Mặt phẳng đi qua trục hình trụ, cắt hình trụ theo thiết diện là hình vuông cạnh bằng a. Thể tích khối trụ bằng:
Do thiết diện đi qua trục hình trụ nên ta có h=a.
Bán kính đáy . Do đó thể tích khối trụ
(đvtt).
Hãy cùng thử sức kiểm tra đánh giá các kiến thức tổng quan với bài kiểm tra phút Chương 2: Mặt trụ - Mặt nón - Mặt cầu Toán 12 các em nhé!
Mặt phẳng đi qua trục hình trụ, cắt hình trụ theo thiết diện là hình vuông cạnh bằng a. Thể tích khối trụ bằng:
Do thiết diện đi qua trục hình trụ nên ta có h=a.
Bán kính đáy . Do đó thể tích khối trụ
(đvtt).
Trong không gian , cho mặt cầu
và mặt phẳng
. Với giá trị nào của tham số
thì mặt phẳng tiếp xúc với mặt cầu?
Mặt cầu (S) có tâm và bán kính
Mặt phẳng (α) tiếp xúc với (S) khi và chỉ khi
Vậy đáp án cần tìm là: .
Cạnh bên của một hình nón bằng 2a. Thiết diện qua trục của nó là một tam giác cân có góc ở đỉnh bằng . Diện tích toàn phần của hình nón là:
Gọi S là đỉnh, O là tâm của đáy, thiết diện qua trục là SAB.
Theo giả thiết, ta có và
.
Trong tam giác SAO vuông tại O, ta có
Vậy diện tích toàn phần:
(đvdt).
Cho hình trụ có đáy là hai đường tròn tâm O và O’, bán kính bằng chiều cao và bằng a. Trên đường tròn tâm O lấy điểm A, trên đường tròn tâm O’ lấy điểm B sao cho AB = 2a. Thể tích của khối tứ diện OO’AB bằng:
Kẻ đường sinh AA’, gọi D là điểm đối xứng với A’ qua tâm O’ và H là hình chiếu của B trên A’D.
Ta có nên
.
Trong tam giác vuông A'AB có .
Trong tam giác vuông A'BD có .
Do đó suy ra tam giác BO'D nên .
Vậy (đvtt).
Trong không gian với hệ tọa độ , cho mặt cầu
. Bán kính của mặt cầu
là:
Ta có:
suy ra tâm mặt cầu là:
Bán kính mặt cầu là:
Trong không gian , cho điểm A(1;2;-1) và mặt phẳng
. Xét các mặt cầu (S) có tâm
, đi qua điểm A, tiếp xúc với mặt phẳng (P) . Tính giá trị của biểu thức
khi (S) có bán kính nhỏ nhất.
Gọi H là hình chiếu của I trên mặt phẳng (P) ta có nên R nhỏ nhất khi
thẳng hàng và I là trung điểm của AH.
Phương trình AH đi qua A và vuông góc với mặt phẳng (P) có phương trình là
Tọa độ H là nghiệm của hệ:
Suy ra, ta có:
Trong không gian với hệ tọa độ , cho điểm
. Gọi
là mặt phẳng đi qua
và cắt các trục
lần lượt tại các điểm
sao cho
là trực tâm của tam giác
. Viết phương trình mặt cầu tâm O và tiếp xúc với
.
Hình vẽ minh họa
Vì H là trực tâm tam giác ABC nên
Do vậy mặt cầu tâm O tiếp xúc với (P) nhận OH làm bán kính
⇒ Phương trình mặt cầu là .
Trong không gian , cho mặt cầu
và các điểm
. Điểm
thuộc mặt cầu
. Thể tích lớn nhất của tứ diện
bằng:
Mặt cầu có tâm là
và bán kính
.
Khi lớn nhất thì
Ta có: suy ra:
.
Cho hình nón đỉnh S, đường cao SO. Gọi A, B là hai điểm thuộc đường tròn đáy của hình nón sao cho khoảng cách từ O đến AB bằng a và . Độ dài đường sinh
của hình nón bằng:
Gọi I là trung điểm AB, suy ra và
.
Trong tam giác vuông SOA, ta có
Trong tam giác vuông SIA, ta có
Trong tam giác vuông OIA, ta có:
Một hình trụ có bán kính đáy , chiều cao hình trụ
. Một hình vuông có các đỉnh nằm trên hai đường tròn đáy sao cho có ít nhất một cạnh không song song và không vuông góc với trục hình trụ. Khi đó cạnh của hình vuông bằng bao nhiêu?
Xét hình vuông ABCD có AD không song song và không vuông góc với trục OO’ của hình trụ.
Dựng đường sinh AA', ta có .
Suy ra A’C là đường kính đáy nên
Xét tam giác vuông AA’C, ta có
Suy ra cạnh hình vuông bằng 100 cm.
Một tấm nhôm hình chữ nhật có hai kích thước là a và 2a (a là độ dài có sẵn). Người ta cuốn tấm nhôm đó thành một hình trụ. Nếu hình trụ được tạo thành có chu vi đáy bằng 2a thì thể tích của nó bằng:
Gọi bán kính đáy là R.
Hình trụ có chu vi đáy bằng 2a nên ta có .
Suy ra hình trụ này có đường cao .
Vậy thể tích khối trụ (đvtt).
Trong không gian , cho mặt cầu
có tọa độ tâm
là:
Tâm của có tọa độ là
.
Một quả bóng rổ được đặt ở một góc của căn phòng hình hộp chữ nhật, sao cho quả bóng chạm và tiếp xúc với hai bức tường và nền nhà của căn phòng đó thì có một điểm trên quả bóng có khoảng cách lần lượt đến hai bức tường và nền nhà là 17 cm, 18 cm, 21 cm (tham khảo hình minh họa). Hỏi độ dài đường kính của quả bóng bằng bao nhiêu cm, biết rằng quả bóng rổ tiêu chuẩn có đường kính từ 23 cm đến 24,5 cm? (Kết quả là tròn đến một chữ số thập phân)
Trả lời: 23,9 cm
Một quả bóng rổ được đặt ở một góc của căn phòng hình hộp chữ nhật, sao cho quả bóng chạm và tiếp xúc với hai bức tường và nền nhà của căn phòng đó thì có một điểm trên quả bóng có khoảng cách lần lượt đến hai bức tường và nền nhà là 17 cm, 18 cm, 21 cm (tham khảo hình minh họa). Hỏi độ dài đường kính của quả bóng bằng bao nhiêu cm, biết rằng quả bóng rổ tiêu chuẩn có đường kính từ 23 cm đến 24,5 cm? (Kết quả là tròn đến một chữ số thập phân)
Trả lời: 23,9 cm
Ta đặt hệ trục vào căn phòng sao cho có hai bức tường là mặt , và nền là
Vậy bài toán dẫn đến việc tìm đường kính của mặt cầu tiếp xúc với mặt phẳng toạ độ và chứa điểm
.
Ta có thể gọi phương trình mặt cầu là , với
Do mặt cầu tiếp xúc với các mặt phẳng toạ độ nên
Do nên
.
Vì quả bóng rổ tiêu chuẩn có đường kính từ 23 cm đến 24,5 cm nên thỏa.
Vậy đường kính quả bóng bằng .
Một hình nón có đường cao bằng 9 cm nội tiếp trong một hình cầu bán kính bằng 5 cm. Tỉ số giữa thể tích khối nón và khối cầu là:
Hình vẽ kết hợp với giả thiết, ta có
Suy ra và
Thể tích khối nón (đvtt).
Thể tích khối cầu (đvtt).
Suy ra
Trong không gian, cho tam giác ABC vuông tại A, AB =a và . Độ dài đường sinh
của hình nón nhận được khi quay tam giác ABC xung quanh trục AB bằng:
Từ giả thiết suy ra hình nón có đỉnh là B , tâm đường tròn đáy là A , bán kính đáy là và chiều cao hình nón là
.
Vậy độ dài đường sinh của hình nón là:
Trong không gian , , cho hai mặt cầu
có phương trình lần lượt là
và
. Gọi
là mặt phẳng thay đổi tiếp xúc với cả hai mặt cầu
. Tính khoảng cách lớn nhất từ gốc tọa độ O đến mặt phẳng
.
Hình vẽ minh họa
Mặt cầu (S1) có tâm I(2; 1; 1) và bán kính .
Mặt cầu (S2) có tâm J(2; 1; 5) và bán kính .
Gọi A, B lần lượt là hai tiếp điểm của (S1), (S2) với mặt phẳng (P).
Gọi M là giao điểm của IJ với mặt phẳng (P). Ta có:
Suy ra J là trung điểm của IM, do đó M(2; 1; 9).
Gọi véc-tơ pháp tuyến của mặt phẳng (P) là khi đó phương trình của mặt phẳng (P) là
Ta có:
Mặt khác
Áp dụng bất đẳng thức Bunhiacopxki ta có
Từ (1) và (3) ta có:
Từ (2) và (4) suy ra:
Vậy khoảng cách lớn nhất từ gốc tọa độ O đến mặt phẳng (P) bằng .
Một tấm nhôm hình chữ nhật có hai kích thước là a và 2a (a là độ dài có sẵn). Người ta cuốn tấm nhôm đó thành một hình trụ. Nếu hình trụ được tạo thành có chiều dài đường sinh bằng 2a thì bán kính đáy bằng:
Gọi bán kính đáy là R.
Từ giả thiết suy ra và chu vi đáy bằng a .
Do đó .
Cho mặt cầu và mặt phẳng
. Gọi (C) là đường tròn giao tuyến của (P) và (S). Viết phương trình mặt cầu (S') chứa (C) và điểm M(1,-2,1)
Phương trình của
(S') qua
Cho hình nón đỉnh S có bán kính đáy , góc ở đỉnh bằng
. Diện tích xung quanh của hình nón bằng:
Theo giả thiết, ta có và
.
Suy ra độ dài đường sinh:
Vậy diện tích xung quanh bằng: (đvdt).
Cho hình nón có bán kính đáy là , độ dài đường sinh là
. Thể tích khối cầu nội tiếp hình nón bằng:
Xét mặt phẳng qua trục SO của hình nón ta được thiết diện là tam giác cân SAB.
Mặt phẳng đó cắt mặt cầu theo đường tròn có bán kính r (bán kính mặt cầu) và nội tiếp trong tam giác cân SAB.
Trong tam giác vuông SOB, gọi I là giao điểm của đường phân giác trong góc B với đường thẳng SO.
Chứng minh được I là tâm đường tròn nội tiếp tam giác và bán kính (E là hình chiếu vuông góc của I trên SB).
Theo tính chất phân giác, ta có .
Lại có .
Từ đó suy ra .
Ta có nên
Thể tích khối cầu: (đvtt).
Trong không gian cho mặt cầu
Đường kính của
bằng
Ta có bán kính của là
nên đường kính của
bằng
.
Cho hình chóp có đáy
là hình chữ nhật với
. Cạnh bên SA vuông góc với đáy và góc giữa SC với đáy bằng
. Gọi N là trung điểm SA, h là chiều cao của khối chóp
và R là bán kính mặt cầu ngoại tiếp khối chóp
. Biểu thức liên hệ giữa R và h là:
Ta có .
Trong , ta có
Ta có .
Mặt khác, ta lại có .
Do đó hai điểm A, B cùng nhìn đoạn dưới một góc vuông nên hình chóp N.ABC nội tiếp mặt cầu tâm J là trung điểm NC, bán kính
.
Cho hình nón có đỉnh S, đường cao SO = h, đường sinh SA. Nội tiếp hình nón là một hình chóp đỉnh S, đáy là hình vuông ABCD cạnh a. Nửa góc ở đỉnh của hình nón có tan bằng:
Nửa góc ở đỉnh của hình nón là góc .
Hình vuông ABCD cạnh a nên suy ra:
Trong tam giác vuông SOA, ta có .
Hình nón có đường sinh và hợp với đáy góc
. Diện tích toàn phần của hình nón bằng:
Theo giả thiết, ta có
và
.
Suy ra:
.
Vậy diện tích toàn phần của hình nón bằng: (đvdt).
Cho một hình trụ có bán kính đáy bằng R và có chiều cao bằng . Hai điểm A, B lần lượt nằm trên hai đường tròn đáy sao cho góc giữa AB và trục của hình trụ bằng
. Khoảng cách giữa AB và trục của hình trụ bằng:
Từ hình vẽ kết hợp với giả thiết, ta có .
Gọi AA’ là đường sinh của hình trụ thì và
.
Vì nên
Gọi H là trung điểm A’B, suy ra
nên .
Tam giác ABA’ vuông tại A’ nên
Suy ra tam giác A’BO đều có cạnh bằng R nên
Trong không gian với hệ tọa độ , mặt phẳng
cắt mặt cầu
theo giao tuyến là đường tròn có diện tích là:
Mặt cầu có tâm
và bán kính
Khoảng cách từ đến (P):
Bán kính đường tròn giao tuyến
Diện tích đường tròn giao tuyến .
Cho hình trụ có chiều cao bằng 8a . Biết hai điểm A và C lần lượt nằm trên hai đáy thỏa mãn , khoảng cách giữa AC và trục của hình trụ bằng 4a. Thể tích của khối trụ đã cho là:
Gọi (O) và (O') lần lượt là hai đường tròn đáy; .
Dựng AD, CB lần lượt song song với OO' . Dễ dàng có ABCD là hình chữ nhật.
Do .
Gọi H là trung điểm của DC.
.
Ta có .
Suy ra .
Vậy thể tích của khối trụ là .
Cho hình nón tròn xoay có chiều cao bằng 2a, bán kính đáy bằng 3a. Một thiết diện đi qua đỉnh của hình nón có khoảng cách từ tâm của đáy đến mặt phẳng chứa thiết diện bằng . Diện tích của thiết diện đó bằng?
Xét hình nón đỉnh S có chiều cao , bán kính đáy
.
Thiết diện đi qua đỉnh của hình nón là tam giác SAB cân tại S.
Gọi I là trung điểm của đoạn thẳng AB. Trong tam giác SOI, kẻ
Ta có:
Xét tam giác SOI vuông tại O, ta có
.
Xét tam giác AOI vuông tại I, có:
Vậy diện tích của thiết diện là:
.
Trong không gian với hệ tọa độ , cho mặt cầu
. Đường thẳng d cắt mặt cầu
tại hai điểm
. Biết tiếp diện của
tại
vuông góc. Tính độ dài
.
Hình vẽ minh họa
Mặt cầu (S) có tâm , bán kính R = 5. Xét mặt phẳng (P) chứa d cắt giao tuyến của hai tiếp diện tại O.
Ta có tứ giác OIAB là hình vuông.
Suy ra .
Trong không gian với hệ tọa độ , cho mặt phẳng
và mặt cầu
tâm
, bán kính
. Từ một điểm
thuộc mặt phẳng
kẻ một đường thẳng tiếp xúc với mặt cầu
tại
. Tính
biết
.
Hình vẽ minh họa
Khoảng cách từ điểm I đến mặt phẳng (P) là
Vì AB tiếp xúc với tại B nên tam giác AIB vuông tại B, do đó ta có:
Đường thẳng IA đi qua có vectơ chỉ phương là
nên có phương trình là:
Do nên
Vậy A(3; 1; 1) nên .
Cho mặt cầu và mặt phẳng
. Gọi (C) là đường tròn giao tuyến của (P) và (S). Tính tọa độ tâm H của (C).
Theo đề bài, mặt cầu (S) có tâm và vecto pháp tuyến của
Trong không gian, cho hình chữ nhật ABCD có và
. Gọi M, N lần lượt là trung điểm của AD và BC. Quay hình chữ nhật đó xung quanh trục MN , ta được một hình trụ. Diện tích toàn phần của hình trụ bằng:
Theo giả thiết ta được hình trụ có chiều cao , bán kính đáy
Do đó diện tích toàn phần:
Bán kính đáy hình trụ bằng 4 cm, chiều cao bằng 6cm. Độ dài đường chéo của thiết diện qua trục bằng:
Thiết diện qua trục của một hình trụ là một hình chữ nhật có hai cạnh lần lượt bằng đường kính đáy và chiều cao của hình trụ.
Vậy hai cạnh của hình chữ nhật là 8 cm và 6 cm.
Do đó độ đài đường chéo:
Cho hình trụ có hai đáy là hai hình tròn (O) và (O’), chiều cao và bán kính đáy R. Một hình nón có đỉnh là O’ và đáy là hình tròn (O;R). Tỉ số diện tích xung quanh của hình trụ và hình nón bằng:
Diện tích xung quanh của hình trụ:
(đvdt).
Kẻ đường sinh O’M của hình nón, suy ra
.
Diện tích xung quanh của hình nón: (đvdt).
Vậy .
Cho hình nón đỉnh S có đáy là hình tròn tâm O. Một mặt phẳng đi qua đỉnh của hình nón và cắt hình nón theo thiết diện là một tam giác vuông có diện tích bằng
. Góc giữa trục
và mặt phẳng
bằng
. Diện tích xung quanh của hình nón đã cho bằng?
Gọi là trung điểm của
, tam giác
cân đỉnh O nên
và
suy ra
Dựng .
Theo trên có nên
.
Vậy góc tạo bởi giữa trục và mặt phẳng
là
. Tam giác vuông cân
có diện tích bằng
suy ra
.
Xét tam giác vuông có
.
Cuối cùng .
Vậy diện tích xung quanh của hình nón bằng .
Trong không gian với hệ toạ độ , cho điểm
. Gọi
là hình chiếu vuông góc của
trên trục
. Phương trình nào dưới đây là phương trình mặt cầu tâm
bán kính
?
Hình chiếu vuông góc của trên
là:
Suy ra phương trình mặt cầu tâm bán kính
là:
.
Cho hình nón đỉnh S có đáy là hình tròn tâm O, bán kính R. Dựng hai đường sinh SA và SB, biết AB chắn trên đường tròn đáy một cung có số đo bằng , khoảng cách từ tâm O đến mặt phẳng (SAB) bằng
. Đường cao h của hình nón bằng:
Theo giả thiết ta có tam giác OAB đều cạnh R.
Gọi E là trung điểm AB, suy ra và
.
Gọi H là hình chiếu của O trên SE, suy ra .
Ta có
Từ đó suy ra nên
Trong tam giác vuông SOE, ta có
Trong không gian , cho điểm A(0; 1; 2), mặt phẳng
và mặt cầu
. Gọi
là mặt phẳng đi qua
, vuông góc với
và đồng thời
cắt mặt cầu
theo giao tuyến là một đường tròn có bán kính nhỏ nhất. Tọa độ giao điểm
của
và trục
là
Gọi (C) là giao tuyến của mặt phẳng và mặt cầu (S) và (C) có tâm H, bán kính r.
Bán kính r của đường tròn là nhỏ nhất khi và chỉ khi IH lớn nhất khi và chỉ khi lớn nhất.
Vì nên gọi M(m; 0; 0).
Suy ra mặt phẳng (P) chứa AM và (P) ⊥ (α).
Khi đó
Mà mặt phẳng (P) đi qua A nên phương trình của mặt phẳng (P) là:
hay
Ta có:
lớn nhất khi và chỉ khi
đạt giá trị nhỏ nhất
Mà
Do đó nhỏ nhất khi và chỉ khi
Vậy .
Trong không gian với hệ trục tọa độ , cho mặt cầu
. Bán kính của mặt cầu
là:
Ta có:
suy ra tâm mặt cầu là:
Bán kính mặt cầu là:
Cho đường tròn (C) đường kính AB và đường thẳng . Để hình tròn xoay sinh bởi (C) khi quay quanh
là một mặt cầu thì cần có thêm điều kiện nào sau đây:
Điều kiện để hình tròn xoay sinh bởi (C) khi quay quanh là một mặt cầu là trục quay
phải cố định và hai điểm A, B cũng cố định trên
.