Trong mặt phẳng với hệ tọa độ , cho hai điểm
và đường thẳng
. Tìm tọa độ giao điểm của đường thẳng
và
.
Trong mặt phẳng với hệ tọa độ , cho hai điểm
và đường thẳng
. Tìm tọa độ giao điểm của đường thẳng
và
.
Cho đường tròn (C): . Gọi
lần lượt là tiếp tuyến của đường tròn
tại điểm
. Tọa độ giao điểm của
và
là:
Ta có:
Phương trình tiếp tuyến của đường tròn tại M(3; 2) là:
Phương trình tiếp tuyến của đường tròn tại N(1; 0) là:
=> Giao điểm của hai tiếp tuyến là H(3; 0)
Trong mặt phẳng với hệ tọa độ , cho elip
(với
). Biết
là hai tiêu điểm. Cho điểm M di động trên
. Chọn khẳng định đúng?
Ta có:
.
Vì nên
.
Xét vị trí tương đối của hai đường thẳng: và
.
Vì nên hai đường thẳng cắt nhau.
Đường tròn đi qua điểm
và tiếp xúc với hai trục tọa độ
có phương trình là:
Vì thuộc góc phần tư (I) nên
Khi đó:
Gọi là góc tạo bởi hai đường thẳng
và
. Khi đó độ lớn của
bằng:
Ta có:
Vậy góc tạo bởi hai đường thẳng bằng .
Tìm để hai đường thẳng
và
vuông góc với nhau?
Ta có:
Tìm tọa độ giao điểm của đường thẳng và trục tung.
Chọn
.
Trong mặt phẳng với hệ tọa độ , cho đường thẳng
và hai điểm
,
. Tìm tất cả các giá trị của tham số
để
và
nằm cùng phía đối với
.
Khi đó điều kiện bài toán trở thành
Một đường thẳng có bao nhiêu vectơ chỉ phương?
Một đường thẳng có vô số vectơ chỉ phương.
Cho hai đường thẳng và
. Khẳng định nào sau đây đúng?
Ta có: suy ra
cắt
.
Vậy khẳng định đúng là: “ cắt
”.
Cho phương trình Elip . Tọa độ đỉnh
và
của Elip đó là:
Ta có: => a = 4; b = 2
=> Tọa độ các đỉnh của elip là:
Phương trình tổng quát của đường thẳng đi qua hai điểm A(2; –1) và B(2; 5) là:
.
Quan sát các đáp án. Suy ra phương trình tổng quát của AB là: .
Cho phương trình (1). Điều kiện để (1) là phương trình đường tròn là:
Điều kiện để phương trình là phương trình đường tròn là:
Đường trung trực của đoạn thẳng với
,
có một vectơ pháp tuyến là:
Gọi là trung trực đoạn AB, ta có:
Đường tròn có dạng khai triển là:
Trong mặt phẳng tọa độ Oxy cho đường thẳng tiếp xúc với đường tròn
, cắt các trục
lần lượt tại các điểm
. Tam giác
có diện tích nhỏ nhất là:
Hình vẽ minh họa
Gọi là giao điểm của đường thẳng
và
là giao điểm của đường thẳng
và
Khi đó:
Xét tam giác OAB vuông tại O ta có:
Từ (*)
Vậy giá trị nhỏ nhất của diện tích tam giác OAB bằng 1.
Tìm phương trình chính tắc của elip nếu trục lớn gấp đôi trục bé và có tiêu cự bằng .
Elip có trục lớn gấp đôi trục bé
.
Elip có tiêu cự bằng
.
Ta có . Khi đó,
.
Phương trình chính tắc của Elip là .
Cho parabol . Giao điểm của
với trục hoành tại hai điểm
. Khẳng định nào sau đây đúng?
Phương trình hoành độ giao điểm là nghiệm của phương trình:
Áp dụng định lí Vi – et ta có:
Khoảng cách từ giao điểm của hai đường thẳng và
đến đường thẳng
bằng:
Cho phương trình đường tròn . Xác định tâm và bán kính đường tròn đó?
