Cho và
là hai biến cố độc lập thoả mãn
và
. Khi đó,
bằng:
A và B là hai biến cố độc lập nên
Cho và
là hai biến cố độc lập thoả mãn
và
. Khi đó,
bằng:
A và B là hai biến cố độc lập nên
Cho hai biến cố với
. Tính
?
Ta có:
Một phân xưởng có 3 máy tự động: máy I sản xuất 25%, máy II sản xuất 30%, máy III sản xuất 45% số sản phẩm. Tỷ lệ phế phẩm tương ứng của các máy lần lượt là 0,1%, 0,2% và 0,3%. Chọn ngẫu nhiên ra một sản phẩm của phân xưởng. 1. Tìm xác suất nó là phế phẩm.
Gọi Ai là "lấy ra sản phẩm từ lô i" thì A1, A2, A3 tạo thành hệ đầy đủ.
Gọi A là "lấy ra sản phẩm là phế phẩm".
Áp dụng công thức xác suất toàn phần, ta có
Cho hai biến cố và
với
. Khi đó công thức xác suất toàn phần tính
là:
Ta có công thức xác suất toàn phần tính là:
Một chiếc máy bay có thể xuất hiện không phận của điểm A với xác suất là hoặc không phận của điểm B với xác suất là
. Giả sử có 3 phương án bố trí 4 khẩu pháo để hạ máy bay như sau:
Phương án 1: 3 khẩu đặt ở điểm A và 1 khẩu đặt ở điểm B.
Phương án 2: 2 khấu đặt ở điểm A và 2 khẩu đặt ở điểm B.
Phương án 3: 1 khẩu đặt ở điểm A và 3 khẩu đặt ở điểm B.
Biết rằng xác suất bắn trúng (hạ máy bay) của mỗi khẩu bằng và các khẩu pháo bắn độc lập với nhau. Phương án nào xác suất bắn trúng máy bay cao nhất?
Phương án 1: 3 khẩu đặt tại A và 1 khẩu đặt tại B Nếu có 3 khẩu đặt tại A thì để máy bay rơi cần ít nhất một khẩu bắn trúng.
Xác suất để ít nhất một khẩu tại A bắn trúng máy bay:
(tính theo biến cố đối của biến cố: không có khẩu nào bắn trúng)
=> Xác suất để máy bay rơi trong phương án I:
Phương án 2: 2 khẩu đặt tại 4 và 2 khẩu đặt tại B Nếu có 2 khẩu đặt tại A thì để máy bay rơi cần ít nhất một khẩu bắn trúng.
Xác suất để ít nhất một khẩu tại A bắn trúng máy bay:
Tương tự, xác suất để ít nhất một khẩu tại B bắn trúng máy bay:
=> Xác suất để máy bay rơi trong phương án II:
Phương án 3: 1 khẩu đặt tại A và 3 khẩu đặt tại B com Nếu có 3 khẩu đặt tại B thì để máy bay rơi cần ít nhất một khẩu bắn trúng.
Xác suất để ít nhất một khẩu tại B bắn trúng máy bay:
=> Xác suất để máy bay rơi trong phương án III:
Vậy phương án 2 có xác suất bắn trúng máy bay cao nhất.
Cho hai biến cố ,
với
. Phát biểu nào sau đây đúng?
Theo công thức xác suất toàn phần, ta có:
.
Một bình đựng 5 viên bi (cùng kích cỡ và đồng chất) khác nhau về màu sắc. Trong đó có 3 viên bi xanh và 2 viên bi đỏ. Lấy ngẫu nhiên từ bình ra một viên bi ta được viên bi màu xanh, rồi lại lấy ngẫu nhiên ra một viên bi nữa. Xác suất để lấy được viên bi đỏ ở lần thứ hai bằng bao nhiêu?
Cách 1:
Gọi A là biến cố “lấy viên bi thứ nhất là màu xanh”
Gọi B là biến cố “lấy viên bi thứ hai là màu đỏ”
Ta đi tính . Ta có:
Do đó:
Cách 2:
Gọi C là biến cố: “Lấy được một viên bi đỏ ở lần thứ hai”.
Vì một viên bi xanh đã được lấy ra ở lần thứ nhất nên còn lại trong bình 4 viên bi trong đó số viên bi đỏ là 2 và số viên bi xanh cũng là 2.
Do đó, xác suất cần tìm là
Cuối tuần M đến sân chơi để bắn cung, biết khoảng cách bắn tên thay đổi liên tục và khả năng bạn M bắn trúng bia tỉ lệ nghịch với khoảng cách bắn. M bắn lần đầu ở khoảng cách với xác suất trúng bia là
, nếu bị trượt M bắn tiếp mũi tên thứ hai ở khoảng cách
, nếu lại trượt M bắn mũi tên thứ ba ở khoảng cách
. Tính xác suất để M bắn trúng bia?
Gọi A là biến cố “M bắn trúng bia ở lần thứ nhất”
Gọi B là biến cố “M bắn trúng bia ở lần thứ hai”
Gọi C là biến cố “M bắn trúng bia ở lần thứ ba”
Ta có:
Vì xác suất bắn trúng bia trong mỗi lần bắn tỷ lệ nghịch với khoảng cách bắn nên ta có:
Ta có sơ đồ cây như sau:
Xác suất để M bắn trúng bia là:
Cho hai biến cố và
với
. Biết
. Tính
?
Ta có công thức xác suất toàn phần tính là:
Một cuộc khảo sát người về hoạt động thể dục thấy có
số người thích đi bộ và
thích đạp xe vào buổi sáng và tất cả mọi người đều tham gia ít nhất một trong hai hoạt động trên. Chọn ngẫu nhiên một người hoạt động thể dục. Nếu gặp được người thích đi xe đạp thì xác suất mà người đó không thích đi bộ là bao nhiêu?
Gọi A là "người thích đi bộ", B là "người thích đi xe đạp"
Theo giả thiết: .
Ta có:
Bạn Bình đang làm đề ôn tập theo ba mức độ dễ, trung bình và khó. Xác suất để Bình hoàn thành câu dễ là ; hoàn thành câu trung bình là
và hoàn thành câu khó là
. Làm đúng mỗi một câu dễ bạn được
điểm, làm đúng mỗi câu trung bình bạn được
điểm và làm đúng mỗi câu khó bạn được
điểm. Hãy cho biết các khẳng định sau đây đúng hay sai?
a) Xác suất để Bình làm ba câu thuộc ba loại và đúng cả ba câu là . Sai||Đúng
b) Khi Bình làm 3 câu thuộc 3 loại khác nhau. Xác suất để bạn làm đúng 2 trong số 3 câu là . Sai||Đúng
c) Khi Bình làm 3 câu thì xác suất để bạn làm đúng 3 câu đủ ba loại cao hơn xác suất Bình làm sai 3 câu ở mức độ trung bình. Đúng||Sai
d) Xác suất để Bình làm 5 câu và đạt đúng 2 điểm lớn hơn . Sai||Đúng
Bạn Bình đang làm đề ôn tập theo ba mức độ dễ, trung bình và khó. Xác suất để Bình hoàn thành câu dễ là ; hoàn thành câu trung bình là
và hoàn thành câu khó là
. Làm đúng mỗi một câu dễ bạn được
điểm, làm đúng mỗi câu trung bình bạn được
điểm và làm đúng mỗi câu khó bạn được
điểm. Hãy cho biết các khẳng định sau đây đúng hay sai?
a) Xác suất để Bình làm ba câu thuộc ba loại và đúng cả ba câu là . Sai||Đúng
b) Khi Bình làm 3 câu thuộc 3 loại khác nhau. Xác suất để bạn làm đúng 2 trong số 3 câu là . Sai||Đúng
c) Khi Bình làm 3 câu thì xác suất để bạn làm đúng 3 câu đủ ba loại cao hơn xác suất Bình làm sai 3 câu ở mức độ trung bình. Đúng||Sai
d) Xác suất để Bình làm 5 câu và đạt đúng 2 điểm lớn hơn . Sai||Đúng
Gọi A là biến cố Bình làm đúng câu dễ
B là biến cố Bình làm đúng câu trung bình
C là biến cố Bình làm đúng câu khó.
Khi đó A, B, C độc lập với nhau.
a) Xác suất để Bình làm ba câu thuộc ba loại trên và đúng cả ba câu là
.
Khẳng định sai.
b) Xác suất để Bình làm đúng 2 trong số 3 câu là
= 0,2.0,6.0,15 + 0,8.0,4.0,15 + 0,8.0,6.0,85 = 0,474
Khẳng định sai.
c) Xác suất để Bình làm đúng 3 câu đủ ba loại là:
Xác suất Bình làm sai 3 câu mức độ trung bình. .
Khẳng định đúng.
d) Để Bình làm 5 câu và đạt đúng 2 điểm có các trường hợp sau:
TH1: Đúng 4 câu khó và câu còn lại sai
TH2: Đúng 3 câu khó và đúng 2 câu trung bình
Vậy xác suất cần tìm là
Khẳng định sai.
Chọn ngẫu nhiên lần lượt các số a, b phân biệt thuộc tập hợp . Tính xác suất để
là một số nguyên dương.
Phép thử: "Chọn ngẫu nhiên lần lượt các số a, b phân biệt thuộc tập hợp
Biến cố : "
là một số nguyên dương".
+ Giả sử là một số nguyên dương
10 |
9 |
8 |
7 |
6 |
5 |
4 |
3 |
2 |
|
1 |
1 |
|
1 |
1 |
Có 2 xạ thủ loại I và 8 xạ thủ loại II, xác suất bắn trúng đích của các loại xạ thủ loại I là 0,9 và loại II là 0,7. Chọn ngẫu nhiên ra hai xạ thủ và mỗi người bắn một viên đạn. Tìm xác suất để cả hai viên đạn đó trúng đích.
Gọi B là biến cố "Cả 2 viên đạn trúng đích".
là biến cố "Chọn được i xạ thủ loại I".
Ta có tạo thành họ đầy đủ các biến cố.
Áp dụng công thức, ta có
Theo thống kê xác suất để hai ngày liên tiếp có mưa ở một thành phố vào mùa hè là ; còn không mưa là
. Biết các sự kiện có một ngày mưa, một ngày không mưa là đồng khả năng. Tính xác suất để ngày thứ hai có mưa, biết ngày đầu không mưa?
Gọi A là "ngày đầu mưa" và B là "ngày thứ hai mưa" thì ta có:
Vì các sự kiện có một ngày mưa, một ngày không mưa là đồng khả năng nên
Xác suất cần tính là có:
Nếu hai biến cố thỏa mãn
thì
bằng bao nhiêu?
Theo công thức Bayes ta có:
Một người có 3 chỗ ưa thích như nhau để câu cá. Xác suất câu được cá ở mỗi chỗ lần lượt là . Biết rằng mỗi chỗ người đó thả câu 3 lần thì chỉ có một lần câu được cá. Người đó đã câu được một con cá. Tính xác suất để con cá câu được đó ở chỗ thứ nhất.
Gọi A là sự kiện câu được cá ở chỗ thứ 1, B là sự kiện câu được 1 con cá.
Theo đề bài, ta biết rằng người đó chọn ngẫu nhiên 1 chỗ rồi thả câu 3 lần và chỉ câu được 1 con cá.
Ta cần tìm xác suất P(A|B), tức là xác suất câu được cá ở chỗ thứ 1 khi biết đã câu được 1 con cá.
Theo công thức Bayes, ta có:
P(B|A) là xác suất câu được 1 con cá khi đã biết câu ở chỗ thứ 1 là A.
Vì xác suất câu được cá ở chỗ thứ 1 là , nên
P(A) là xác suất câu được cá ở chỗ thứ 1.
Vì có 3 chỗ ưa thích như nhau, nên xác suất câu được cá ở chỗ thứ 1 là .
P(B) là xác suất câu được 1 con cá. Ta có thể tính xác suất này bằng cách sử dụng định lý xác suất toàn phần:
Trong đó:
là xác suất câu được 1 con cá khi không câu ở chỗ thứ 1 là A. Vì xác suất câu được cá ở chỗ thứ 2 và chỗ thứ 3 lần lượt là
và
nên
là xác suất không câu được cá ở chỗ thứ 1. Vì có 3 chỗ ưa thích như nhau, nên xác suất không câu được cá ở chỗ thứ 1 là
.
Thay các giá trị vào công thức Bayes, ta có:
Vậy Xác suất con cá câu được ở chỗ thứ 1 là:
Một hộp bút bi Thiên Long có 15 chiếc bút trong đó có 9 chiếc bút mới. Người ta lấy ngẫu nhiên 1 chiếc bút để sử dụng sau đó trả lại vào hộp. Lần thứ hai lấy ngẫu nhiên 2 chiếc bút, tính xác suất cả hai chiếc bút lấy ra đều là chiếc mới.
Gọi A ”Hai chiếc bút lấy ra đều là chiếc mới”; B0 ” Lấy ra một chiếc bút cũ” và B1 ”Lấy ra một chiếc bút mới”
Nên B0; B0 là hệ biến cố đầy đủ.
Từ 15 chiếc bút có 9 chiếc bút mới và 6 chiếc bút cũ
Ta có:
Áp dụng công thức xác suất toàn phần
.
Giả sử tỉ lệ người dân của tỉnh T nghiện thuốc lá là ; tỉ lệ người bị bệnh phổi trong số người nghiện thuốc lá là
, trong số người không nghiện thuốc lá là
. Hỏi khi ta gặp ngẫu nhiên một người dân của tỉnh T thì khả năng mà đó bị bệnh phổi là bao nhiêu
?
Gọi A là biến cố “người nghiện thuốc lá”, suy ra A là biến cố “người không nghiện thuốc lá”
Gọi B là biến cố “người bị bệnh phổi”
Để người mà ta gặp bị bệnh phổi thì người đó nghiện thuốc lá hoặc không nghiện thuốc lá.
Ta cần tính
Ta có:
Áp dụng công thức xác suất toàn phần ta có:
Một hộp chứa 8 bi trắng, 2 bi đỏ. Lần lượt lấy từng bi. Giả sử lần đầu tiên lấy được bi trắng. Xác định xác suất lần thứ hai lấy được bi đỏ.
Gọi A là biến cố lần một lấy được bi trắng.
Gọi B là biến cố lần hai lấy được bi đỏ.
Xác suất lần 2 lấy được bi đỏ khi lần 1 đã lấy được bi trắng là.
Ta có: khi đó:
.
Một bình đựng hạt giống có 7 hạt loại A và 6 hạt loại B. Lấy ngẫu nhiên lần thứ nhất ra 2 hạt, lần thứ hai ra một hạt. Tính xác suất để hạt giống lấy ra lần 2 là hạt loại A.
Gọi F là biến cố hạt lấy ra lần hai là loại A. H0, H1, H2 lần lượt là biến cố hai hạt lấy ra lần thứ nhất có 0,1, 2 hạt loại B.
{H0, H1, H2} là một hệ đầy đủ.
Áp dụng công thức xác suất đầy đủ ta có
.
Nếu hai biến cố thỏa mãn
thì
bằng bao nhiêu?
Theo công thức Bayes ta có:
Cho hai biến cố với
. Tính
?
Ta có:
Một trạm chỉ phát hai tín hiệu A và B với xác suất tương ứng và
. do có nhiễu trên đường truyền nên
tín hiệu A bị méo và thu được như tín hiệu B còn
tín hiệu B bị méo cà thu được như A. Xác suất thu được tín hiệu A là:
Gọi A là biến cố “Phát tín hiệu A ”
Gọi B là biến cố “Phát tín hiệu A ”
Gọi TA là biến cố “Phát được tín hiệu A ”
Gọi TB là biến cố “Phát được tín hiệu B”.
Ta cần tính ta có:
khi đó:
Theo công thức Bayes, ta có:
Hộp I: 5 bi trắng và 5 bi đen. Hộp II: 6 bi trắng và 4 bi đen. Bỏ hai viên bi từ hộp I sang hộp II. Sau đó lấy ra 1 viên bi. Tính xác suất để lấy được bi trắng.
Gọi A là biến cố lấy được bi trắng
Cách 1: Ta có sơ đồ cây mô tả như sau:
.
Cách 2: Gọi K1 là biến cố lấy bi ra từ hộp II của hộp I
Gọi K2 là biến cố lấy bi ra từ hộp II của hộp II
Ta xác định được:
Khi đó:
Trong một kho rượu, số lượng rượu loại M và loại N bằng nhau. Người ta chọn ngẫu nhiên một chai và đưa cho 5 người nếm thử. Biết xác suất đoán đúng của mỗi người là 0,8. Có 3 người kết luận rượu loại M, 2 người kết luận rượu loại N. Hỏi khi đó xác suất chai rượu đó thuộc loại M là bao nhiêu?
Gọi A là chai rượu thuộc loại M thì tạo thành hệ đầy đủ và
Gọi H là "có 3 người kết luận rượu loại M và 2 người kết luận rượu loại N".
Theo công thức toàn phần ta có:
Vậy xác suất cần tính là:
Cho hai biến cố và
là hai biến cố độc lập, với
. Tính
?
Hai biến cố và
là hai biến cố độc lập nên
.
Cho hai biến cố và
với
. Tính
?
Ta có:
Áp dụng công thức Bayes:
.
Một túi đựng bi xanh và
bi đỏ. Lấy ngẫu nhiên
bi. Xác suất để cả hai bi đều đỏ là:
Ta có số phần từ của không gian mẫu là .
Gọi : "Hai bi lấy ra đều là bi đỏ".
Khi đó .
Vậy xác suất cần tính là .
Một hộp đựng 10 phiếu trong đó có 2 phiếu trúng thưởng. Có 10 người lần lượt rút thăm. Tính xác suất nhận được phần thưởng của mỗi người?
Gọi Ai: “người thứ i nhận được phiếu trúng thưởng” (i = 1, . . . , 10)
Ta có:
Cho hai biến cố và
, với
. Tính
?
Ta có:
.
Cho hai biến cố với
. Giá trị
bằng:
Ta có:
Theo công thức xác suất toàn phần, ta có:
Cho ba biến cố độc lập từng đôi thỏa mãn
và
. Xác định
?
Ta có:
.
Cho hai biến cố và
với
. Tính
?
Ta có:
Áp dụng công thức xác suất toàn phần ta có:
Có hai lô sản phẩm: lô I có 7 chính phẩm, 3 phế phẩm; lô II có 8 chính phẩm, 2 phế phẩm. Từ lô I lấy ngẫu nhiên ra 2 sản phẩm, từ lô II lấy ngẫu nhiên ra 3 sản phẩm. Sau đó từ số sản phẩm này lại lấy ngẫu nhiên 2 sản phẩm. Tính xác suất để trong 2 sản phẩm lấy ra sau cùng có ít nhất 1 chính phẩm.
Gọi là "trong 5 sản phẩm cuối có
chính phẩm".
Khi đó hệ tạo thành hệ đầy đủ
xảy ra thì phải lấy 3 phế phẩm từ lô II, điều này là không thể.
Suy ra
xảy ra nếu lấy 2 phế từ lô I và 1 chính, 1 phế từ lô II.
xảy ra nếu lấy 1 chính, 1 phế từ lô
chính, 2 phế từ lô II hoặc 2 phế từ lô
chính, 1 phế từ lô II
xảy ra nếu lấy 2 chính từ lô
chính, 2 phế từ lô
hoặc 1 chính, 1 phế từ lô
chính, 1 phế từ lô II hoặc 2 phế từ lô
chính từ lô II
xảy ra nếu lấy 2 chính từ lô
chính, 2 phế từ lô II hoặc 1 chính, 1 phế từ lô
chính từ lô II
xảy ra nếu lấy 2 chính từ lô
chính từ lô II
Gọi là "trong 2 sản phẩm lấy ra có ít nhất 1 chính phẩm", áp dụng công thức xác suất đầy đủ
Suy ra .
Có 40 phiếu kiểm tra, mỗi phiếu có một câu hỏi, biết rằng có 13 câu hỏi lý thuyết (gồm 5 câu mức độ khó và 8 câu mức độ dễ) và 27 câu hỏi bài tập (gồm 12 câu mức độ khó và 15 câu mức độ dễ). Lấy ngẫu nhiên ra một phiếu. Tìm xác suất rút được câu hỏi lý thuyết mức độ khó.
Có 40 phiếu kiểm tra, mỗi phiếu có một câu hỏi, biết rằng có 13 câu hỏi lý thuyết (gồm 5 câu mức độ khó và 8 câu mức độ dễ) và 27 câu hỏi bài tập (gồm 12 câu mức độ khó và 15 câu mức độ dễ). Lấy ngẫu nhiên ra một phiếu. Tìm xác suất rút được câu hỏi lý thuyết mức độ khó.
Có 3 hộp bi:
Hộp 1: Có 3 xanh, 4 đỏ, 5 vàng.
Hộp 2: Có 4 xanh, 5 đỏ, 6 vàng.
Hộp 3: Có 5 xanh, 6 đỏ, 7 vàng
Chọn ngẫu nhiên 1 hộp và từ hộp đó lấy ngẫu nhiên 3 bi. Tính xác suất để 3 bi lấy ra có 3 màu khác nhau. Trong trường hợp đó tính xác suất để 3 bi được lấy từ hộp thứ 3?
Gọi lần lượt là các biến cố “Chọn được hộp thứ 1, 2, 3” ta có hệ
là hệ biến cố xung khắc và đầy đủ:
Gọi C là biến cố” 3 bi lấy ra có ba màu khác nhau”
Ta có:
Một công ty du lịch bố trí chỗ cho đoàn khách tại ba khách sạn theo tỉ lệ
. Tỉ lệ hỏng điều hòa ở ba khách sạn lần lượt là
. Tính xác suất để một khách nghỉ ở phòng điều hòa bị hỏng.
Gọi ” Để một khách ở phòng điều hòa bị hỏng”
Gọi lần lượt là các biến cố Khách nghỉ tại ba khách sạn
.
Ta có:
Áp dụng công thức xác suất toàn phần ta có:
.
Ba khẩu pháo cùng bắn vào một mục tiêu với xác suất trúng đích của mỗi khẩu là . Biết rằng xác suất để mục tiêu bị tiêu diệt khi trúng một phát đạn là
, khi trúng 2 phát đạn là
, còn trúng 3 phát đạn thì chắc chắn mục tiêu bị tiêu diệt. Giả sử mỗi khẩu pháo bắn 1 phát. Tính xác suất để khẩu thứ 3 có đóng góp vào thành công đó?
Gọi : "Khẫu pháo thứ
bắn trúng"
)
: "Mục tiêu trúng
phát đạn"
: "Mục tiêu bị tiêu diệt".
Ta có: là một hệ đầy đủ các biến cố và
Ta có các giả thiết sau:
Từ đó, ta tính được:
Theo công thức xác suất đầy đủ ta có:
Khi đó ta có:
Do đó
Một hộp chứa 4 quả bóng được đánh số từ 1 đến 4. Hùng lấy ngẫu nhiên một quả bóng, bỏ ra ngoài, rồi lấy tiếp một quả bóng nữa.
Xét các biến cố:
: "Quả bóng lấy ra lần đầu có số chẵn"
: "Quả bóng lấy ra lần hai có số lẻ".
Xác định biến cố : "biến cố
với điều kiện biết
đã xảy ra".
Ta có:
Khi biến cố xảy ra, thì không gian mẫu mới là
.
Khi đó, biến cố
Cho hai biến cố và
, với
.
a) Đúng||Sai
b) Đúng||Sai
c) Sai|| Đúng
d) Sai|| Đúng
Cho hai biến cố và
, với
.
a) Đúng||Sai
b) Đúng||Sai
c) Sai|| Đúng
d) Sai|| Đúng
a) Ta có:
b)
c)
d)