Cho hàm trùng phương có đồ thị như hình vẽ dưới đây:
Tìm các giá trị của tham số m để phương trình có 4 nghiệm phân biệt?
Hình vẽ minh họa
Để phương trình có 4 nghiệm phân biệt thì
.
Cho hàm trùng phương có đồ thị như hình vẽ dưới đây:
Tìm các giá trị của tham số m để phương trình có 4 nghiệm phân biệt?
Hình vẽ minh họa
Để phương trình có 4 nghiệm phân biệt thì
.
Gọi lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số
trên đoạn
. Giá trị biểu thức
là:
Ta có: nên hàm số đồng biến trên
.
Cho hàm số có bảng biến thiên như sau:
Số nghiệm của phương trình là:
Ta có:
Số nghiệm của phương trình là số giao điểm của đồ thị hàm số với đường thẳng
Phương trình (*) có 1 nghiệm
Phương trình (**) có 2 nghiệm
=> Số nghiệm của phương trình là 3 nghiệm
Cho hàm số với
là tham số. Biết rằng giá trị nhỏ nhất của hàm số đã cho trên
bằng
. Khi đó giá trị lớn nhất của hàm số đó là:
Ta có: do xét trên
nên nhận
Vì
Từ đó .
Cho hàm số . Có bao nhiêu giá trị nguyên dương của tham số
luôn đồng biến trên
?
Ta có:
Khi đó:
Do nguyên dương nên
.
Vậy có 1 giá trị của tham số m thỏa mãn yêu cầu bài toán.
Tổng số đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số là:
Tập xác định suy ra đồ thị hàm số không có tiệm cận ngang.
Suy ra không là đường tiệm cận đứng của đồ thị hàm số.
Suy ra là đường tiệm cận đứng của đồ thị hàm số.
Vậy đồ thị hàm số có 1 đường tiệm cận.
Gọi lần lượt là số đường tiệm cận ngang và tiệm cận đứng của đồ thị hàm số
. Khẳng định nào sau đây đúng?
Tập xác định
Đồ thị hàm số không có tiệm cận ngang.
ta có
là tiệm cận đứng.
ta có:
là tiệm cận đứng.
Vậy .
Cho hàm số liên tục trên tập số thực và có bảng biến thiên như sau:
Hỏi có bao nhiêu giá trị nguyên của tham số để phương trình
có đúng ba nghiệm phân biệt?
Ta có:
Để phương trình có ba nghiệm phân biệt
Vậy có đúng một giá trị nguyên của tham số m thỏa mãn yêu cầu bài toán.
Cho hàm số có đạo hàm trên
. Biết rằng hàm số
có đồ thị như sau:
Đặt . Hỏi hàm số
có bao nhiêu điểm cực trị?
Hàm số có đạo hàm trên
nên
cũng có đạo hàm trên
Ta có:
Dựa vào đồ thị ta có:
suy ra
là ba nghiệm phân biệt và
Bảng biến thiên của hàm
Vậy hàm số có 3 điểm cực trị.
Có bao nhiêu giá trị nguyên của tham số để đồ thị hàm số
có đúng một tiệm cận đứng?
Đồ thị hàm số có đúng một tiệm cận đứng khi và chỉ khi phương trình
có đúng một nghiệm
Ta có:
Xét hàm số ta có:
Ta có bảng biến thiên như sau:
Từ bảng biến thiên suy ra
Mà nên
Vậy có tất cả 6 giá trị nguyên của tham số m thỏa mãn yêu cầu bài toán.
Cho hàm số là hàm đa thức có đạo hàm
. Số điểm cực trị của hàm số là:
Ta có:
Ta có bảng biến thiên như sau:
Vậy hàm số có hai điểm cực trị.
Cho hàm số có đạo hàm
. Hàm số
đồng biến trên khoảng nào sau đây?