Ta có phương trình đường tròn: có:
nên đường tròn (C) có tâm
và bán kính
.
Cho đường thẳng và
. Tính cosin góc tạo bởi giữa hai đường thẳng trên.
.
Cho hypebol (H): . Khẳng định nào sau đây đúng?
Ta có:
Vậy Hypebol (H) có tiêu cự
=> Hai tiêu điểm của (H) là:
Ta có trục thực là:
Trục ảo là:
Vậy khẳng định đúng là:" Hypebol có trục thực bằng 1".
Trong hệ trục tọa độ , viết phương trình đường trung trực của đoạn thẳng
biết
?
Đường thẳng trung trực của là đường thẳng đi qua trung điểm
của
và nhận
làm vectơ pháp tuyến. Khi đó:
Vậy phương trình đường trung trực của MN là .
Biết điểm . Giả sử
thì khoảng cách từ điểm
đến các tiêu điểm của
bằng bao nhiêu?
Ta có: và
Có hai điểm M thỏa mãn là:
Tiêu điểm của là:
Vậy đáp án cần tìm là: và
.
Trong hệ trục tọa độ , tọa độ của vectơ
là:
Tọa độ vectơ .
Trong mặt phẳng với hệ tọa độ , cho hình bình hành
có đỉnh
và phương trình đường thẳng chứa cạnh
là
. Viết phương trình tham số của đường thẳng chứa cạnh
.
Góc phần tư (I) :
Tính khoảng cách từ điểm đến đường thẳng
Khoảng cách từ điểm C đến đường thẳng là:
Vậy khoảng cách cần tìm bằng 1.
Trong mặt phẳng với hệ tọa độ , cho tam giác
có
,
và
. Phương trình đường phân giác trong của góc
là:
Suy ra các đường phân giác góc là:
Suy ra đường phân giác trong góc là
Tìm m để góc tạo bởi hai đường thẳng và
một góc bằng 30°.
Ta có:
Đường thẳng đi qua điểm
và có vectơ pháp tuyến
có phương trình tham số là:
Cho đường tròn và đường thẳng
. Tìm phương trình tiếp tuyến của
song song với đường thẳng
?
Ta có: Phương trình đường tròn (C) có tâm I(2; 3) bán kính R = 5
Phương trình đường thẳng song song với d có dạng
tiếp xúc với
nên
Hay
Vậy phương trình tiếp tuyến của song song với
là:
hoặc
.
Cho . Một đường thẳng đi qua điểm
và song song với trục hoành cắt
tại hai điểm phân biệt
và
. Độ dài
bằng bao nhiêu?
Phương trình đường thẳng đi qua điểm
và song song trục hoành có phương trình là
Ta có
Vậy độ dài đoạn thẳng
Đường tròn (C) có tâm I (– 2; 3) và đi qua M (2; – 3) có phương trình là:
Ta có: .
Phương trình đường tròn: .
Trong mặt phẳng với hệ tọa độ Oxy, cho elip . Tiêu cự của (E) bằng
Phương trình chính tắc của elip có dạng: .
Do đó elip (E) có .
Tiêu cự của elip (E) bằng .
Tìm phương trình chính tắc của parabol biết
có tiêu điểm là
.
Gọi phương trình chính tắc của là:
.
Do tọa độ tiêu điểm nên
.
Vậy phương trình của là:
.
Xét vị trí tương đối của hai đường thẳng và
.
Trong hệ trục tọa độ Oxy, cho đường thẳng . Một vectơ chỉ phương của
là:
Một vectơ chỉ phương của là
hay
.
Cho Parabol có phương trình
. Tìm đường chuẩn của
.
Từ phương trình của , ta có:
nên
.
Suy ra có tiêu điểm là
và đường chuẩn là
.
Đường tròn có tâm
và bán kính
lần lượt là: