Cho cấp số nhân có các số hạng lần lượt là 3; 9; 27; 81; … Tìm số hạng tổng quát un của cấp số nhân đã cho.
Cấp số nhân có các số hạng lần lượt là 3; 9; 27; 81; …
Cho cấp số nhân có các số hạng lần lượt là 3; 9; 27; 81; … Tìm số hạng tổng quát un của cấp số nhân đã cho.
Cấp số nhân có các số hạng lần lượt là 3; 9; 27; 81; …
Tìm để các số
theo thứ tự đó lập thành một cấp số nhân.
Các số theo thứ tự đó lập thành một cấp số nhân
Cho cấp số cộng có số hạng đầu
và công sai
. Giá trị
bằng
Áp dụng công thức số hạng tổng quát
.
Cho dãy số biết
. Số hạng có ba chữ số lớn nhất của dãy là:
Tìm số hạng tổng quát của dãy số
Dự đoán
Ta chứng minh theo phương pháp quy nạp
Với ta có:
Giả sử , khi đó ta có:
Vậy công thức tổng quát được chứng minh theo nguyên lí quy nạp.
Ta có:
Mà
Nên ta chọn
Vậy là số hạng cần tìm.
Một người xếp chồng những khúc gỗ có kích thước như nhau thành hàng. Sau khi xếp xong người đó nhận thấy mỗi hàng nằm liền phía trên thì ít hơn hàng dưới
khúc gỗ và hàng trên cùng có
khúc gỗ. Hỏi người đó có tổng cộng bao nhiêu khúc gỗ?
Đáp án: 55
Một người xếp chồng những khúc gỗ có kích thước như nhau thành hàng. Sau khi xếp xong người đó nhận thấy mỗi hàng nằm liền phía trên thì ít hơn hàng dưới
khúc gỗ và hàng trên cùng có
khúc gỗ. Hỏi người đó có tổng cộng bao nhiêu khúc gỗ?
Đáp án: 55
Mỗi hàng liền phía trên ít hơn hàng dưới khúc gỗ và hàng trên cùng có 1 khúc gỗ nên ta có đây là tổng của một cấp số cộng có:
.
Khi đó, tổng số khúc gỗ là:
(khúc gỗ).
Cho cấp số cộng có số hạng đầu là
. Hỏi số hạng thứ tư là số nào dưới đây?
Ta có:
Vậy
Cho cấp số cộng . Chọn khẳng định đúng trong các khẳng định sau?
Ta có:
Cho dãy số biết
. Mệnh đề nào sau đây sai?
Ta có:
Tổng là:
Ta có:
Xét cấp số cộng (un) có:
Số hạng đầu là u1 = 199
Công sai d = u2 – u1 = 195 – 199 = -4
Ta có:
Cho cấp số nhân có các số hạng lần lượt là . Tìm số hạng tổng quát
của cấp số nhân đã cho.
Các số hạng lần lượt là lập thành cấp số nhân
Một quả bóng rơi từ độ cao 6m với phương vuông góc với mặt đất. Mỗi lần chạm đất quả bóng nảy lên với độ cao bằng độ cao của lần rơi trước. Tính quãng đường quả bóng đã bay từ lúc thả bóng cho đến lúc bóng không nảy nữa.
Ta có: Quãng đường bóng bay bằng tổng quãng đường bóng nảy lên và quãng đường bóng rơi xuống
Vì mỗi lần bóng nảy lên bằng lần nảy trước nên ta có tổng quãng đường bóng nảy lên là:
Đây là tổng của cấp số nhân lùi vô hạn có
=>
Tổng quãng đường bóng rơi xuống bằng khoảng cách độ cao ban đầu và tổng quãng đường bóng nảy lên là:
Đây là tổng của cấp số nhân lùi vô hạn với
=>
Vậy tổng quãng đường bóng bay là 42m
Cho cấp số nhân có
. Mệnh đề nào sau đây đúng?
Theo bài ra ta có:
Cho một cấp số cộng có . Hỏi
bằng bao nhiêu?
Ta có:
Cho dãy số (un) với .
Số hạng tổng quát un là?
Ta có u1 = 1; u2 = u1 + 3; u3 = u2 + 5; u4 = u3 + 7; …; un = un − 1 + (2n−1)
Cộng từng vế với vế của các đẳng thức trên và rút gọn ta được
un = 1 + 3 + 5 + 7 + … + (2n−1) = n2.
Cho cấp số nhân (un) có số hạng đầu u1 = 5; công bội q = -2. Số hạng thứ sáu của (un) là:
Ta có:
Cho dãy số thỏa mãn
. Đặt
. Tìm số nguyên dương lớn nhất của n thỏa mãn
?
Cho dãy số thỏa mãn
. Đặt
. Tìm số nguyên dương lớn nhất của n thỏa mãn
?
Cho dãy số với
. Dãy số
là dãy số
Ta có:
Vậy dãy số là dãy số tăng.
