Số phức liên hợp của số phức 3 - 4i là:
=
= a – bi
Số phức liên hợp của số phức 3 - 4i là:
=
= a – bi
Cho số phức z thỏa mãn . Môđun của z là:
Giả sử: .
Gọi và
là hai nghiệm phức của phương trình:
. Tính
.
9 || chín || Chín
Gọi và
là hai nghiệm phức của phương trình:
. Tính
.
9 || chín || Chín
Ta có .
Vậy phương trình có hai nghiệm phức lần lượt là:
.
Do đó .
Gọi là bốn nghiệm phức của phương trình
. Tổng
bằng:
Ta có:
Cho . Giá trị của x và y bằng:
Ta có:
Cho số phức z thỏa mãn . Khi đó phần thực và phần ảo của z lần lượt là?
Ta có:
Vậy số phức z có phần thực bằng 0 và phần ảo bằng 1.
Cho số phức z thỏa mãn . Khi đó phần thực và phần ảo của z là
Ta có:
Số phức z thỏa mãn . Khẳng định nào sau đây là khẳng định đúng?
Ta có:
Nghiệm của phương trình: là
Ta có: .
Giả sử là căn bậc hai của
.
Ta có:
Thay (2) vào (1) ta có:
Vậy có hai căn bậc hai là
và
.
Do đó nghiệm của phương trình là:
Số phức nào dưới đây là số thuần ảo?
Số phức z = a + bi có a = 0 được gọi là số thuần ảo hay là số ảo.
Số phức có phần thực bằng 3 và phần ảo bằng 4 là
Số phức z = a + bi có a được gọi là phần ảo, b là phần thực.
Cho hai số phức z, w thỏa mãn ;
với
là tham số. Giá trị của m để ta luôn có
là:
Đặt có biểu diễn hình học là điểm
Ta có:
Suy ra biểu diễn của số phức là đường thẳng
Ta xét:
với .
Mà ta có
Nên
Cho số phức z thoả mãn . Giá trị lớn nhất của biểu thức
bằng?
Đặt .
Từ giả thiết
(1).
Ta có
.
Dễ thấy P lớn nhất khi .
Khi đó
Do nên từ (1) ta có
.
Suy ra
Dấu = xảy ra khi
.
Cho số phức . Phần thực của số phức z là:
Ta có:
Cho phương trình sau: . Tính tổng số tất cả các nghiệm của phương trình?
4 || Bốn || bốn
Cho phương trình sau: . Tính tổng số tất cả các nghiệm của phương trình?
4 || Bốn || bốn
Do tổng tất cả các hệ số của phương trình bằng 0 nên
có nghiệm
.
Vậy phương trình đã cho có 4 nghiệm và cộng tổng chúng lại ta được 4.
Cho hai số phức . Trong mặt phẳng Oxy, gọi các điểm M, N lần lượt là điểm biểu diễn số phức
, gọi G là trọng tâm của tam giác OMN, với O là gốc tọa độ. Hỏi G là điểm biểu diễn của số phức nào sau đây?
Do M, N lần lượt là điểm biểu diễn số phức nên
Khi đó tọa độ điểm G là trọng tâm của tam giác OMN có tọa độ
Vậy G là điểm biểu diễn của số phức:
Cho là nghiệm của phương trình sau:
.
Tính
M=2023 || 2023 || hai nghìn không trăm hai mưới ba
Cho là nghiệm của phương trình sau:
.
Tính
M=2023 || 2023 || hai nghìn không trăm hai mưới ba
Ta có:
Theo định nghĩa hai số phức bằng nhau, ta được:
Từ hệ trên, rõ ràng và
.
Đặt , hệ
Vì
Số nghiệm của phương trình: là?
Đặt phương trình đã cho có dang:
+ Với
+ Với
Vậy phương trình đã cho có 4 nghiệm.
Gọi là bốn nghiệm của phương trình
trên tập
số phức tính tổng: .
Ta có:
(1)
Không mất tính tổng quát ta gọi 4 nghiệm của (1) lần lượt là:
Thay và biểu thức ta có:
Cho số phức z thỏa mãn . Tìm giá trị lớn nhất của biểu thức
.
Gọi .
Ta có:
.
Ta có:
Xét hàm số
.
Hàm số liên tục trên và với
ta có:
Ta có:
Cho số phức thoả điều kiện
.
Đặt . Khẳng định nào sau đây đúng?
Ta có:
Nhận xét: câu này đáp án A cũng đúng vì
Cho hai số phức . Tìm môđun của số phức
.
Ta có:
Cho các số phức . Khẳng định nào trong các khẳng định sau là khẳng định đúng?
Áp dụng tính chất số phức, ta có:
- Môđun của 1 thương hai số phức thì bằng thương của từng môđun
- Môđun của 1 tích hai số phức thì bằng tích của từng môđun
Vậy khẳng địn (I) và (II) là đúng.
Cho số phức z thỏa mãn điều kiện . Môđun của số phức
có giá trị là
10
Cho số phức z thỏa mãn điều kiện . Môđun của số phức
có giá trị là
10
Ta có:
Cho số phức . Tính |z|
Ta có
Cho số phức z thỏa mãn . Giá trị của
là:
Với
Với
Số phức có phần thực bằng 1 và phần ảo bằng 3 là
Số phức z = a + bi có a được gọi là phần ảo, b là phần thực.
Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của
với z là số phức khác 0 và thỏa mãn
. Tính
Ta có
Mặt khác:
Vậy giá trị nhỏ nhất của P là , xảy ra khi
giá trị lớn nhất của P bằng
xảy ra khi
=>
Tìm các căn bậc hai của số phức
Giả sử m + ni (m; n R) là căn bậc hai của z
Ta có:
Thay (2) vào (1) ta có:
Vậy z có hai căn bậc hai là 3+2i và -3-2i.
Xét số phức z thỏa mãn: . Mệnh đề nào dưới đây đúng?
Giả sử: và
, thay vào đẳng thức ta có:
Do đó ta có:
Cho số phức . Tìm phần thực a và phần ảo b của z.
Ta có
Cho số phức z thỏa mãn . Chọn phát biểu đúng:
Giả sử:
Theo bài ra ta có:
Số phức liên hợp của số phức 3 - 2i là
=
= a – bi
Tính tổng tất cả các nghiệm của phương trình sau: là?
Đặt , khi đó phương trình đã cho có dạng:
Vậy phương trình đã cho có 4 nghiệm có tổng là
Cho số phức . Số phức
có phần ảo là:
Ta có:
Phương trình của tập hợp các điểm biểu diễn số phức z thỏa mãn là?
Giả sử:
Theo bài ra ta có:
Cho biểu thức với
. Biểu thức M có giá tri là?
Ta có: .
Khi đó:
.
Tìm tổng các giá trị của số thực a sao cho phương trình có nghiệm phức
thỏa mãn
.
4 || Bốn || bốn
Tìm tổng các giá trị của số thực a sao cho phương trình có nghiệm phức
thỏa mãn
.
4 || Bốn || bốn
Ta có với mọi thì phương trình
luôn có nghiệm phức.
và
.
Suy ra .
Từ (1) ta có , từ (2) ta có
.
Vậy tổng .
Tìm tất cả các số thực x, y sao cho
Ta có:
Nghiệm của phương trình: là:
Ta có:
các căn bậc hai của
là
Vậy nghiệm của phương trình là: