Đề kiểm tra 45 phút Chương 1 Ứng dụng đạo hàm để khảo sát hàm số CTST

Mô tả thêm: Đề kiểm tra 45 phút bao gồm các kiến thức Chương 1. Ứng dụng đạo hàm để khảo sát hàm số được thay đổi liên tục giúp học sinh ôn tập kiến thức và kĩ năng giải bài tập Toán 12 CTST
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Cho hàm số f(x) xác định và liên tục trên \mathbb{R} và có đồ thị của hàm số f'(x) là đường cong như hình vẽ sau:

    Chọn khẳng định đúng?

    Từ đồ thị hàm số f'(x) ta có bảng biến thiên như sau:

    Từ bảng biến thiên suy ra khẳng định đúng là: “Hàm số y = f(x) nghịch biến trên khoảng (0; + \infty)”.

  • Câu 2: Nhận biết

    Cho hàm số f(x) có bảng xét dấu của đạo hàm như sau:

    Hàm số đã cho đồng biến trên khoảng nào dưới đây?

    Hàm số đã cho đồng biến trên ( -
1;2).

  • Câu 3: Nhận biết

    Cho hàm số y =
f(x) có đạo hàm f'(x) = (x -
1)^{2}(x - 1)^{3}(2 - x). Hàm số y
= f(x) đồng biến trên khoảng nào sau đây?

    Ta có bảng xét dấu:

    Từ bảng xét dấu trên ta có hàm số y =
f(x) đồng biến trên (1;2).

  • Câu 4: Nhận biết

    Tìm tiệm cận ngang của đồ thị hàm số y =
\frac{3x - 1}{- x - 1}?

    Ta có: \lim_{x ightarrow +
\infty}\frac{3x - 1}{- x - 1} = \lim_{x ightarrow - \infty}\frac{3x -
1}{- x - 1} = - 3

    Vậy tiệm cận ngang của đồ thị hàm số y =
\frac{3x - 1}{- x - 1} là đường thẳng y = - 3.

  • Câu 5: Vận dụng

    Hàm số y = \frac{1}{3}x^{3} +
\frac{m}{2}x^{2} + x + 6 đồng biến trên nửa khoảng \lbrack 1; + \infty) khi:

    Ta có: y' = x^{2} + mx +
1

    Để hàm số đã cho đồng biến trên nửa khoảng \lbrack 1; + \infty) khi đó:

    \Leftrightarrow y' \geq 0;\forall x
\in \lbrack 1; + \infty)

    \Leftrightarrow x^{2} + mx + 1 \geq
0;\forall x \in \lbrack 1; + \infty)

    \Leftrightarrow m \geq - x -
\frac{1}{x};\forall x \in \lbrack 1; + \infty)

    Xét hàm số g(x) = - x -
\frac{1}{x} trên nửa khoảng \lbrack
1; + \infty) ta có:

    g'(x) = - 1 + \frac{1}{x^{2}} =
\frac{1 - x^{2}}{x^{2}}

    g'(x) = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
x = 1 \\
x = - 1 \\
\end{matrix} ight.

    Bảng biến thiên của hàm số g(x) = - x -
\frac{1}{x} trên nửa khoảng \lbrack
1; + \infty) là:

    Từ bảng biến thiên suy ra \max_{\lbrack
1; + \infty)}g(x) = g(1) = - 2

    Vậy m \geq g(x);\forall x \in \lbrack 1;
+ \infty) khi và chỉ khi m \geq -
2.

  • Câu 6: Nhận biết

    Cho hàm số f(x) = x^{3} - 3x. Tìm giá trị nhỏ nhất của hàm số đã cho trên đoạn \lbrack - 2;1brack?

    Xét hàm số f(x) = x^{3} - 3x xác định trên tập số thực có:

    f'(x) = 3x^{2} - 3 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 1 \\
x = - 1 \\
\end{matrix} ight.

    \Rightarrow \left\{ \begin{matrix}
f( - 2) = - 2 \\
f(1) = - 2 \\
f( - 1) = 2 \\
\end{matrix} ight.\  \Rightarrow \min_{\lbrack - 2;1brack}f(x) = -
2

    Vậy giá trị nhỏ nhất của hàm số là -2 khi x = 1 hoặc x = -2.

  • Câu 7: Thông hiểu

    Đồ thị hàm số nào sau đây không có tiệm cận đứng?

    Phương trình x2 + 1 = 0 vô nghiệm nên không tìm được x0 để \mathop {\lim }\limits_{x \to {x_0}^ + } f\left( x ight) =  \pm \infty

    => Hàm số không có tiệm cận đứng.

    Các đồ thị hàm số ở B, C, D lần lượt có các tiệm cận đứng là x = 0, x = -2 và x = 1

  • Câu 8: Thông hiểu

    Cho hàm số y = f\left( x ight) = \frac{{3x - 1}}{{x - 3}} trên đoạn \left[ {0,2} ight]. Gọi M,m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số. Tính giá trị biểu thức 3M + m.

    Xét hàm số y = f\left( x ight) = \frac{{3x - 1}}{{x - 3}} trên đoạn \left[ {0,2} ight] ta có:

    f'\left( x ight) = \frac{8}{{{{\left( {x - 3} ight)}^2}}} < 0

    => f\left( x ight) là hàm số nghịch biến trên \left( {0;2} ight)

    => \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {\mathop {\min f\left( x ight)}\limits_{\left[ {0;2} ight]}  = f\left( 2 ight) =  - 5} \\   {\mathop {\max f\left( x ight)}\limits_{\left[ {0;2} ight]}  = f\left( 0 ight) = \dfrac{1}{3}} \end{array}} ight. \Rightarrow 3M + m =  - 2

  • Câu 9: Vận dụng

    Cho hàm số y = f\left( x ight) liên tục trên \mathbb{R} và có đồ thị như hình vẽ. Tập hợp tất cả các giá trị của tham số m để phương trình \left| {f\left( {\cos x} ight)} ight| =  - 2m + 3 có bốn nghiệm thuộc đoạn \left[ {0;2\pi } ight] là:

    Tìm m để phương trình có 4 nghiệm

    Đặt t = \cos x;t \in \left[ { - 1;1} ight]

    Ta có: \left| {f\left( t ight)} ight| =  - 2m + 3\left( * ight);t \in \left[ { - 1;1} ight]

    Ta có đồ thị hình vẽ như sau:

    Tìm m để phương trình có 4 nghiệm

    Dựa vào đồ thị hàm số, phương trình đã cho có 4 nghiệm thuộc đoạn \left[ {0;2\pi } ight] khi phương trình (*) có hai nghiệm t \in \left[ { - 1;1} ight]

    \Leftrightarrow 0 < 2m + 3 \leqslant 1 \Leftrightarrow 1 \leqslant m < \frac{3}{2}

  • Câu 10: Nhận biết

    Đồ thị của hàm số nào dưới đây có dạng đường cong trong hình vẽ dưới đây?

    Đồ thị của hàm số y = f(x)

    Quan sát đồ thị hàm số ta suy ra hàm số có dạng hàm số phân thức y = \frac{{ax + b}}{{cx + d}}

    => Loại đáp án B và D

    Ta có: y\left( 0 ight) = 2 => Loại đáp án B

  • Câu 11: Nhận biết

    Giá trị nhỏ nhất của hàm số y = x3 – 3x + 5 trên đoạn [0; 2] là:

    Xét hàm số f(x) = x3 – 3x + 5 trên [0; 2] có:

    f’(x) = 3x3 – 3

    f’(x) = 0 =>\left\{ {\begin{array}{*{20}{c}}  {0 \leqslant x \leqslant 2} \\   {3{x^2} - 3 = 0} \end{array}} ight. \Rightarrow x = 1

    Tính được f(0) = 5; f(1) = 3; f(2) = 7

    Vậy \mathop {\min }\limits_{\left[ {0;2} ight]} f\left( x ight) = f\left( 1 ight) = 3

  • Câu 12: Thông hiểu

    Có bao nhiêu giá trị của tham số m để hàm số y
= f(x) = x^{3} + \frac{1}{2}\left( x^{2} - 1 ight)x^{2} + 1 -
m có điểm cực đại là x = -
1?

    Ta có: \left\{ \begin{matrix}
f'(x) = 3x^{2} + \left( m^{2} - 1 ight)x \\
f''(x) = 6x + m^{2} - 1 \\
\end{matrix} ight.

    Hàm số có điểm cực đại là x = -
1 khi \left\{ \begin{matrix}
f'( - 1) = 0 \\
f''( - 1) < 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
4 - m^{2} = 0 \\
m^{2} - 7 < 0 \\
\end{matrix} ight.\  \Leftrightarrow m = \pm 2

  • Câu 13: Vận dụng

    Xác định các giá trị của tham số m để hàm số y= - x^{4} + 2\left( m^{2} + 3 ight)x^{2} + 2 có ba điểm cực trị sao cho giá trị cực đại của hàm số đạt giá trị nhỏ nhất?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Xác định các giá trị của tham số m để hàm số y= - x^{4} + 2\left( m^{2} + 3 ight)x^{2} + 2 có ba điểm cực trị sao cho giá trị cực đại của hàm số đạt giá trị nhỏ nhất?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 14: Vận dụng

    Tìm giá trị của tham số m để hàm số y = \sin 2x + mx + c đồng biến trên \mathbb{R}

    Ta có: y' = 2\cos 2x + m

    Hàm số đồng biến trên \mathbb{R}

    \begin{matrix}   \Leftrightarrow y' \geqslant 0,\forall x \in \mathbb{R} \hfill \\   \Leftrightarrow \mathop {\min }\limits_\mathbb{R} y' =  - 2 + m \geqslant 0 \Leftrightarrow m \geqslant 2 \hfill \\ \end{matrix}

  • Câu 15: Nhận biết

    Chọn hàm số tương ứng với đồ thị hàm số trong hình vẽ dưới đây:

    Chọn hàm số tương ứng với đồ thị hàm số

    Quan sát đồ thị hàm số ta thấy:

    Hàm số có dạng hàm số bậc bốn trùng phương: y = a{x^4} + b{x^2} + c

    => Loại đáp án B

    Đồ thị có nhánh cuối của đồ thị đi lên

    => Hệ số a > 0

    => Loại đáp án A

    Đồ thị hàm số cắt trục tung tại điểm O

    => c = 0

    => Loại đáp án C

  • Câu 16: Thông hiểu

    Tìm tất cả các giá trị của tham số m để hàm số y
= \frac{1}{3}x^{3} + \left( m^{2} - m + 2 ight)x^{2} + \left( 3m^{2} +
1 ight)x đạt cực tiểu tại x = -
2?

    Tập xác định D\mathbb{= R}

    Ta có: y' = x^{2} + 2\left( m^{2} - m
+ 2 ight)x + \left( 3m^{2} + 1 ight)

    Hàm số đạt cực tiểu tại x = - 2
\Rightarrow y'( - 2) = 0

    \Leftrightarrow m^{2} - 4m + 3 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
m = 1 \\
m = 3 \\
\end{matrix} ight.

    Lại có: y'' = 2x + 2\left( m^{2}
- m + 2 ight)

    y''( - 2) = 2m^{2} -
2m

    y''( - 2) > 0 \Leftrightarrow
2m^{2} - 2m > 0 \Leftrightarrow \left\lbrack \begin{matrix}
m > 1 \\
m < 0 \\
\end{matrix} ight.

    Để hàm số đạt cực tiểu tại x = -
2 thì m = 3 thỏa mãn.

    vậy giá trị m cần tìm là m =
3.

  • Câu 17: Nhận biết

    Đường cong trong hình vẽ dưới đây là đồ thị của hàm số nào dưới đây?

    Xác định hàm số y = f(x)

    Dựa vào đồ thị hàm số ta thấy

    \mathop {\lim }\limits_{x \to \infty } y =  + \infty => Hệ số a > 0

    => Loại đáp án B và đáp án D

    Mặt khác hàm số có ba điểm cực trị

    => Loại đáp án C

  • Câu 18: Nhận biết

    Cho hàm số y = f(x) có bảng biến thiên như sau:

    Đồ thị hàm số trên có tiệm cận ngang là:

    Dựa vào bảng biến thiên ta có: \lim_{x
ightarrow + \infty}f(x) = 1;\lim_{x ightarrow - \infty}f(x) =
1

    Suy ra tiệm cận ngang của đồ thị hàm số là y = 1.

  • Câu 19: Nhận biết

    Cho hàm số y = f(x) liên tục trên đoạn \lbrack - 2;2brack có đồ thị như hình vẽ:

    Tìm giá trị nhỏ nhất của hàm số trên đoạn \lbrack - 2;2brack?

    Trên đoạn \lbrack - 2;2brack ta có: f(x) \geq - 1f(x) = - 1 \Leftrightarrow \left\lbrack
\begin{matrix}
x = - 2 \\
x = 1 \\
\end{matrix} ight.

    Vậy \min_{\lbrack - 2;2brack}y = -
1.

  • Câu 20: Thông hiểu

    Cho hàm số y = f(x) có bảng biến thiên như sau:

    Tổng số đường tiệm cận ngang và tiệm cận đứng của đồ thị hàm số đã cho là

    Số đường tiệm cận ngang: 1

    Số đường tiệm cận đứng: 1

    Tổng số đường tiệm cận ngang và tiệm cận đứng: 2.

  • Câu 21: Vận dụng

    Xác định giá trị nhỏ nhất của biểu thức P = 4\left( {{m^2} + {n^2}} ight) - m - n, biết y = {\left( {x + m} ight)^3} + {\left( {x + n} ight)^3} - {x^3} với m,n là tham số và hàm số đồng biến trên \left( { - \infty ; + \infty } ight).

    Ta có:

    \begin{matrix}  y' = 3{\left( {x + m} ight)^2} + 3{\left( {x + n} ight)^2} - 3{x^2} \hfill \\   = 3\left[ {{x^2} + 2\left( {m + n} ight)x + {m^2} + {n^2}} ight] \hfill \\ \end{matrix}

    Hàm số đã cho đồng biến trên \mathbb{R}

    \begin{matrix} y' \geqslant 0;\forall x \in \mathbb{R} \hfill \\   \Leftrightarrow \Delta ' = {\left( {m + n} ight)^2} - {m^2} - {n^2} \leqslant 0 \hfill \\   \Rightarrow mn \leqslant 0 \hfill \\ \end{matrix}

    Ta lại có:

    \begin{matrix}  P = 4\left( {{m^2} + {n^2}} ight) - \left( {m + n} ight) \hfill \\   = 4{\left( {m + n} ight)^2} - 8mn - \left( {m + n} ight) \hfill \\   \geqslant 4{\left( {m + n} ight)^2} - \left( {m + n} ight) \hfill \\   = 4{\left( {m + n} ight)^2} - 2.2\left( {m + n} ight).\dfrac{1}{4} + \dfrac{1}{{16}} - \dfrac{1}{{16}} \hfill \\   = {\left[ {2\left( {m + n} ight) - \dfrac{1}{4}} ight]^2} - \dfrac{1}{{16}} \geqslant  - \dfrac{1}{{16}} \hfill \\   \Rightarrow {P_{\min }} =  - \dfrac{1}{{16}} \hfill \\ \end{matrix}

  • Câu 22: Thông hiểu

    Một loại thuốc được dùng cho bệnh nhân và nồng độ thuốc trong máu của bệnh nhân sau khi tiêm vào cơ thể trong t giờ được cho bởi công thức c(t) = \frac{t}{t^{2} + 1}(mg/L). Sau khi tiêm thuốc bao lâu thì nồng độ thuốc trong máu của bệnh nhân cao nhất?

    Ta có: c'(t) = \frac{- t^{2} +
1}{\left( t^{2} + 1 ight)^{2}};\forall t \in (0; + \infty). Cho c'(t) = 0 \Leftrightarrow \frac{-
t^{2} + 1}{\left( t^{2} + 1 ight)^{2}} = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
t = 1 \\
t = - 1 \\
\end{matrix} ight.

    Bảng biến thiên:

    Vậy sau khi tiêm 1 giờ, nồng độ thuốc trong máu bệnh nhân cao nhất.

  • Câu 23: Vận dụng cao

    Tổng tất cả các giá trị thực của m để hàm số y = \frac{1}{5}{m^2}{x^5} - \frac{1}{3}m{x^3} + 10{x^2} - \left( {{m^2} - m - 20} ight)x + 1 đồng biến trên R bằng:

    Ta có:

    \begin{matrix}  y = \dfrac{1}{5}{m^2}{x^5} - \dfrac{1}{3}m{x^3} + 10{x^2} - \left( {{m^2} - m - 20} ight)x + 1 \hfill \\   \Rightarrow y' = {m^2}{x^4} - m{x^2} + 20x - {m^2} + m + 20 \hfill \\ \end{matrix}

    Hàm số đã cho đồng biến trên R khi và chỉ khi

    \begin{matrix}   \Rightarrow y' \geqslant 0,\forall x \in \mathbb{R} \hfill \\   \Rightarrow {m^2}{x^4} - m{x^2} + 20x - {m^2} + m + 20 \geqslant 0,\forall x \in \mathbb{R} \hfill \\ \end{matrix}

    Và dấu bằng xảy ra chỉ tại một số hữu hạn điểm.

    Điều kiện cần

    Ta thấy phương trình y ‘ = 0 có một nghiệm x = -1 nên để y' \geqslant 0,\forall x \in \mathbb{R} thì y’ không đổi dấu qua khi x = -1 khi đó phương trình y’ = 0 có nghiệm kép là x = -1 (x = -1 không thể laf nghiệm bội 4 của phương trình y’ = 0 vì y’ không chứa số hạng x3)

    Ta suy ra được y’’(-1) = 0

    => - 4{m^2} + 2m + 20 = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {m =  - 2} \\   {m = \dfrac{5}{2}} \end{array}} ight.

    Điều kiện đủ:

    Với m = - 2 ta có:

    y' = 4{x^4} + 2{x^2} + 20x + 14 = 4{\left( {x + 1} ight)^2}\left[ {{{\left( {x - 1} ight)}^2} + \frac{5}{2}} ight] \geqslant 0,\forall x \in \mathbb{R}

    => Hàm số đồng biến trên R

    => m = -2 thỏa mãn điều kiện đề bài.

    Với m = \frac{5}{2} ta có:

    y' = \frac{{25}}{4}{x^4} - \frac{5}{2}{x^2} + 20x + \frac{{65}}{4} = \frac{{25}}{4}{\left( {x + 1} ight)^2}\left[ {{{\left( {x - 1} ight)}^2} + \frac{8}{5}} ight] \geqslant 0,\forall x \in \mathbb{R}

    => Hàm số đồng biến trên R

    => m = \frac{5}{2} thỏa mãn điều kiện đề bài

    Vậy m =  - 2;m = \frac{5}{2} là các giá trị cần tìm.

    => Tổng các giá trị thực của m cần tìm thỏa mãn yêu cầu bài toán là - 2 + \frac{5}{2} = \frac{1}{2}

  • Câu 24: Vận dụng

    Tập hợp tất cả các giá trị thực của tham số m để đồ thị hàm số y = \frac{1 + \sqrt{x + 1}}{x^{2} - 2x -
m} có đúng hai tiệm cận đứng?

    Điều kiện xác định x \geq -
1

    1 + \sqrt{x + 1} > 0;\forall x \geq
- 1 nên để đồ thị hàm số có đúng hai tiệm cận đứng thì phương trình x^{2} - 2x = m\ \ (*) phải có hai nghiệm phân biệt lớn hơn -
1.

    Xét hàm số f(x) = x^{2} - 2x trên \lbrack - 1; + \infty) có:

    f'(x) = 2x - 2 = 0 \Rightarrow x =
1

    Bảng biến thiên

    Phương trình (*) có hai nghiệm phân biệt lớn hơn - 1 khi - 1
< m \leq 3.

    Vậy đáp án cần tìm là m \in ( -
1;3brack.

  • Câu 25: Nhận biết

    Hàm số y = - x^{3} + 1 có bao nhiêu điểm cực trị?

    Ta có: y' = - 3x^{2} \leq 0;\forall
x\mathbb{\in R} suy ra hàm số luôn nghịch biến trên \mathbb{R}.

    Vậy hàm số đã cho không có điểm cực trị.

  • Câu 26: Vận dụng cao

    Tìm giá trị của tham số m để đồ thị hàm số y = f\left( x ight) = \frac{{2x + \sqrt {{x^2} + 3}  - 1}}{{\sqrt {{x^2} + x} }} có hai đường tiệm cận đứng và hai đường tiệm cận ngang tạo thành hình chữ nhật có diện tích bằng 2.