Cho dãy số xác định bởi công thức
. Tìm số hạng tổng quát của dãy số?
Ta có:
suy ra
…
Cộng các vễ theo đẳng thức trên ta được
Cho cấp số cộng với
. Tìm số hạng đầu
và công sai
của cấp số cộng trên.
Ta có:
Khẳng định nào dưới đây sai?
Số hạng tổng quát của cấp số cộng (un) là với công sai d và số hạng đầu u1
Cho cấp số cộng thỏa mãn
. Mệnh đề nào sau đây đúng?
Ta có:
Khi đó:
Trong các dãy số sau, dãy số nào là dãy số giảm?
Xét đáp án :
Ta có . Khi đó:
Vậy (un) là dãy số tăng.
Xét đáp án :
Ta có . Khi đó
Vậy (un) là dãy số tăng.
Xét đáp án :
Ta có
Vậy (un) là dãy số giảm.
Xét đáp án :
Ta có
Vậy (un) là dãy số không tăng, không giảm.
Cho cấp số cộng (un) có ;
. Khẳng định nào sau đây là khẳng định đúng?
Ta có:
Cho dãy số xác định bởi
. Giá trị
là
Ta có: .
Cho dãy số , biết
. Dãy số
bị chặn dưới bởi số nào dưới đây?
Ta có:
Khẳng định nào sau đây là khẳng định sai?
Khẳng định sai là: “Số hạng tổng quát của cấp số cộng là
với công sai
và số hạng đầu
.”
Cho cấp số nhân có tổng n số hạng đầu tiên là
. Tìm số hạng thứ 5 của cấp số nhân đã cho.
Mặt khác
Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?
a) Dãy số xác định bởi công thức
là một dãy số giảm. Sai||Đúng
b) . Đúng||Sai
c) Cấp số cộng thỏa mãn
có số hạng tổng quát là
. Sai||Đúng
d) Biết rằng khi viết thêm bốn số vào giữa hai số 160 và 5 để được một cấp số nhân. Khi đó tổng các số hạng của cấp số nhân đó bằng 215. Sai||Đúng
Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?
a) Dãy số xác định bởi công thức
là một dãy số giảm. Sai||Đúng
b) . Đúng||Sai
c) Cấp số cộng thỏa mãn
có số hạng tổng quát là
. Sai||Đúng
d) Biết rằng khi viết thêm bốn số vào giữa hai số 160 và 5 để được một cấp số nhân. Khi đó tổng các số hạng của cấp số nhân đó bằng 215. Sai||Đúng
a) Xét dãy số đã cho ta có:
nên dãy số
không tăng không giảm.
b) đúng bằng chứng minh quy nạp.
c) Công sai d = 5 và số hạng đầu tiên bằng
Khi đó số hạng tổng quát của cấp số cộng là
d) Từ giả thiết ta có:
Suy ra tổng các số hạng của cấp số nhân đó là: .
Cho dãy số có các số hạng đầu là . Số hạng tổng quát của dãu số này là đẳng thức nào dưới đây?
Ta có: loại các đáp án
và
. Ta kiểm tra
Xét đáp án có
Xét đáp án có
là đáp án đúng.
Cho dãy số với
. Chọn đáp án đúng.
Ta chứng minh bằng phương pháp quy nạp.
Với ta có:
Giả sử . Ta cần chứng minh
.
Thật vậy
Vì
Vì
Vậy hay dãy
bị chặn trên bởi
và bị chặn dưới bởi
.
Cho cấp số cộng thỏa mãn
. Tính số hạng đầu tiên
và công sai
của cấp số cộng đã cho.
Ta có:
Cho cấp số nhân có
và công bội
. Số hạng tổng quát của cấp số nhân
là
Số hạng tổng quát của cấp số nhân là
.
Biết các số và
lập thành một cấp số nhân; các số
và
lập thành một cấp số cộng. Tính tổng
Theo bài ra ta có:
Cho cấp số nhân có các số hạng lần lượt là . Gọi
là tổng của
số hạng đầu tiên của cấp số nhân đó. Mệnh đề nào sau đây đúng?
Cấp số nhân đã cho có:
Một cấp số nhân có hai số hạng liên tiếp là 16 và 36. Số hạng tiếp theo là:
Ta có cấp số nhân (un) nên khi đó:
Trong các dãy số sau, dãy số nào bị chặn trên?
Ta có:
.
Vậy đây là dãy số bị chặn trên.
Cho cấp số cộng với
. Khi đó số
là số hạng thứ mấy trong dãy?
Theo bài ra ta có:
Với , cho dãy số
xác định bởi hệ thức truy hồi
,
. Giá trị của số hạng thứ
bằng
Ta có:
,
,
.
Cho dãy số (un) với , biết
. Hỏi uk là số hạng thứ mấy của dãy số đã cho?
Ta có:
(do k∈ℕ*)
Cho cấp số cộng thỏa mãn
. Tính tổng 16 số hạng đầu tiên của cấp số cộng đã cho.
Ta có: