Diện tích hình phẳng giới hạn bởi các đường , trục hoành,
và
bằng
Hình vẽ minh họa
Phương trình hoành độ giao điểm
Diện tích hình giới hạn là
Diện tích hình phẳng giới hạn bởi các đường , trục hoành,
và
bằng
Hình vẽ minh họa
Phương trình hoành độ giao điểm
Diện tích hình giới hạn là
Tính diện tích của hình phẳng giới hạn bởi đồ thị hàm số
trục hoành và hai đường thẳng
.
Diện tích hình phẳng được tính như sau:
.
Họ các nguyên hàm của hàm số là:
Ta có:
Tìm họ nguyên hàm của hàm số
Ta có:
Nếu . Khi đó
bằng:
Ta có: .
Trong không gian với hệ tọa độ , cho khối cầu
, mặt phẳng
có phương trình
cắt khối cầu
thành hai phần. Tính thể tích của phần không chứa tâm của mặt cầu
.
Trong không gian với hệ tọa độ , cho khối cầu
, mặt phẳng
có phương trình
cắt khối cầu
thành hai phần. Tính thể tích của phần không chứa tâm của mặt cầu
.
Cho hàm số đồng biến và có đạo hàm cấp hai trên đoạn
và thỏa mãn
với
. Biết rằng
khi đó tích phân
bằng:
Ta có:
Theo bài ra ta có:
Họ nguyên hàm của hàm số là:
Ta có:
Cho biết với
. Tính
?
Xét trên đoạn ta có:
Xét . Đặt
Xét . Đặt
Vậy .
Cho hàm số có đạo hàm với mọi
và
. Giá trị của
bằng:
Ta có:
Cho và đặt
. Khẳng định nào sau đây sai?
Ta có:
Đặt
Đổi cận từ đó ta có:
Vậy khẳng định sai là: .
Cho là nguyên hàm của hàm số
thỏa mãn
. Tổng các nghiệm của phương trình
là:
Ta có:
Đặt
Theo bài ra ta có:
Ta có:
Vậy tổng các nghiệm của phương trình bằng 2.
Cho hàm số . Gọi
là diện tích hình phẳng giới hạn bởi đồ thị hàm số
và trục hoành. Mệnh đề nào sau đây sai?
Phương trình hoành độ giao điểm:
Diện tích hình phẳng cần tìm là:
((do trong khoảng (0; 1) và (1; 2) phương trình
vô nghiệm)
Vậy mệnh đề sai là: .
Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số và đường thẳng
?
Xét các phương trình hoành độ giao điểm:
Diện tích S của hình phẳng (H) là:
Cho hai hàm số và
. Biết
là các số thực để
là một nguyên hàm của
. Tính
?
Từ giả thiết ta có:
Đồng nhất hai vế ta có: .
Tính tích phân ?
Ta có:
Cho hàm số có đạo hàm liên tục trên
,
và thỏa mãn hệ thức
với
. Giá trị của
là:
Ta có:
Mặt khác
Vậy
Vì .
Cho hàm số liên tục và có đạo hàm trên
thỏa mãn
. Biết rằng
trong đó
. Kết luận nào sau đây đúng?
Ta có:
.
Tính . Đặt
khi đó:
Theo bài ra ta có:
Tính tích phân ?
Ta có:
Cho hàm số liên tục trên đoạn
và
là một nguyên hàm của
. Biết rằng
. Xác định tích phân
?
Ta có: .
Kí hiệu S là diện tích hình phẳng giới hạn bởi đồ thị hàm số , trục hoành, đường thẳng
như hình vẽ sau:
Hỏi khẳng định nào dưới đây là khẳng định đúng?
Dựa vào hình biểu diễn hình phẳng giới hạn bởi đồ thị hàm số trục hoành, đường thẳng
ta có:
.
Cho hình phẳng giới hạn bởi đồ thị hàm số
và các đường thẳng
. Thể tích
của khối tròn xoay sinh ra khi cho hình phẳng
quay quanh trục?
Thể tích V của khối tròn xoay sinh ra khi cho hình phẳng quay quanh trục
là:
.
Biết rằng . Xác định
?
Ta có:
Do đó:
Cho hàm số xác định trên
thỏa mãn
và
. Phương trình tiếp tuyến của đồ thị hàm số
tại giao điểm với trục hoành là:
Ta có:
Lấy nguyên hàm hai vế ta được:
Lại có
Từ đó suy ra
Xét phương trình hoành độ giao điểm
Ta có:
Phương trình tiếp tuyến tại giao điểm với trục hoành là
Gọi là một nguyên hàm của hàm số
, thỏa mãn
. Tính giá trị biểu thức
?
Ta có:
là một nguyên hàm của hàm số
, ta có:
mà
Cho hàm số có một nguyên hàm là
thỏa mãn
và
liên túc trên
. Giá trị biểu thức
bằng:
Ta có:
Vì hàm số liên tục trên
nên liên tục tại
tức là
Do đó
Cho hình phẳng được giới hạn bởi đồ thị các hàm số
. Tính diện tích hình phẳng
?
