2} \Rightarrow
\frac{V'}{V} = \frac{1}{2}

  • Câu 18: Thông hiểu

    Cho hình chóp S.ABCD có đáy là hình vuông cạnh aSA\bot(ABCD);SA = a\sqrt{2}. Số đo góc giữa đường thẳng SC và mặt phẳng (SAB) bằng:

    Hình vẽ minh họa

    Ta có: \left\{ \begin{matrix}
BC\bot AB \\
SA\bot(ABCD) \Rightarrow SA\bot BC \\
\end{matrix} ight.

    \Rightarrow BC\bot(SAB)

    BC\bot SB nên SC là hình chiếu của SB lên mặt phẳng (SAB)

    Góc giữa đường thẳng SC và mặt phẳng (SAB) là góc giữa SC và SB hay góc \widehat{CSB}.

    Trong tam giác SAB vuông tại A có SB =
\sqrt{SA^{2} + AB^{2}} = \sqrt{2a^{2} + a^{2}} = a\sqrt{3}

    Trong tam giác SBC vuông tại B có \tan\widehat{CSB} = \frac{BC}{SB} =
\frac{a}{a\sqrt{3}} = \frac{\sqrt{3}}{3}

    \Rightarrow \widehat{CSB} =
30^{0}

    Số đo góc giữa đường thẳng SC và mặt phẳng (SAB) bằng 30^{0}.

  • Câu 19: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh 3a. Cạnh bên SA vuông góc với (ABCD), góc giữa đường thẳng SB và mặt phẳng (ABCD) bằng 30◦ . Tìm khoảng cách từ A đến mặt phẳng (SBC).

    Ta có:

    Gọi H là chân đường cao lên cạnh SB. Khi đó, ta có

    d(A, (SBC)) = AH. sin 30◦ => AH = AB . sin 30◦ = \frac{3a}{2}

  • Câu 20: Thông hiểu

    Cho hình chóp S.ABCD có tất cả các cạnh bằng nhau và đáy ABCD là hình vuông tâm O. Kết quả nào sau đây đúng?

    Hình chóp S.ABCD có tất cả các cạnh bên và cạnh đáy bằng nhau

    Do đó: SA = SC suy ra tam giác SAC cân tại A

    Lại có ABCD là hình vuông

    => O là trung điểm cạnh AC

    => SO vừa là đường trung tuyến vừa là đường cao của tam giác SAC

    => SO\bot AC

    Tương tự SO vừa là đường trung tuyến vừa là đường cao của tam giác SBD

    => SO\bot BD

    Từ đó ta có: \left\{ \begin{matrix}
SO\bot AC \subset (ABCD) \\
SO\bot BD \subset (ABCD) \\
\end{matrix} ight.

    \Rightarrow SO\bot(ABCD)

     

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 8 Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 28 lượt xem
Sắp xếp theo