    Tập xác định D = \left( { - \infty ; - 1} ight) \cup \left( {0; + \infty } ight)

    Ta có:

    \begin{matrix}  \mathop {\lim }\limits_{x \to  - \infty } y = \mathop {\lim }\limits_{x \to  - \infty } \dfrac{{m - \sqrt {{1^2} + \dfrac{3}{{{x^2}}}}  - \dfrac{1}{x}}}{{ - \sqrt {{1^2} + \dfrac{1}{x}} }} = 1 - m \hfill \\  \mathop {\lim }\limits_{x \to  + \infty } y = \mathop {\lim }\limits_{x \to  + \infty } \dfrac{{m + \sqrt {{1^2} + \dfrac{3}{{{x^2}}}}  - \frac{1}{x}}}{{\sqrt {{1^2} + \dfrac{1}{x}} }} = m + 1 \hfill \\ \end{matrix}

    => Để đồ thị hàm số có 2 đường tiệm cận ngang thì m + 1 e 1 - m \Leftrightarrow m e 0

    \begin{matrix}  \mathop {\lim }\limits_{x \to {0^ + }} y = \mathop {\lim }\limits_{x \to {0^ + }} \dfrac{{mx + \sqrt {{x^2} + 3}  - 1}}{{\sqrt {{x^2} + x} }} =  + \infty  \hfill \\  \mathop {\lim }\limits_{x \to {1^ - }} y = \mathop {\lim }\limits_{x \to {1^ - }} \dfrac{{mx + \sqrt {{x^2} + 3}  - 1}}{{\sqrt {{x^2} + x} }} = \left\{ {\begin{array}{*{20}{c}}  { + \infty {\text{  khi m  <  1}}} \\   { - \infty {\text{  khi m  >  1}}} \end{array}} ight. \hfill \\ \end{matrix}

    Vậy khi m e 0;m e 1 thì đồ thị hàm số có 2 đường tiệm cận ngang là y = m + 1; y = - m và 2 đường tiệm cận đứng là x = 0 và x = -1

    Để hai đường tiệm cận đứng và 2 đường tiệm cận ngang tạo thành hình chữ nhật có diện tích bằng 2 thì 1.2\left| m ight| = 2 \Rightarrow \left[ {\begin{array}{*{20}{c}}  {m = 1\left( L ight)} \\   {m =  - 1\left( {tm} ight)} \end{array}} ight.

  • Câu 27: Thông hiểu

    Tổng số đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số y = \frac{x - 3}{\sqrt{9 - x^{2}}} là:

    Tập xác định D = ( - 3;3) suy ra đồ thị hàm số không có tiệm cận ngang.

    \lim_{x ightarrow 3^{-}}\frac{x -
3}{\sqrt{9 - x^{2}}} = \lim_{x ightarrow 3^{-}}\frac{x - 3}{\sqrt{(3 -
x)(3 + x)}} = \lim_{x ightarrow 3^{-}}\frac{- \sqrt{3 - x}}{\sqrt{3 +
x}} = 0

    Suy ra x = 3 không là đường tiệm cận đứng của đồ thị hàm số.

    \lim_{x ightarrow - 3^{+}}\frac{x -
3}{\sqrt{9 - x^{2}}} = \lim_{x ightarrow - 3^{+}}\frac{x - 3}{\sqrt{(3
- x)(3 + x)}} = \lim_{x ightarrow - 3^{+}}\frac{- \sqrt{3 -
x}}{\sqrt{3 + x}} = - \infty

    Suy ra x = - 3 là đường tiệm cận đứng của đồ thị hàm số.

    Vậy đồ thị hàm số có 1 đường tiệm cận.

  • Câu 28: Vận dụng cao

    Một sợi dây kim loại dài 60cm được cắt thành hai đoạn. Đoạn thứ nhất được uốn thành một hình vuông, đoạn thứ hai được uốn thành một vòng tròn. Hỏi khi tổng diện tích của hình vuông và hình tròn ở trên nhỏ nhất thì chiều dài đoạn dây uốn thành hình vuông bằng bao nhiêu (làm tròn đến hàng phần trăm)?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Một sợi dây kim loại dài 60cm được cắt thành hai đoạn. Đoạn thứ nhất được uốn thành một hình vuông, đoạn thứ hai được uốn thành một vòng tròn. Hỏi khi tổng diện tích của hình vuông và hình tròn ở trên nhỏ nhất thì chiều dài đoạn dây uốn thành hình vuông bằng bao nhiêu (làm tròn đến hàng phần trăm)?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 29: Thông hiểu

    Gọi P là tập tất cả các số nguyên dương của tham số m để hàm số y = x^{4} - 2mx^{2} + 1 đồng biến trên khoảng (3; + \infty). Tính tổng tất cả các phần tử của tập P?

    Theo yêu cầu bài toán \Leftrightarrow
y' = 4x^{3} - 4mx \geq 0;\forall x \in (3; + \infty)

    \Leftrightarrow 4x\left( x^{2} - m
ight) \geq 0;\forall x \in (3; + \infty)

    \Leftrightarrow m \leq x^{2};\forall x
\in (3; + \infty)

    Do đó m \leq 9 \Rightarrow P = \left\{
1;2;3;...;9 ight\}

    Vậy tổng tất cả các phần tử của tập P bằng 45.

  • Câu 30: Nhận biết

    Đường thẳng nào dưới đây là tiệm cận đứng của đồ thị hàm số y = \frac{{2x + 1}}{{x + 1}}?

    Xét phương trình x + 1 = 0 => x = -1

    \mathop {\lim }\limits_{x \to  - {1^ + }} f\left( x ight) =  + \infty => x = -1 là tiệm cận đứng của đồ thị hàm số.

  • Câu 31: Thông hiểu

    Hình vẽ nào sau đây là đồ thị của hàm số y = (x - c)(d - x)^{2} với c > d > 0?

    Với c > d > 0 thì đồ thị hàm số y = (x - c)(d - x)^{2} theo thứ tự tiếp xúc với trục hoành tại điểm có hoành độ x = dx =
c

    Mặt khác với x \leq c thì y \leq 0 nên khi x \leq c thì đồ thị hàm số nằm phía dưới trục hoành

    Vậy đồ thị hàm số cần tìm là .

  • Câu 32: Nhận biết

    Trong các hàm số sau, hàm số nào đồng biến trên tập số thực?

    Xét hàm số y = x^{3} + x có: y' = 3x^{2} + 1 > 0;\forall
x\mathbb{\in R}

    Suy ra hàm số y = x^{3} + x đồng biến trên tập số thực.

  • Câu 33: Thông hiểu

    Có bao nhiêu giá trị nguyên của tham số m để đồ thị của hàm số y = x^{3} - (2m - 1)x^{2} + \left( 2m^{2} + 2m - 4
ight)x - 2m^{2} + 4 có hai điểm cực trị nằm về hai phía của trục hoành?

    Xét phương trình hoành độ giao điểm

    x^{3} - (2m - 1)x^{2} + \left( 2m^{2} +
2m - 4 ight)x - 2m^{2} + 4 = 0(*)

    \Leftrightarrow (x - 1)\left( x^{2} -
2mx + 2m^{2} - 4 ight) = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
x - 1 = 0 \\
x^{2} - 2mx + 2m^{2} - 4 = 0(**) \\
\end{matrix} ight.

    Đồ thị của hàm số y = x^{3} - (2m -
1)x^{2} + \left( 2m^{2} + 2m - 4 ight)x - 2m^{2} + 4 có hai điểm cực trị nằm về hai phía của trục hoành khi và chỉ khi phương trình (*) có ba nghiệm phân biệt hay phương trình (**) có 2 nghiệm phân biệt khác 1

    \Leftrightarrow \left\{ \begin{gathered}
  \Delta  > 0 \hfill \\
  f\left( 1 ight) e 0 \hfill \\ 
\end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}
  {m^2} - \left( {2{m^2} - 4} ight) > 0 \hfill \\
  2{m^2} - 2m - 3 e 0 \hfill \\ 
\end{gathered}  ight.\Leftrightarrow \left\{ \begin{gathered}
   - 2 < m < 2 \hfill \\
  m e \frac{{1 \pm \sqrt 7 }}{2} \hfill \\ 
\end{gathered}  ight.

    m\mathbb{\in Z} suy ra m \in \left\{ - 1;0;1 ight\}

    Vậy có 3 giá trị nguyên của tham số m thỏa mãn yêu cầu bài toán.

  • Câu 34: Nhận biết

    Cho hàm số y = f(x) có bảng biến thiên như sau:

    Khẳng định nào sau đây đúng?

    Điểm cực tiểu của hàm số là x = - 1;x =
1

    Điểm cực tiểu của đồ thị hàm số là ( -
1;0),(1;0)

    Điểm cực đại của hàm số là x =
0.

  • Câu 35: Nhận biết

    Cho hàm số y = f(x) liên tục trên \mathbb{R} và có bảng xét dấu của f'(x) như sau:

    Số điểm cực đại của hàm số y =
f(x) là:

    Dựa vào bảng biến thiên ta thấy, hàm số y
= f(x) đạt cực đại tại x = -
2 nên hàm số đã cho có 1 điểm cực đại.

  • Câu 36: Thông hiểu

    Tìm giá trị của tham số m để hàm số y = \frac{1}{3}x^{3} - (m + 1)x^{2} +
\left( m^{2} + 2m ight)x - 3 nghịch biến trên khoảng ( - 1;1)

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Tìm giá trị của tham số m để hàm số y = \frac{1}{3}x^{3} - (m + 1)x^{2} +
\left( m^{2} + 2m ight)x - 3 nghịch biến trên khoảng ( - 1;1)

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 37: Thông hiểu

    Cho hàm số y = \frac{ax - b}{x -
c} có đồ thị như hình vẽ:

    Tính giá trị biểu thức T = a + b +
c?

    Từ đồ thị hàm số đã cho ta thấy đường tiệm cận đứng x = 2, đường tiệm cận ngang y = - 1

    Xét hàm số y = \frac{ax - b}{x -
c} đồ thị có tiệm cận đứng x =
c và tiệm cận ngang y =
a

    suy ra c = 2;a = - 1

    Đồ thị hàm số y = \frac{ax - b}{x -
c} đi qua điểm (1;0) \Rightarrow \frac{a.1 - b}{1 - c} = 0
\Leftrightarrow a + b = 0 \Leftrightarrow b = 1

    Vậy T = - 1 + 1 + 2 = 2.

  • Câu 38: Nhận biết

    Cho bảng biến thiên như hình vẽ:

    Tìm hàm số

    Bảng biến thiên trên là của hàm số nào?

    Đồ thị hàm số đạt cực trị tại điểm x = 0 và x = 2

    => Loại đáp án C và D

    Quan sát bảng biến thiên

    => Loại đáp án B

  • Câu 39: Thông hiểu

    Cho hàm số f(x) xác định và liên tục trên đoạn \lbrack - 3;3brack và có đạo hàm f'(x) trên khoảng ( - 3;3). Đồ thị của hàm số y = f'(x) như hình vẽ sau:

    Mệnh đề nào sau đây đúng?

    Dựa vào đồ thị ta thấy f'(x) \geq0;\forall x \in ( - 2;3) và dấu “=” chỉ xảy ra tại x = 1 nên hàm số đồng biến trên khoảng ( - 2;3).

  • Câu 40: Vận dụng cao

    Cho hàm số y = \left| x^{3} - (2m +1)x^{2} + mx + m ight| với m là tham số. Giả sử S là tập hợp tất cả các giá trị nguyên của m \in \lbrack -2021;2021brack sao cho đồ thị của hàm số có 5 điểm cực trị. Tính tổng tất cả các phần tử của tập hợp S?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y = \left| x^{3} - (2m +1)x^{2} + mx + m ight| với m là tham số. Giả sử S là tập hợp tất cả các giá trị nguyên của m \in \lbrack -2021;2021brack sao cho đồ thị của hàm số có 5 điểm cực trị. Tính tổng tất cả các phần tử của tập hợp S?

    Chỗ nhập nội dung câu trả lời tự luận

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 1 Ứng dụng đạo hàm để khảo sát hàm số CTST Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 6 lượt xem
Sắp xếp theo