Cho hình phẳng được giới hạn bởi đồ thị các hàm số
. Tính diện tích hình phẳng
?
Cho hàm số là hàm số chẵn, liên tục trên đoạn
và
. Tính tích phân
?
Cho hàm số là hàm số chẵn, liên tục trên đoạn
và
. Tính tích phân
?
Thành phố định xây cây cầu bắc ngang con sông dài , biết rằng người ta định xây cầu có 10 nhịp cầu hình dạng parabol, biết hai bên đầu cầu và giữa mối nhịp nối người ta xây một chân trụ rộng
khoảng cách giữa 2 chân trụ liên tiếp là
. Bề dày nhịp cầu không đổi là
. Biết một nhịp cầu như hình vẽ. Hỏi lượng bê tông để xây các nhịp cầu là bao nhiêu
? (kết quả làm tròn đến hàng đơn vị)
Đáp án: 40 m3.
Thành phố định xây cây cầu bắc ngang con sông dài , biết rằng người ta định xây cầu có 10 nhịp cầu hình dạng parabol, biết hai bên đầu cầu và giữa mối nhịp nối người ta xây một chân trụ rộng
khoảng cách giữa 2 chân trụ liên tiếp là
. Bề dày nhịp cầu không đổi là
. Biết một nhịp cầu như hình vẽ. Hỏi lượng bê tông để xây các nhịp cầu là bao nhiêu
? (kết quả làm tròn đến hàng đơn vị)
Đáp án: 40 m3.
Cả hai bên cầu có tất cả nhịp cầu.
Chọn hệ trục tọa độ như hình vẽ với gốc là chân cầu, đỉnh
, điểm
Gọi Parabol phía trên có phương trình: (vì
)
là phương trình parabol phía dưới
(Vì bề dày nhịp cầu là )
Ta có
Khi đó diện tích S của mỗi nhịp cầu là diện tích phần hình phẳng giới hạn bởi và trục Ox nên ta có:
Vì bề dày nhịp cầu không đổi nên thể tích của mỗi nhịp cầu là
Suy ra lượng bê tông cần cho 20 nhịp của cả hai bên cầu (mỗi bên 10 nhịp cầu) là
Cho hàm số có đạo hàm
liên tục trên
;
. Tính giá trị
?
Ta có:
Một ô tô đang chuyển động đều với vận tốc thì người lái đạp phanh; từ thời điểm đó ô tô chuyển động chậm dần đều với vận tốc
(trong đó
là thời gian tính bằng giây, kể từ lúc đạp phanh). Hỏi trong thời gian
giây cuối (tính đến khi xe dừng hẳn) thì ô tô đi được quãng đường bằng bao nhiêu?
Khi dừng hẳn
Khi đó trong 8s trước khi dừng hẳn vật di chuyển được (bao gồm 2s trước khi đạp phanh):
Tìm nguyên hàm của hàm số .
Ta có
Họ nguyên hàm của hàm số là:
Ta có: .
Tìm họ nguyên hàm của hàm số ?
Ta có:
Diện tích S của hình phẳng giới hạn bởi đường cong , trục hoành và hai đường thẳng
là
Phương trình hoành độ giao điểm
Khi đó:
Thể tích của khối tròn xoay do hình phẳng giới hạn bởi các đường
, trục hoành và đường thẳng
khi quay quanh trục
?
Phương trình hoành độ giao điểm của đường và trục hoành là:
Khi đó, thể tích V của khối tròn xoay do hình phẳng giới hạn bởi các đường , trục hoành và đường thẳng x = 1 khi quay quanh trục Ox là:
Cho hàm số liên tục trên
, có đồ thị hàm số
như sau:
Mệnh đề nào dưới đây là đúng?
Theo ý nghĩa hình học của tích phân thì là diện tích hình thang cong
.
Trong các khẳng định sau đây, khẳng định nào đúng?
Ta có:
Do
Một chất điểm đang chuyển động với vận tốc thì tăng tốc với gia tốc
. Tính quãng đường chất điểm đó đi được trong khoảng thời gian
kể từ lúc bắt đầu tăng tốc.
Ta có:
Do khi bắt đầu tăng tốc nên
Khi đó quãng đường xe đi được sau 3 giây kể từ khi ô tô bắt đầu tăng tốc bằng
Cho hàm số biết rằng đồ thị hàm số F(x) có điểm cực tiểu nằm trên trục hoành. Chọn công thức đúng của
?
Ta có:
Mà
Do đó hàm số đạt cực tiểu tại x = 1
Mặt khác đồ thị hàm số có cực tiểu nằm trên trục hoành nên ta có điểm cực tiểu là A(0; 1)
=>
=> Hay