Ta có bảng xét dấu:
Từ bảng xét dấu trên ta có hàm số đồng biến trên
.
Tất cả các giá trị của tham số để hàm số
đạt cực đại tại
là:
Ta có:
Ta thấy hệ số nên nếu hàm số có ba cực trị thì hàm số có hai cực đại và một cực tiểu nên không thể đạt cực đại tại
.
Để hàm số đạt cực đại tại thì hàm số có một cực trị hay phương trình
vô nghiệm hoặc có nghiệm kép
.
Cho hàm số xác định trên
và có đạo hàm
trong đó
. Hàm số
đồng biến trên khoảng nào?
Ta có:
Vì nên
Suy ra hàm số đồng biến trên .
Độ giảm huyết áp của một bệnh nhân trong đó
là số miligam thuộc được tiêm cho bệnh nhân
. Để bệnh nhân đó có huyết áp giảm nhiều nhất thì liều lượng thuốc cần tiêm vào là:
Ta có:
Ta có bảng biến thiên như sau:
Vậy để bệnh nhân đó có huyết áp giảm nhiều nhất thì lượng thuốc cần tiêm vào là .
Cho hàm số xác định và liên tục trên
và có bảng biến thiên như hình vẽ:
Tìm giá trị của tham số thực để phương trình
có ít nhất hai nghiệm thực phân biệt?
Phương trình có ít nhất hai nghiệm thực phân biệt khi và chỉ khi đường thẳng
cắt đồ thị hàm số
tại ít nhất hai điểm phân biệt
Gọi K là tập hợp các giá trị nguyên của tham số để bất phương trình
nghiệm đúng với mọi
. Số các phần tử của tập hợp K là:
Đặt
Bất phương trình đã cho trở thành
Yêu cầu bài toán tương đương với bất phương trình (*) nghiệm đúng với mọi
Xét hàm số
Vì
Do đó bất phương trình (*) nghiệm đúng với mọi khi và chỉ khi
Mặt khác m là số nguyên thuộc [0; 2019] nên
Cho hàm số . Mệnh đề nào sau đây đúng?
Ta có:
Ta có bảng xét dấu:
Quan sát bảng xét dấu ta thấy:
+ Hàm số đồng biến trên các khoảng (-∞; 0) và (2; +∞)
+ Hàm số nghịch biến trên các khoảng (0; 2)
Đồ thị hàm số có bao nhiêu đường tiệm cận?
Điều kiện xác định
Vậy
Xét
Vậy là tiệm cận ngang của đồ thị hàm số.
Xét
Vậy là tiệm cận ngang của đồ thị hàm số.
Vì không tồn tại nên đồ thị hàm số đã cho không có tiệm cận đứng.
Vậy đồ thị hàm số có 2 tiệm cận.
Tập hợp tất cả các giá trị của tham số để hàm số
nghịch biến trên
là:
Đặt
Điều kiện xác định
Xét hàm ta có:
Ta có bảng biến thiên
Từ bảng biến thiên ta thấy hàm số nghịch biến trên khoảng
và
Khi đó yêu cầu bài toán đồng biến trên
Điều kiện xác định
Ta có:
Để hàm số đồng biến trên thì
Vậy đáp án cần tìm là
Cho hàm số có đồ thị như hình vẽ như sau:
Xét tính đúng sai của các khẳng định sau:
a) Hàm số đã cho nghịch biến trên khoảng . Đúng||Sai
b) Hàm số đã cho đồng biến trên khoảng . Sai|| Đúng
c) Hàm số đã cho đồng biến trên khoảng . Đúng||Sai
d) Hàm số đạt cực tiểu tại .Sai|| Đúng
Cho hàm số có đồ thị như hình vẽ như sau:
Xét tính đúng sai của các khẳng định sau:
a) Hàm số đã cho nghịch biến trên khoảng . Đúng||Sai
b) Hàm số đã cho đồng biến trên khoảng . Sai|| Đúng
c) Hàm số đã cho đồng biến trên khoảng . Đúng||Sai
d) Hàm số đạt cực tiểu tại .Sai|| Đúng
Ta có thể từ đồ thị thiết lập lại bảng biến thiên như sau:
a) Hàm số nghịch biến trên khoảng .
b) Hàm số đồng biến trên khoảng nên khẳng định đồng biến trên khoảng
là sai.
c) Hàm số đồng biến trên khoảng nên nên hàm số đồng biến trên khoảng
.
d) Hàm số đạt cực tiểu tại (chú ý:
gọi là giá trị cực tiểu).
Cho hàm số xác định và liên tục trên
có bảng biến thiên như sau:
Khẳng định nào sau đây đúng?
Từ bảng biến thiên ta có:
suy ra đồ thị hàm số có tiệm cận ngang
suy ra đồ thị hàm số có tiệm cận đứng
Vậy khẳng định đúng: " Đồ thị hàm số có tiệm cận đứng và tiệm cận ngang
”.
Cho hàm số bậc ba có đồ thị như hình vẽ bên.
Tổng số đường tiệm cận ngang và tiệm cận đứng của đồ thị hàm số là bao nhiêu?
Đáp án: 6
Cho hàm số bậc ba có đồ thị như hình vẽ bên.
Tổng số đường tiệm cận ngang và tiệm cận đứng của đồ thị hàm số là bao nhiêu?
Đáp án: 6
Ta có:
Dựa vào đồ thị hàm số, ta thấy:
(1) có nghiệm (nghiệm đơn) và
(nghiệm kép)
(2) có nghiệm ba nghiệm đơn với
Hàm số
có tập xác định
+) Tìm tiệm cận ngang:
Vì
Nên Đồ thị hàm số
nhận đường thẳng
làm TCN.
+) Tìm tiệm cận đứng:
Tại các điểm mẫu của
nhận giá trị bằng 0 còn tử nhận các giá trị khác 0.
Và do hàm số xác định trên nên giới hạn một bên của hàm số
tại các điểm
là các giới hạn vô cực.
Do đó, đồ thị hàm số có 5 TCĐ:
và
.
Vậy ĐTHS có 6 đường tiệm cận: 1
và
TCĐ
.
Cho hàm số có đồ thị là đường cong như hình vẽ:
Tìm số nghiệm của phương trình ?
Ta có:
Số nghiệm của phương trình bằng số giao điểm của hàm số và đường thẳng
Quan sát đồ thị hàm số ta thấy hai đồ thị hàm số cắt nhau tại 3 điểm nên phương trình có ba nghiệm.
Cho hàm số có đồ thị như hình vẽ sau:
Khi đó, giá trị lớn nhất của hàm số trên
là:
Đặt
Cho hàm số . Tọa độ điểm cực tiểu của đồ thị hàm số là:
Ta có:
Vậy điểm cực tiểu của đồ thị hàm số là (1; 0)
Cho hàm số . Gọi
là tập hợp tất cả các giá trị nguyên của tham số
để giá trị lớn nhất của hàm số trên đoạn
không vượt quá 7. Hỏi tập
có bao nhiêu phần tử là số nguyên?
Cho hàm số . Gọi
là tập hợp tất cả các giá trị nguyên của tham số
để giá trị lớn nhất của hàm số trên đoạn
không vượt quá 7. Hỏi tập
có bao nhiêu phần tử là số nguyên?
Đồ thị hàm số cắt trục tung tại điểm:
Ta có:
Vậy đồ thị hàm số cắt trục tung tại điểm
.
Một sợi dây kim loại dài 120cm được cắt thành hai đoạn. Đoạn dây thứ nhất được uốn thành hình vuông, đoạn dây thứ hai được uốn thành vòng tròn như hình vẽ:
Tổng diện tích của hình vuông và hình tròn đạt giá trị nhỏ nhất bằng bao nhiêu? (Kết quả làm tròn đến hàng đơn vị).
Một sợi dây kim loại dài 120cm được cắt thành hai đoạn. Đoạn dây thứ nhất được uốn thành hình vuông, đoạn dây thứ hai được uốn thành vòng tròn như hình vẽ:
Tổng diện tích của hình vuông và hình tròn đạt giá trị nhỏ nhất bằng bao nhiêu? (Kết quả làm tròn đến hàng đơn vị).
Xác định tâm đối xứng của đồ thị hàm số ?
Ta có:
suy ra tiệm cận ngang là
suy ra tiệm cận đứng là
Tâm đối xứng của đồ thị hàm số là .
Giá trị lớn nhất của hàm số trên đoạn
bằng:
Ta có:
Khi đó
Đồ thị hàm số nào sau đây nhận điểm làm tâm đối xứng?
Đồ thị hàm số có tiệm cận đứng là đường thẳng
và tiệm cận ngang là
suy ra giao điểm của hai đường tiệm cận là
Vậy điểm là tâm đối xứng của đồ thị hàm số
.
Tìm để hàm số
đồng biến trên khoảng
?
Điều kiện xác định:
Ta có:
Hàm số đồng biến trên
khi và chỉ khi
Vậy đáp án cần tìm là
Hàm số nào sau đây có cực trị?
Hàm số có
suy ra hàm số không có cực trị.
Hàm số có
và
đổi dấu đi qua
suy ra hàm số có cực trị tại điểm
.
Hàm số có
suy ra hàm số không có cực trị.
Hàm số có
với
suy ra hàm số không có cực trị.
Cho hàm số . Hàm số
có đồ thị như hình vẽ:
Hàm số nghịch biến trên khoảng nào?
Ta có:
Vậy hàm số nghịch biến trên khoảng
.
Cho hàm số với
là tham số. Hỏi có bao nhiêu giá trị nguyên của tham số
để hàm số
có đúng ba điểm cực trị?
Cho hàm số với
là tham số. Hỏi có bao nhiêu giá trị nguyên của tham số
để hàm số
có đúng ba điểm cực trị?
Cho hàm số f(x) liên tục trên và có bảng biến thiên của đạo hàm như sau:
Hàm số có bao nhiêu điểm cực trị?
Xét hàm số , ta có bảng giá trị |t(x)|
Ta có:
Hàm số không có đạo hàm tại điểm
Tại mọi điểm ta có:
=>
Dựa vào bảng giá trị hàm |t| suy ra:
+ Phương trình (1), (2) vô nghiệm
+ Phương trình (3) có 4 nghiệm phân biệt khác 0
+ Phương trình (4) có hai nghiệm phân biệt khác 0 và khác các nghiệm của phương trình (3)
=> g’(x) = 0 có 7 nghiệm và qua các nghiệm này g’(x) đều đổi dấu
Từ (*) ta thấy g’(x) cũng đổi dấu khi x đi qua 2 điểm
Vậy hàm số g(x) có 9 điểm cực trị.
Hàm số đồng biến trên khoảng nào dưới dây?
Tập xác định
Ta có:
Ta có bảng xét dấu
Vậy hàm số đồng biến trên khoảng
Cho hàm số . Trong các khẳng định sau, khẳng định nào là khẳng định đúng?
Điều kiện
Từ điều kiện ta có:
Đồ thị hàm số không có tiệm cận đứng
Mặt khác
=> y = 0 là tiệm cận ngang của đồ thị hàm số
Không tồn tại
Vậy đồ thị hàm số không có tiệm cận đứng và có đúng một tiệm cận ngang
Cho hàm số có bảng biến thiên như sau:
Giá trị nhỏ nhất của hàm số đã cho trên đoạn bằng bao nhiêu?
Giá trị nhỏ nhất của hàm số đã cho trên đoạn bằng
.