Đề kiểm tra 45 phút Chương 8 Đại số tổ hợp

Mô tả thêm: Đề kiểm tra 1 tiết Toán 10 Đại số tổ hợp gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Cho tập hợp D gồm x phần tử. Số các tổ hợp chập k của x phần tử từ tập hợp D (với k,x\mathbb{\in N},0 \leq k \leq x) được xác định bởi công thức là:

    Số các tổ hợp chập k của x phần tử từ tập hợp D (với k,x\mathbb{\in N},0 \leq k \leq x) được xác định bởi công thức là: C_{x}^{k} =
\frac{x!}{k!(x - k)!}.

  • Câu 2: Nhận biết

    Một tổ có 10 học sinh. Hỏi có bao nhiêu cách chọn ra 2 học sinh từ tổ đó để giữ hai chức vụ tổ trưởng và tổ phó.

    Số cách chọn hai học sinh từ 10 học sinh là chỉnh hợp chập 2 của 10 phần tử 

    => Số cách chọn là: A_{10}^2 = 90 (cách)

  • Câu 3: Nhận biết

    Số hạng tử trong khai triển {(x - 2y)^4} bằng

    Số hạng tử trong khai triển {(x - 2y)^4} là: 4 + 1 = 5 hạng tử.

  • Câu 4: Thông hiểu

    Từ các chữ số 1, 2, 3, 4, 5, 6 có thể lập được bao nhiêu số tự nhiên lẻ có 6 chữ số khác nhau và trong mỗi số đó tổng của ba chữ số đầu lớn hơn tổng của ba chữ số cuối một đơn vị?

    Gọi \overline{a_{1}a_{2}a_{3}a_{4}a_{5}a_{6}} là số cần tìm

    Ta có a_{6} \in \left\{ 1;\ 3;\ 5ight\}\left( a_{1} + a_{2} +a_{3} ight) - \left( a_{4} + a_{5} + a_{6} ight) = 1

    Với a_{6} = 1 thì \left( a_{1} + a_{2} + a_{3} ight) - \left(a_{4} + a_{5} ight) = 2 \Rightarrow \left\{ \begin{matrix}a_{1},\ a_{2},\ a_{3} \in \left\{ 2,\ 3,\ 6 ight\} \\a_{4},\ a_{5} \in \left\{ 4,\ 5 ight\} \\\end{matrix} ight. hoặc \left\{\begin{matrix}a_{1},\ a_{2},\ a_{3} \in \left\{ 2,\ 4,\ 5 ight\} \\a_{4},\ a_{5} \in \left\{ 3,\ 6 ight\} \\\end{matrix} ight.

    Với a_{6} = 3 thì \left( a_{1} + a_{2} + a_{3} ight) - \left(a_{4} + a_{5} ight) = 4 \Rightarrow \left\{ \begin{matrix}a_{1},\ a_{2},\ a_{3} \in \left\{ 2;\ 4;\ 5 ight\} \\a_{4},\ a_{5} \in \left\{ 1,\ 6 ight\} \\\end{matrix} ight. hoặc \left\{\begin{matrix}a_{1},\ a_{2},\ a_{3} \in \left\{ 1,\ 4,\ 6 ight\} \\a_{4},\ a_{5} \in \left\{ 2,\ 5 ight\} \\\end{matrix} ight.

    Với a_{6} = 5 thì \left( a_{1} + a_{2} + a_{3} ight) - \left(a_{4} + a_{5} ight) = 6 \Rightarrow \left\{ \begin{matrix}a_{1},\ a_{2},\ a_{3} \in \left\{ 2,\ 3,\ 6 ight\} \\a_{4},\ a_{5} \in \left\{ 1,\ 4 ight\} \\\end{matrix} ight. hoặc \left\{\begin{matrix}a_{1},\ a_{2},\ a_{3} \in \left\{ 1,\ 4,\ 6 ight\} \\a_{4},\ a_{5} \in \left\{ 2,\ 3 ight\} \\\end{matrix} ight.

    Mỗi trường hợp có 3!.2! = 12 số thỏa mãn yêu cầu

    Vậy có tất cả 6.12 = 72 số cần tìm.

  • Câu 5: Nhận biết

    Một chiếc hộp chứ 5 quả cầu trắng và 6 quả cầu đỏ. Lấy ngẫu nhiên đồng thời ba quả trong hộp, biết rằng các quả cầu có kích thước và khối lượng như nhau. Hỏi có bao nhiêu cách lấy được đồng thời 3 quả cầu?

    Tổng số quả cầu trong hộp là 5 + 6 = 11

    Mỗi cách lấy ngẫu nhiên 3 quả cầu trong 11 quả cầu trong hộp là tổ hợp chập 3 của 11 phần tử

    Vậy số cách thỏa mãn yêu cầu bài toán là C_{11}^{3} = 165 (cách).

  • Câu 6: Nhận biết

    Trên giá sách có 8 quyển tiểu thuyết khác nhau và 6 quyển truyện tranh khác nhau. Số cách chọn một trong các quyển sách đó là:

    Số cách chọn một trong các quyển sách đó là: 8 + 6 = 14 cách.

  • Câu 7: Thông hiểu

    Có bao nhiêu số tự nhiên lẻ trong khoảng (2000; 3000) có thể tạo nên bằng các chữ số 1,2,3,4,5,6 nếu các chữ số không nhất thiết khác nhau?

    Gọi số tự nhiên trong khoảng (2000;3000) có dạng \overline{2abc}

    Vì là số tự nhiên lẻ nên c có 3 lựa chọn là \left\{ 1;3;5 ight\}

    a, b có 6 lựa chọn.

    Vậy có 6.6.3 = 108 số tự nhiên thỏa mãn yêu cầu bài toán.

  • Câu 8: Vận dụng

    Cho tập A =
\left\{ 0;1;2;3;4;5;6 ight\}. Hỏi lập được bao nhiêu số tự nhiên có năm chữ số đôi một khác nhau và chia hết cho 2.

    Gọi \overline{abcde} là số số tự nhiên có năm chữ số đôi một khác nhau và chia hết cho 2.

    + TH1. e = 0. Chọn a,b,c,d \in A\backslash\left\{ 0
ight\}: A_{6}^{4} = 360
\Rightarrowcó 360 số.

    + TH2. e eq 0:Chọn e \in \left\{ 2;4;6 ight\}:3 (cách).

    Chọn a \in A\backslash\left\{ 0;e
ight\}:5 (cách).

    Chọn b,c,d \in A\backslash\left\{ a;e
ight\}: A_{5}^{3} = 60 (cách).

    \Rightarrow3.5.60 = 900 số.

    Vậy có. 900 + 360 = 1260số tự nhiên có năm chữ số đôi một khác nhau và chia hết cho 2.

  • Câu 9: Nhận biết

    Có bao nhiêu cách sắp xếp chỗ ngồi cho năm người gồm 3 nam và 2 nữ vào năm cái ghế xếp thành một dãy nếu hai nữ luôn luôn ngồi kề nhau?

    Coi 2 nữ là một phần tử A

    Xếp phần tử A và 3 nam vào dãy có 4! cách.

    Hoán đổi vị trí 2 nữ trong phần tử A có 2! cách.

    Do đó có 4!.2! = 48 cách.

  • Câu 10: Thông hiểu

    Cho tập A gồm n điểm phân biệt trên mặt phẳng sao cho không có 3 điểm nào thẳng hàng. Tìm n sao cho số tam giác có 3 đỉnh lấy từ 3 điểm thuộc A gấp đôi số đoạn thẳng được nối từ 2 điểm thuộc A.

    Điều kiện: n \ge 3

    Số tam giác có 3 đỉnh lấy từ 3 điểm thuộc A là tổ hợp chập 3 của n phần tử 

    => Số tam giác là: C_n^3 (tam giác)

    Số đoạn thẳng được nối từ 2 điểm thuộc A là tổ hợp chập n phần tử

    => Số đoạn thẳng là: C_n^2

    Theo bài ra ta có: 

    Số tam giác có 3 đỉnh lấy từ 3 điểm thuộc A gấp đôi số đoạn thẳng được nối từ 2 điểm thuộc A.

    \begin{matrix}   \Rightarrow C_n^3 = 2C_n^2 \hfill \\   \Leftrightarrow \dfrac{{n!}}{{3!\left( {n - 3} ight)!}} = 2\dfrac{{n!}}{{2!\left( {n - 2} ight)!}} \hfill \\   \Leftrightarrow \dfrac{{n\left( {n - 1} ight)\left( {n - 2} ight)\left( {n - 3} ight)!}}{{6\left( {n - 3} ight)!}} = \dfrac{{n\left( {n - 1} ight)\left( {n - 2} ight)!}}{{\left( {n - 2} ight)!}} \hfill \\   \Leftrightarrow n\left( {n - 1} ight)\left( {n - 2} ight) = 6n\left( {n - 1} ight) \hfill \\   \Leftrightarrow \left[ \begin{gathered}  n\left( {n - 1} ight) = 0 \hfill \\  n - 2 = 6 \hfill \\ \end{gathered}  ight. \Leftrightarrow \left[ \begin{gathered}  n = 0\left( {ktm} ight) \hfill \\  n = 1\left( {ktm} ight) \hfill \\  n = 8\left( {tm} ight) \hfill \\ \end{gathered}  ight. \hfill \\   \hfill \\ \end{matrix}

    Vậy n = 8.

  • Câu 11: Thông hiểu

    Từ các chữ số 1,2,3,4,5,6,7,8,9, có thể lập được bao nhiêu số nguyên dương n trong đó n gồm 4 chữ số đôi một khác nhau và bắt đầu bằng 56 hoặc 65.

    Gọi n =
\overline{a_{1}a_{2}a_{3}a_{4}} là số thỏa yêu cầu bài toán.

    Chọn \overline{a_{1}a_{2}} \in \left\{
56;65 ight\} có: 2 cách.

    Chọn a_{3} \in X\backslash\left\{
a_{1};a_{2} ight\} có: 7 cách.

    Chọn a_{4} \in X\backslash\left\{
a_{1};a_{2};a_{3} ight\} có: 6 cách.

    Theo quy tắc nhân có: 2.7.6 = 84 số.

  • Câu 12: Thông hiểu

    Tính giá trị biểu thức S = 2^{5}C_{5}^{0} + 2^{4}C_{5}^{1} +
2^{3}C_{5}^{2} + 2.C_{5}^{4} + C_{5}^{5}

    Áp dụng công thức (a + b)^{n} cho a = 2,b = 1,n = 5 ta có:

    S = 2^{5}C_{5}^{0} + 2^{4}C_{5}^{1} +
2^{3}C_{5}^{2} + 2.C_{5}^{4} + C_{5}^{5}

    S = (2 + 1)^{5} = 243

  • Câu 13: Vận dụng

    Cho tập A =
\left\{ 1,2,3,4,5,6,7,8 ight\}. Từ tập A có thể lập được bao nhiêu số gồm 8 chữ số đôi một khác nhau sao các số này lẻ không chia hết cho 5.

    x lẻ và không chia hết cho 5 nên d \in \left\{ 1,3,7 ight\} \Rightarrow
d có 3 cách chọn

    Số các chọn các chữ số còn lại là: 7.6.5.4.3.2.1

    Vậy 15120 số thỏa yêu cầu bài toán.

  • Câu 14: Thông hiểu

    Giả sử rằng:

    (1 + x)\left( 1 + x + x^{2}
ight)

    = (1 + 1)\left( 1 + 1 + 1^{2}
ight)...\left( 1 + 1 + 1^{2} + ... + 1^{n} ight)

    = m_{0} + m_{1}x + m_{2}x^{2} + ... +
m_{a}x^{a}

    Hãy tính \sum_{i =
0}^{a}m_{i}?

    Ta có:

    \sum_{i = 0}^{a}m_{i} = (1 + 1)\left( 1
+ 1 + 1^{2} ight)...\left( 1 + 1 + 1^{2} + ... + 1^{n}
ight)

    = 2.3.4.....(n + 1) = (n +
1)!

  • Câu 15: Vận dụng

    Từ các số 1,2,3 có thể lập được bao nhiêu số tự nhiên khác nhau và mỗi số có các chữ số khác nhau?

    TH1: số có 1 chữ số thì có 3 cách.

    TH2: số có 2 chữ số và mỗi số có các chữ số khác nhau thì có3.2 = 6số.

    TH3: số có 3 chữ số và mỗi số có các chữ số khác nhau thì có3.2.1 = 6số

    Vậy có3 + 6 + 6 = 15 số.

  • Câu 16: Nhận biết

    Tìm số hạng chứa x^{7} trong khai triển \left( x - \frac{1}{x} ight)^{13}.

    Ta có công thức của số hạng tổng quát:

    T_{k + 1} = C_{13}^{k}x^{13 - k}.\left(
- \frac{1}{x} ight)^{k} = C_{13}^{k}x^{13 - k}( - 1)^{k}x^{- k} =
C_{13}^{k}.( - 1)^{k}x^{13 - 2k}

    Số hạng chứa x^{7}khi và chỉ khi 13 - 2k = 7 \Leftrightarrow k =
3.

    Vậy số hạng chứa x^{7} trong khai triển là -
C_{13}^{3}x^{7}.

  • Câu 17: Nhận biết

    Một lớp học có 40 học sinh gồm 25 nam và 15 nữ. Người ta muốn chọn một ban điều hành gồm 3 học sinh. Có bao nhiêu cách chọn ban điều hành có 1 nam và 2 nữ?

    Chọn ban điều hành gồm 3 học sinh gồm 1 nam và 2 nữ có C_{25}^{1}.C_{15}^{2} = 2625 cách.

  • Câu 18: Thông hiểu

    Tổng tất cả các nghiệm của phương trình P_{x}A_{x}^{2} + 72 = 6\left( 2P_{x} +
A_{x}^{2} ight) bằng:

    Điều kiện xác định: x\mathbb{\in N};x
\geq 2

    Ta có:

    P_{x}A_{x}^{2} + 72 = 6\left( 2P_{x} +
A_{x}^{2} ight)

    \Leftrightarrow x!.\frac{x!}{(x - 2)!} +
72 = 6\left\lbrack 2x! + \frac{x!}{(x - 2)!} ightbrack

    \Leftrightarrow x!.x(x - 1) + 72 =
6\left\lbrack 2.x! + 2(x - 1) ightbrack

    \Leftrightarrow x(x - 1)(x! - 6) + 12(6
- x!) = 0

    \Leftrightarrow (x! - 6)\left\lbrack x(x
- 1) - 12 ightbrack = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
x! - 6 = 0 \\
x^{2} - x - 12 = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x = 3(tm) \\
\left\lbrack \begin{matrix}
x = - 3(ktm) \\
x = 4(tm) \\
\end{matrix} ight.\  \\
\end{matrix} ight.

    Vật tổng các nghiệm phương trình là: T =
3 + 4 = 7

  • Câu 19: Nhận biết

    Giả sử một công việc phải hoàn thành qua 2 giai đoạn:

    Giai đoạn 1 có a cách thực hiện.

    Với mỗi cách thực hiện của giai đoạn 1 ta có b cách thực hiện cho giai đoạn 2.

    Khi đó số cách thực hiện công việc là:

    Áp dụng quy tắc nhân ta có số cách thực hiện công việc là a.b cách.

  • Câu 20: Vận dụng

    Có 7 nam 5 nữ xếp thành một hàng ngang. Hỏi có bao nhiêu cách xếp, biết rằng 2 vị trí đầu và cuối là nam và không có 2 nữ nào đứng cạnh nhau?

    Số cách chọn 2 nam đứng ở đầu và cuối là. A_{7}^{2}. Lúc này còn lại 5 nam và 5 nữ, để đưa 10 người này vào hàng thì trước tiên sẽ cho 5 nam đứng riêng thành hàng ngang, số cách đứng là 5!. Sau đó lần lượt “nhét” 5 nữ vào các khoảng trống ở giữa hoặc đầu, hoặc cuối của hàng 5 nam này, mỗi khoảng trống chỉ “nhét” 1 nữ hoặc không “nhét”, có tất cả 6 khoảng trống nên số cách xếp vào là A_{6}^{5}. Số cách xếp 10 người này thành hàng ngang mà 2 nữ bất kì không đứng cạnh nhau là. 5!.A_{6}^{5}

    Đưa 10 người này vào giữa 2 nam đầu và cuối đã chọn, số cách xếp là. A_{7}^{2}.5!.A_{6}^{5} =
3628800.

  • Câu 21: Thông hiểu

    Từ các chữ số 0, 2, 3, 5, 6, 8 có thể lập được bao nhiêu số tự nhiên gồm 6 chữ số đôi một khác nhau trong đó hai chữ số 05 không đứng cạnh nhau.

    Số các số có 6 chữ số được lập từ các chữ số 0, 2, 3, 5, 6, 86! - 5!.

    Số các số có chữ số 05 đứng cạnh nhau: 2.5! - 4!.

    Số các số có chữ số 05 không đúng cạnh nhau là: 6! - 5! - (2.5! - 4!) = 384.

  • Câu 22: Nhận biết

    Ban chấp hành chi đoàn của một lớp có bạn An, Bình, Công. Hỏi có bao nhiêu cách phân công các bạn này vào các chức vụ Bí thư, phó Bí thư và Ủy viên mà không bạn nào kiêm nhiệm?

    Mỗi cách phân công \mathbf{3} bạn An, Bình, Công vào 3 chức vụ Bí thư, phó Bí thư và Ủy viên mà không bạn nào kiêm nhiệm là một hoán vị của 3 phần tử. Vậy có 3!\ \  = \ \ 6 cách.

  • Câu 23: Nhận biết

    Số hạng không chứa x trong khai triển nhị thức \left( x^{3} - \frac{1}{x^{2}} ight)^{5};(x eq
0) là:

    Số hạng tổng quát trong khai triển nhị thức \left( x^{3} - \frac{1}{x^{2}} ight)^{5};(x eq
0) là:

    C_{5}^{k}.\left( x^{3} ight)^{5 -
k}.\left( - \frac{1}{x^{2}} ight)^{k} = C_{5}^{k}.( - 1)^{k}.x^{15 -
5k}

    Số hạng không chứa x khi và chỉ khi 15 -
5k = 0 \Rightarrow k = 3

    Vậy số hạng không chứa x là: C_{5}^{3}.(
- 1)^{3} = - 10.

  • Câu 24: Nhận biết

    Biết rằng khai triển nhị thức Newton (x + 2)^{n};\left( n\mathbb{\in N}
ight) có tất cả 6 số hạng. Hãy xác định n?

    Vì trong khai triển nhị thức Newton (x +
2)^{n};\left( n\mathbb{\in N} ight) đã cho có tất cả 6 số hạng nên n + 1 = 6 \Rightarrow n =
5

    Vậy n = 5 là giá trị cần tìm.

  • Câu 25: Vận dụng

    Cho tập A =
\left\{ 0,1,2,3,4,5,6 ight\}. Từ tập A có thể lập được bao nhiêu số tự nhiên gồm 5 chữ số và chia hết cho 5.

    Gọi x = \overline{abcde} là số cần lập, e \in \left\{ 0,5 ight\},a eq
0

    \bullet e = 0 \Rightarrow e có 1 cách chọn, cách chọn a,b,c,d:6.5.4.3

    Trường hợp này có 360 số

    e = 5 \Rightarrow e có một cách chọn, số cách chọn a,b,c,d:5.5.4.3 =
300

    Trường hợp này có 300 số.

    Vậy có 660 số thỏa yêu cầu bài toán.

  • Câu 26: Nhận biết

    Bộ bài tây có 52 lá, trong đó có 4 con át. Rút ra 5 con. Hỏi có bao nhiêu cách để rút được các lá bài trong đó có 1 con át và một con vua?

    Số cách lấy 5 con trong đó có 1 con át và 1 con vua là C_{4}^{1}C_{4}^{1}.C_{44}^{3} =
211904.

  • Câu 27: Nhận biết

    Có 3 bạn nam và 4 bạn nữ. Hỏi có bao nhiêu cách xếp 7 bạn vào 1 dãy ghế hàng ngang liền nhau gồm 7 chỗ ngồi?

     Xếp 7 bạn vào dãy 7 ghế: có 7! (cách).

  • Câu 28: Vận dụng

    Tìm n thuộc tập hợp số tự nhiên, biết rằng 1.C_{n}^{1} + 2.C_{n}^{2} +
3.C_{n}^{3} + ... + n.C_{n}^{n} = 256n (C_{n}^{k} là số tổ hợp chập k của n phần tử).

    Trước hết ta chứng minh công thức \frac{k}{n}C_{n}^{k} = C_{n - 1}^{k - 1} với 1 \leq k \leq nn \geq 2.

    Thật vậy, \frac{k}{n}C_{n}^{k} =
\frac{k}{n}.\frac{n!}{k!(n - k)!} = \frac{(n - 1)!}{(k - 1)!(n - k)!} =
C_{n - 1}^{k - 1}.(đpcm)

    Áp dụng công thức trên ta có

    1.C_{n}^{1} + 2.C_{n}^{2} + 3.C_{n}^{3}
+ ... + n.C_{n}^{n} = n\left( \frac{1}{n}.C_{n}^{1} +
\frac{2}{n}.C_{n}^{2} + \frac{3}{n}.C_{n}^{3} + ... +
\frac{n}{n}.C_{n}^{n} ight)

    = n\left( C_{n - 1}^{0} + C_{n - 1}^{1}
+ C_{n - 1}^{2} + ... + C_{n - 1}^{n - 1} ight) = n2^{n -
1}

    Theo đề 1.C_{n}^{1} + 2.C_{n}^{2} +
3.C_{n}^{3} + ... + n.C_{n}^{n} = 256n \Leftrightarrow n2^{n - 1} = 256n
\Leftrightarrow 2^{n - 1} = 256 \Leftrightarrow n = 9..

  • Câu 29: Nhận biết

    Viết khai triển theo công thức nhị thức Niu-tơn (x - y)^{5}.

    Ta có:

    (x - y)^{5} = \left\lbrack x + ( - y)
ightbrack^{5}

    = C_5^0{x^5} + C_5^1{x^4}{\left( { - y} ight)^1} + C_5^2{x^3}{\left( { - y} ight)^2} + C_5^3{x^2}{\left( { - y} ight)^3} + C_5^4{x^1}{\left( { - y} ight)^4} + C_5^5{\left( { - y} ight)^5}

    Hay (x - y)^{5} = x^{5} - 5x^{4}y +
10x^{3}y^{2} - 10x^{2}y^{3} + 5xy^{4} - y^{5}.

  • Câu 30: Thông hiểu

    Tính giá trị biểu thức: A = C_{2016}^{1} + C_{2016}^{2} + C_{2016}^{3} +
... + C_{2016}^{2016}.

    Xét khai triển (x + 1)^{2016} =
C_{2016}^{0}x^{2016} + C_{2016}^{1}.x^{2015} + ... +
C_{2016}^{2016}

    Thay x = 1 ta được:

    (1 + 1)^{2016} = C_{2016}^{0}.1^{2016} +
C_{2016}^{1}.1^{2015} + ... + C_{2016}^{2016}

    = C_{2016}^{0} + C_{2016}^{1} + ... +
C_{2016}^{2016} = 1 + A

    \Leftrightarrow 1 + A =
2^{2016}

    \Leftrightarrow A = 2^{2016} -
1

  • Câu 31: Nhận biết

    3 cây bút đỏ, 4 cây bút xanh trong một hộp bút. Hỏi có bao nhiêu cách lấy ra một cây bút từ hộp bút?

    Số cách lấy ra 1 cây bút là màu đỏ có 3 cách.

    Số cách lấy ra 1 cây bút là màu xanh có 4 cách.

    Theo quy tắc cộng, số cách lấy ra 1 cây bút từ hộp bút là: 3 + 4 = 7 cách.

    Vậy có 7 cách lấy 1 cây bút từ hộp bút.

  • Câu 32: Nhận biết

    Cho các số 1, 2, 4, 5, 7. Có bao nhiêu cách chọn ra một số chẵn gồm ba chữ số khác nhau từ 5 chữ số đã cho?

    Gọi số cần tìm là \overline{abc}.

    + Chọn c: có 2 cách.

    + Chọn a: có 4 cách.

    + Chọn b: có 3 cách.

    Áp dụng quy tắc nhân ta có 2.4.3 = 24 số.

  • Câu 33: Thông hiểu

    Từ các chữ số 1,2,3,4,5,6,7,8,9, có thể lập được bao nhiêu số nguyên dương n trong đó n gồm 5 chữ số đôi một khác nhau và tận cùng bằng một chữ số khác 3.

    Gọi n =
\overline{a_{1}a_{2}a_{3}a_{4}a_{5}} là số thỏa yêu cầu bài toán.

    Chọn a_{5} \in X\backslash\left\{ 3
ight\} có: 8 cách.

    Chọn a_{1} \in X\backslash\left\{ a_{5}
ight\} có: 8 cách.

    Chọn a_{2} \in X\backslash\left\{
a_{1};a_{5} ight\} có: 7 cách.

    Chọn a_{3} \in X\backslash\left\{
a_{1};a_{5};a_{2} ight\} có: 6 cách.

    Chọn a_{4} \in X\backslash\left\{
a_{1};a_{5};a_{2};a_{3} ight\} có: 5 cách.

    Theo quy tắc nhân có: 8.8.7.6.5 =
13440 số.

  • Câu 34: Nhận biết

    Trong khai triển nhị thức Newton (3x - 2)^{5}, hệ số của số hạng chứa x^{3} bằng:

    Hệ số của số hạng chứa x^{3} trong khai triển (3x - 2)^{5} là: C_{5}^{3}.3^{3}.( - 2)^{2} =
1080.

  • Câu 35: Thông hiểu

    Có bao nhiêu số nguyên dương n gồm 5 chữ số có nghĩa (chữ số đầu tiên phải khác 0) trong đó n là bội số của 5?

    Gọi tập X = \left\{ 0;1;2;3;4;5;6;7;8;9
ight\}n =
\overline{a_{1}a_{2}a_{3}a_{4}a_{5}} là số thỏa mãn yêu cầu:

    Chọn a_{1} \in X\backslash\left\{ 0
ight\} có: 9 cách.

    Chọn a_{2} \in X có: 10 cách.

    Chọn a_{3} \in X có: 10 cách.

    Chọn a_{4} \in X có: 10 cách.

    Chọn a_{5} \in \left\{ 0;5
ight\} có: 2 cách.

    Theo quy tắc nhân có: 9.10.10.10.2 =
18000 số.

  • Câu 36: Vận dụng

    Có 10 quyển sách Toán, 8 quyển sách Lí, 5 quyển sách Văn. Cần chọn ra 8 quyển có ở cả ba môn sao cho số quyển Toán ít nhất là bốn và số quyển Văn nhiều nhất là hai. Hỏi có bao nhiêu cách chọn?

    Chọn 4 Toán, 2 Văn, 2 Lí có C_{10}^{4}C_{5}^{2}C_{8}^{2} cách.

    Chọn 4 Toán, 1 Văn, 3 Lí có C_{10}^{4}C_{5}^{1}C_{8}^{3} cách.

    Chọn 5 Toán, 2 Văn, 1 Lí có C_{10}^{5}C_{5}^{2}C_{8}^{1} cách.

    Chọn 5 Toán, 1 Văn, 2 Lí có C_{10}^{5}C_{5}^{1}C_{8}^{2} cách.

    Chọn 6 Toán, 1 Văn, 1 Lí có C_{10}^{6}C_{5}^{1}C_{8}^{1} cách.

    Tổng lại ta được 181440 cách thỏa mãn.

  • Câu 37: Thông hiểu

    Xác định số hạng không chứa x trong khai triển nhị thức Newton \left( x^{2} +
\frac{1}{x^{2}} ight)^{n},(x > 0). Biết rằng C_{n}^{0} + 3C_{n}^{1} + 9C_{n}^{2} + ... +
3^{n}.C_{n}^{n} = 256.

    Ta có:

    C_{n}^{0} + 3C_{n}^{1} + 9C_{n}^{2} +
... + 3^{n}.C_{n}^{n} = 256

    \Leftrightarrow (1 + 3)^{n} = 256
\Leftrightarrow 4^{n} = 256 \Leftrightarrow n = 4

    Xét khai triển \left( x^{2} +
\frac{1}{x^{2}} ight)^{n},(x > 0)

    Số hạng tổng quát C_{4}^{k}.\left( x^{2}
ight)^{4 - k}.\left( \frac{1}{x^{2}} ight)^{k} = C_{4}^{k}.x^{8 -
4k}

    Số hạng không chứa x ứng với 8 - 4k = 0
\Leftrightarrow k = 2

    Suy ra số hạng không chứa x là C_{4}^{2}
= 6.

  • Câu 38: Thông hiểu

    Cho các số tự nhiên m, n thỏa mãn đồng thời các điều kiện C_{m}^{2}=153 và C_{m}^{n}=C_{m}^{n+2}. Khi đó m + n bằng

    Điều kiện: m,n \in \mathbb{N},m \geqslant 2,0 \leqslant n < m

    Ta có: C_m^n = C_m^{m - n}  

    \begin{matrix}  C_m^n = C_m^{n + 2} \hfill \\   \Leftrightarrow C_m^{m - n} = C_m^{n + 2} \hfill \\   \Rightarrow m - n = n + 2 \hfill \\   \Rightarrow n = \dfrac{{m - 2}}{2} \hfill \\ \end{matrix}

    Mặt khác ta có:

     \begin{matrix}  C_m^2 = 153 \hfill \\   \Leftrightarrow \dfrac{{m\left( {m - 1} ight)\left( {m - 2} ight)!}}{{2!\left( {m - 2} ight)!}} = 153 \hfill \\   \Leftrightarrow m\left( {m - 1} ight) = 306 \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {m = 18\left( {tm} ight)} \\   {m =  - 17\left( {ktm} ight)} \end{array}} ight. \hfill \\ \end{matrix}

    => n=8

    vậy tổng m và n là: 18 + 8 = 26.

     

  • Câu 39: Nhận biết

    Có bao nhiêu cách xếp 5 bạn ABCDE vào 1 chiếc ghế dài sao cho bạn A ngồi chính giữa?

    Xếp bạn A ngồi chính giữa: có 1 cách.

    Khi đó xếp 4 bạn BCDE vào 4 vị trí còn lại, có 4! = 24 cách.

    Vậy có tất cả 24 cách xếp.

  • Câu 40: Vận dụng

    Với n là số nguyên dương thỏa mãn 3C_{n + 1}^{3} -
3A_{n}^{2} = 52(n - 1). Trong khai triển biểu thức \left( x^{3} + 2y^{2} ight)^{n}, gọi T_{k} là số hạng mà tổng số mũ của xy của số hạng đó bằng 34. Hệ số của T_{k} là :

    Điều kiện: n \geq 2, n \in \mathbb{N}^{*}.

    Ta có 3C_{n + 1}^{3} - 3A_{n}^{2} = 52(n
- 1) \Leftrightarrow 3.\frac{(n + 1)!}{3!(n - 2)!} - 3\frac{n!}{(n -
2)!} = 52(n - 1)

    \Leftrightarrow \frac{(n - 1)n(n + 1)}{2}
- 3n(n - 1) = 52(n - 1) \Leftrightarrow n^{2} + n - 6n =
104.

    \Leftrightarrow n^{2} - 5n - 104 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
n = 13 \\
n = - 8 \\
\end{matrix} ight.\  \Leftrightarrow n = 13.

    \left( x^{3} + 2y^{2} ight)^{13} =
\sum_{0}^{13}{C_{13}^{k}\left( x^{3} ight)^{13 - k}\left( 2y^{2}
ight)^{k}} = \sum_{0}^{13}{C_{13}^{k}2^{k}x^{39 -
3k}y^{2k}}.

    Ta có: 39 - 3k + 2k = 34 \Leftrightarrow
k = 5. Vậy hệ số C_{13}^{5}2^{5} =
41184.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 8 Đại số tổ hợp Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 1 lượt xem
Sắp xếp theo