Biến cố chắc chắn kí hiệu là gì?
Biến cố chắc chắn kí hiệu là
Biến cố chắc chắn kí hiệu là gì?
Biến cố chắc chắn kí hiệu là
Một tổ học sinh lớp 10A có 7 học sinh nam và 5 học sinh nữ. Giáo viên chọn ngẫu nhiên 4 học sinh trong tổ đó để tham gia đội tình nguyện. Tính xác suất để bốn học sinh được chọn đều là nữ?
Số phần tử không gian mẫu là:
Gọi A là biến cố: “Bốn học sinh được chọn đều là nữ”
Vậy xác suất của biến cố A là:
Phát biểu nào sau đây đúng?
Nếu một biến cố có xác suất rất bé thì trong một phép thử, biến cố đó sẽ không xảy ra.
Trong một chiếc hộp đựng 5 quả cầu xanh, 4 quả cầu đỏ và 3 quả cầu vàng. Chọn ngẫu nhiên 3 quả cầu. Tính xác suất của biến cố “3 quả cầu có đủ ba màu”?
Số phần tử không gian mẫu là:
Gọi A là biến cố chọn được 3 quả có đủ ba màu.
Số phần tử của biến cố A là:
Khi đó xác suất của biến cố A là:
Gieo một đồng xu cân đối và đồng chất liên tiếp ba lần. Gọi là biến cố “Có ít nhất hai mặt sấp xuất hiện liên tiếp” và
là biến cố “Kết quả ba lần gieo là như nhau”. Hãy liệt kê các kết quả của biến cố
,
. Suy ra
.
Cho A là một biến cố liên quan đến phép thử T. Mệnh đề nào sau đây là mệnh đề đúng?
Mệnh đề đúng là: .
Một hộp chứa 2 bi xanh, 3 bi đỏ. Lấy ngẫu nhiên 3 bi. Tính xác suất để có ít nhất một bi xanh trong 3 viên.
Số phần tử của không gian mẫu là .
Gọi là biến cố lấy ít nhất 1 bi xanh.
Chọn 1 bi xanh, 2 bi đỏ, có (cách).
Chọn 2 bi xanh, 1 bi đỏ, có (cách).
Suy ra .
Xác suất cần tìm là .
Gieo một đồng tiền hai lần. Xác xuất để sau hai lần gieo thì mặt sấp xuất hiện ít nhất 1 lần là:
Gieo một đồng xu 2 lần, số kết quả của không gian mẫu là
Các kết quả thỏa mãn là: SN, NS, SS. (3 kết quả).
Vậy .
Cho tập hợp . Chọn ngẫu nhiên ba số từ tập đó. Tính xác suất để trong ba số chọn ra không có hai số nào là hai số nguyên liên tiếp.
Số phần tử không gian mẫu là .
Gọi là biến cố “Ba số chọn ra không có hai số nào là hai số nguyên liên tiếp”.
là biến cố “Ba số được chọn có ít nhất hai số là các số tự nhiên liên tiếp”.
+ Bộ ba số dạng , với
: có
bộ ba số.
+ Bộ ba số có dạng , với
: có
bộ ba số.
+ Tương tự mỗi bộ ba số dạng ,
,
,
,
,
,
đều có
bộ.
.
.
Cho đa giác đều có đỉnh. Chọn ngẫu nhiên bốn đỉnh. Tính xác suất chọn ra được hình chữ nhật có các đỉnh là
trong
đỉnh của đa giác đó?
Số phần tử của không gian mẫu là:
Ta vẽ đường tròn ngoại tiếp đa giác đều 24 đỉnh. Vẽ một đường kính của đường tròn này. Khi đó 2 nửa đường tròn đều chứa 12 đình.
Với mỗi đỉnh thuộc nửa đường tròn thứ nhất ta đều có 1 đỉnh đối xứng với nó qua đường kính và thuộc nửa đường tròn còn lại.
Như vậy cứ 2 đỉnh thuộc đường tròn thứ nhất ta xác định được hai đỉnh đối xứng với nó qua đường kính và thuộc nửa đường tròn còn lại, bốn đỉnh này tạo thành hình chữ nhật.
Vậy số hình chữ nhật tạo thành từ 4 đa giác đã cho là
Xác suất cần tìm là: .
Gieo 2 con súc sắc và gọi kết quả xảy ra là tích số hai nút ở mặt trên. Không gian mẫu có bao nhiêu phần tử?
Mô tả không gian mẫu ta có: . (18 phần tử)
Gieo một đồng xu cân đối liên tiếp bốn lần. Gọi X là biến cố “Kết quả bốn lần gieo là như nhau”. Xác định biến cố X?
Vì X là biến cố “Kết quả bốn lần gieo là như nhau” nên ta xác định được biến cố như sau:
Một nhóm học sinh lớp 10A gồm 10 học sinh trong đó có 4 học sinh nữ và 6 học sinh nam. Chọn ngẫu nhiên bốn học sinh trong nhóm để tham gia cuộc thi hùng biện. Xác suất để cả bốn bạn được chọn đều là nữ bằng:
Số phần tử không gian mẫu là:
Số kết quả thuận lợi cho biến cố: “Cả bốn bạn được chọn đều là nữ” bằng:
Vậy xác suất của biến cố ”Cả bốn bạn được chọn đều là nữ” bằng:
Gieo ba con súc sắc cân đối đồng chất. Tính xác suất để số chấm xuất hiện trên ba con súc sắc như nhau.
Số phần tử của không gian mẫu là
Gọi là biến cố
Số chấm xuất hiện trên ba con súc sắc như nhau
. Ta có các trường hợp thuận lợi cho biến cố
là
Suy ra
Vậy xác suất cần tính .
Gieo 3 đồng tiền. Phép thử ngẫu nhiên này có không gian mẫu là:
Liệt kê các phần tử: .
Một cái túi chứa 3 viên bi đỏ và 5 bi xanh, 6 viên bi vàng. Chọn ngẫu nhiên 3 viên bi. Xác suất để 3 viên bi có cả ba màu đỏ, xanh, vàng là:
Chọn ngẫu nhiên ba viên bi =>
Gọi A là biến cố lấy được ba viên bi có cả ba màu. Khi đó:
=> Xác suất để 3 viên bi có cả ba màu là:
Có tấm thẻ được đánh số từ
đến
. Chọn ngẫu nhiên ra
tấm thẻ. Hãy tính xác suất để có
tấm thẻ mang số lẻ,
tấm thẻ mang số chẵn trong đó chỉ có đúng
tấm thẻ mang số chia hết cho
.
Không gian mẫu là cách chọn tấm thể trong
tấm thẻ.
Suy ra số phần tử của không mẫu là .
Gọi là biến cố
tấm thẻ mang số lẻ,
tấm thẻ mang số chẵn trong đó chỉ có đúng
tấm thẻ mang số chia hết cho
. Để tìm số phần tử của
ta làm như sau
● Đầu tiên chọn tấm thẻ trong
tấm thẻ mang số lẻ, có
cách.
● Tiếp theo chọn tấm thẻ trong
tấm thẻ mang số chẵn (không chia hết cho
), có
cách.
● Sau cùng ta chọn trong
tấm thẻ mang số chia hết cho
, có
cách.
Suy ra số phần tử của biến cố là
.
Vậy xác suất cần tính .
Lấy ngẫu nhiên đồng thời 3 quả cầu từ hộp chứa 9 quả cầu đỏ và 6 quả cầu xanh. Tính xác suất để lấy được 3 quả cầu màu xanh?
Ta có:
Gọi A là biến cố “lấy được 3 quả cầu màu xanh”
Vậy .
Cho biết:
Hộp 1: chứa 4 viên bi đỏ và 3 viên bi xanh.
Hộp 2: chứa 5 viên bi đỏ và 2 viên bi xanh.
Lấy ngẫu nhiên từ mỗi hộp 2 viên bi. Xác suất để lấy các viên bi có cùng màu bằng:
Lấy ngẫu nhiên 2 viên bi từ hộp 1 ta có:
Lấy ngẫu nhiên 2 viên bi từ hộp 2 ta có:
Ta có số phần tử không gian mẫu là:
Gọi A là biến cố các viên bi lấy ra cùng màu.
Số phần tử của biến cố A là:
Vậy xác suất cần tìm là:
Gieo một con xúc sắc cân đối và đồng chất hai lần. Tính xác suất để cả hai lần xuất hiện mặt 6 chấm.
* Số phần tử của không gian mẫu là: .
* Gọi ”Cả hai lần xuất hiện mặt sáu chấm”. Số phần tử của biến cố
là
.
* Xác suất của biến cố là
.
Trên giá sách có 4 quyển sách toán, 3 quyển sách lý, 2 quyển sách hóa. Lấy ngẫu nhiên 3 quyển sách. Xác suất để 3 quyển được lấy ra có ít nhất 1 quyển là toán là bao nhiêu?
Số cách lấy 3 quyển sách bất kì là .
Số cách lấy được 3 quyển lý là .
Số cách lấy được 2 quyển lý, 1 quyển hóa là .
Số cách lấy được 1 quyển lý, 2 quyển hóa là .
Số cách lấy 3 quyển sách mà không có sách toán là .
Suy ra số cách lấy 3 quyển sách mà có ít nhất 1 quyển sách toán là 74 cách.
Suy ra xác suất cần tìm là .
Một túi đựng 10 tấm thẻ được đánh số từ 1 đến 10. Rút ngẫu nhiên ba tấm thẻ từ túi đó. Xác suất để tổng số ghi trên ba thẻ rút được là một số chia hết cho 3 bằng:
Số cách rút ngẫu nhiên ba tấm thẻ từ túi có 10 thẻ là: cách.
Trong các số từ 1 đến 10 có ba số chia hết cho 3, bốn số chia cho 3 dư 1, ba số chia cho 3 dư 2.
Để tổng các số ghi trên ba thẻ rút được là một số chia hết cho 3 thì ba thẻ đó phải có số được ghi thỏa mãn một trong các trường hợp sau:
- Ba số đều chia hết cho 3.
- Ba số đều chia cho 3 dư 1.
- Ba số đều chia cho 3 dư 2.
- Một số chia hết cho 3, một số chia cho 3 dư 1, một số chia cho 3 dư 2.
Do đó số cách rút để tổng số ghi trên 3 thẻ rút được là một số chia hết cho 3 là (cách).
Vậy xác suất cần tìm là: .
Một bình chứa 16 viên vi, với 7 viên bi trắng, 6 viên bi đen, 3 viên bi đỏ. Lấy ngẫu nhiên 3 viên bi trong bình đó. Tính xác suất lấy được 1 viên bi trắng, 1 viên bi đen, 1 viên bi đỏ.
Số cách lấy 3 viên bi bất kì là .
Số cách lấy được 1 viên bi trắng, 1 viên bi đen, 1 viên bi đỏ là .
Suy ra xác suất cần tìm là.
Xét phép thử gieo một con súc sắc cân đối và đồng chất 6 mặt hai lần. Xét biến cố A: “Số chấm xuất hiện ở cả hai lần gieo giống nhau”. Biến cố A gồm bao nhiêu kết quả?
Gọi cặp số là số chấm xuất hiện ở hai lần gieo.
Xét biến cố A: “Số chấm xuất hiện ở cả hai lần gieo giống nhau”.
Các kết quả của biến cố A là: .
Suy ra .
Một người có đôi giày khác nhau và trong lúc đi du lịch vội vã lấy ngẫu nhiên
chiếc.
Xác suất để trong chiếc giày lấy ra có ít nhất một đôi là bao nhiêu?
Không gian mẫu là số cách chọn ngẫu nhiên chiếc giày từ
chiếc giày.
Suy ra số phần tử của không gian mẫu là .
Gọi là biến cố
chiếc giày lấy ra có ít nhất một đôi
. Để tìm số phần tử của biến cố
, ta đi tìm số phần tử của biến cố
, với biến cố
là
chiếc giày được chọn không có đôi nào.
● Số cách chọn đôi giày từ
đôi giày là
.
● Mỗi đôi chọn ra chiếc, thế thì mỗi chiếc có
cách chọn. Suy ra
chiếc có
cách chọn.
Suy ra số phần tử của biến cố là
.
Suy ra số phần tử của biến cố là
.
Vậy xác suất cần tính .
Gieo một đồng tiền cân đối và đồng chất bốn lần. Xác suất để cả bốn lần xuất hiện mặt sấp là bao nhiêu?
Mỗi lần suất hiện mặt sấp có xác suất là .
Theo quy tắc nhân xác suất: .
Lớp 12 có 9 học sinh giỏi, lớp 11 có 10 học sinh giỏi, lớp 10 có 3 học sinh giỏi. Chọn ngẫu nhiên hai trong số học sinh đó. Tính xác suất để cả hai học sinh đó cùng một lớp.
Số phần tử của không gian mẫu là .
Gọi là biến cố cả hai học sinh được chọn từ cùng một lớp.
Chọn 2 học sinh của lớp 12, có (cách).
Chọn 2 học sinh của lớp 11, có (cách).
Chọn 2 học sinh của lớp 10, có (cách).
Suy ra .
Xác suất cần tìm là .
Tại khoa truyền nhiễm của bệnh viện A có 12 bác sĩ và tỉ lệ bác sĩ nam và bác sĩ nữ bằng nhau. Chọn ngẫu nhiên 6 bác sĩ trong khoa để lập đoàn kiểm tra truyền nhiễm trong khu vực B. Tính xác suất để 6 bác sĩ được chọn có số bác sĩ nam bằng số bác sĩ nữ?
Số phần tử không gian mẫu là:
Số kết quả thuận lợi cho biến cố A: “6 bác sĩ được chọn có số bác sĩ nam bằng số bác sĩ nữ” là:
Vậy xác suất của biến cố A cần tìm là:
Gieo một con súc sắc. Xác suất để mặt chấm xuất hiện là:
Gieo một con súc sắc có không gian mẫu .
Xét biến cố : “mặt
chấm xuất hiện”.
.
Do đó .
Lấy ngẫu nhiên đồng thời 3 quả cầu từ trong hộp chứa 10 quả cầu đỏ và 5 quả cầu xanh. Xác suất để ba quả cầu được chọn đều là màu xanh bằng:
Số phần tử không gian mẫu là:
Gọi A là biến cố lấy được 3 quả màu xanh
Số phần tử của biến cố A là:
Vậy xác suất của biến cố A là:
Trong chiếc túi du lịch của anh X gồm 3 hộp thịt, 2 hộp cam và 3 hộp cơm. Vì một vài lí do mà những chiếc hộp đều bị mất nhãn. Anh X chọn ngẫu nhiên 3 hộp. Tính xác suất để 3 hộp có đủ 3 loại thực phẩm?
Chọn ngẫu nhiên 3 hộp từ 8 hộp ta có
Để chọn được một hộp thịt; một hộp quả và 1 hộp sữa ta có số cách chọn là:
Vậy xác suất cần tìm là: .
Cho đa giác đều 20 đỉnh nội tiếp trong đường tròn tâm . Chọn ngẫu nhiên 4 đỉnh của đa giác. Xác suất để 4 đỉnh được chọn là 4 đỉnh của một hình chữ nhật bằng bao nhiêu?
Xét phép thử: “Chọn ngẫu nhiên 4 đỉnh của đa giác đều 20 đỉnh nội tiếp trong đường tròn tâm ”
.
Gọi A là biến cố:” 4 đỉnh được chọn là 4 đỉnh của một hình chữ nhật”
Đa giác có 20 đỉnh sẽ có 10 đường chéo đi qua tâm mà cứ 2 đường chéo qua tâm sẽ có 1 hình chữ nhật nên số HCN là:
.
Gieo cùng một lúc hai con xúc xắc khác màu nhưng cân đối và đồng chất một lần. Tính xác suất để tổng số chấm xuất hiện trên hai mặt xúc xắc lớn hơn 7?
Ta có:
Các kết quả thuận lợi cho biến cố C: “tổng số chấm xuất hiện trên hai mặt xúc xắc lớn hơn 7” là:
Vậy xác suất của biến cố C là: .
Gieo ngẫu nhiên một xon xúc xắc cân đối, đồng chất 1 lần. Gọi A là biến cố “số chấm xuất hiện trên con xúc xắc bé hơn 3”. Biến cố đối của biến cố A là:
Biến cố đối của biến cố A là “Số chấm xuất hiện trên con xúc xắc không bé hơn 3.”