Tính
Ta có:
Vậy
Tính
Ta có:
Vậy
Tính
Ta có:
Hàm số nào trong các hàm số sau liên tục tại ?
Xét hàm số có:
Vậy hàm số liên tục tại .
Cho hai số thực thỏa mãn
. Tính giá trị biểu thức
. (Kết quả ghi dưới dạng số thập phân).
Đáp án: 1,25
Cho hai số thực thỏa mãn
. Tính giá trị biểu thức
. (Kết quả ghi dưới dạng số thập phân).
Đáp án: 1,25
Vì là 1 số hữu hạn và
nên
hay
.
Khi đó:
suy ra
.
Vậy .
Tính giới hạn
Ta có:
Ta có:
=>
Cho với
. Phải bổ sung thêm giá trị
bằng bao nhiêu thì hàm số
liên tục trên
?
Ta có:
Để hàm số liên tục trên thì
Tính giới hạn của hàm số khi
.
Ta có:
Hàm số nào sau đây không liên tục tại ?
Hàm số có tập xác định
nên không liên tục tại
.
Chọn mệnh đề sai?
Xét
Xét
Kết quả đúng của là:
Xét:
Ta có:
Suy ra
.
Phát biểu nào dưới đây sai?
Ta có phát biểu sai là:
Sửa lại là:
Cho dãy số với
. Chọn mệnh đề đúng trong các mệnh đề dưới đây?
Ta có:
lập thành một cấp số nhân có nên
vì
Cho hàm số xác định và liên tục trên
với
với
. Tính
.
Ta có hàm số xác định và liên tục trên
nên suy ra
Hàm số liên tục tại điểm nào dưới đây?
Hàm số có tập xác định
Theo lí thuyết ta có hàm phân thức luôn liên tục trên tập xác định .
Khi đó suy ra hàm số đã cho liên tục tại điểm
.
Cho hàm số . Mệnh đề nào sau đây là sai?
Hàm số là hàm đa thức
=> Hàm số liên tục trên
Ta có:
=>
=> có nghiệm trên
Vậy khẳng định sai là khẳng định: "Phương trình f(x) = 0 không có nghiệm trên khoảng "
Ta có:
=>
=> có nghiệm trên
Chọn mệnh đề đúng trong các mệnh đề sau:
Theo nội dung định lý tìm giới hạn, ta có:
Nếu , thì
Trong giới hạn sau đây, giới hạn nào bằng -1?
Ta có:
Cho hàm số . Khi đó
bằng:
Ta có:
Cho các mệnh đề:
1) Nếu hàm số liên tục trên
và
thì tồn tại
sao cho
.
2) Nếu hàm số liên tục trên
và
thì phương trình
có nghiệm.
3) Nếu hàm số đơn điệu trên
và
thì phương trình
có nghiệm duy nhất trên
.
Trong các mệnh đề trên:
Theo tính chất hàm số liên tục thì
1) Nếu hàm số liên tục trên
và
thì tồn tại
sao cho
. Mệnh đề sai.
2) Nếu hàm số liên tục trên
và
thì phương trình
có nghiệm. Mệnh đề đúng.
3) Nếu hàm số đơn điệu trên
và
thì phương trình
có nghiệm duy nhất trên
. Mệnh đề đúng.
Giá trị của bằng:
Gọi m là số tự nhiên thỏa: m+1>|a|.
Khi đó với mọi n > m+1.
Ta có:
Mà .
Từ đó suy ra: .
Với là số nguyên dương,
là hằng số, giới hạn
bằng
Ta có và
nên
Hàm số liên tục trên khoảng nào sau đây?
Ta có:
Hàm số là hàm phân thứ hữu tỉ có tập xác định
nên hàm số
liên tục trên các khoảng
.
Do đó liên tục trên
.
bằng
Ta có:
Tính giới hạn
Khi ta có:
Nhận định sự đúng sai của các kết luận sau?
a) . Đúng||Sai
b) Phương trình có đúng 3 nghiệm phân biệt. Đúng||Sai
c) Nếu thì
bằng
. Sai||Đúng
d) Hàm số gián đoạn tại
. Sai||Đúng
Nhận định sự đúng sai của các kết luận sau?
a) . Đúng||Sai
b) Phương trình có đúng 3 nghiệm phân biệt. Đúng||Sai
c) Nếu thì
bằng
. Sai||Đúng
d) Hàm số gián đoạn tại
. Sai||Đúng
Ta có:
Xét phương trình . Đặt
là hàm số liên tục trên
suy ra hàm số cũng liên tục trên
.
Ta có:
Khi đó: nên phương trình
có ít nhất 3 nghiệm
là phương trình bậc 3 có tối đa 3 nghiệm
Vậy phương trình đã cho có đúng 3 nghiệm.
Ta có:
Nếu suy ra
Ta có:
Vậy hàm số đã cho liên tục tại x = 0.
Tính giới hạn ?
Ta có:
.
Cho hàm số liên tục tại
. Tính giá trị biểu thức
.
Ta có:
Từ điều kiện hàm số liên tục tại ta có hệ phương trình:
Từ độ cao 55,8m của tháp nghiêng Pisa nước Italia người ta thả một quả bóng cao su chạm xuống đất. Giả sử mỗi lần chạm đất quả bóng lại nảy lên độ cao bằng độ cao mà quả bóng đạt trước đó. Tổng độ dài hành trình của quả bóng được thả từ lúc ban đầu cho đến khi nó nằm yên trên mặt đất thuộc khoảng nào trong các khoảng sau đây?
Ta có:
Độ cao của quả bóng sau mỗi lần nảy lên là một cấp số nhân lùi vô hạn (un) với u1 = 55,8m,
Sau khi nảy lên, qua bóng rơi xuống một quãng đường đúng bằng chiều cao.
Từ đó tổng quãng đường mà quả bóng đã di chuyển là
Vậy tổng quãng đường quả bóng di chuyển nằm trong khoảng .
bằng
Đặt .
Ta có khi
Vậy .
Giá trị của bằng:
Với số thực a>0 nhỏ tùy ý, ta chọn thỏa mãn:
Ta có:
Suy ra .
Tìm a để hàm số liên tục tại
. Tìm m để hàm số liên tục tại
.
Ta có:
Để hàm số liên tục tại thì
Cho hàm số . Số nghiệm của phương trình
trên tập số thực là:
Hàm số là hàm đa thức có tập xác định
=> Hàm số liên tục trên
=> Hàm số liên tục trên các khoảng
Ta có:
vậy phương trình có ít nhất một nghiệm trên
vậy phương trình có ít nhất một nghiệm trên
vậy phương trình có ít nhất một nghiệm trên
Vậy phương trình đã cho có ít nhất ba nghiệm thuộc khoảng . Tuy nhiên phương trình
là phương trình bậc ba có nhiều nhất ba nghiệm
Vậy phương trình có đúng ba nghiệm.
Tính giới hạn .
Ta có:
bằng
Ta có:
Cho dãy số với
, trong đó
là tham số thực.
a) Khi thì
Đúng||Sai
b) Khi thì
. Sai||Đúng
c) Khi thì
. Đúng||Sai
d) Khi thì
Đúng||Sai
Cho dãy số với
, trong đó
là tham số thực.
a) Khi thì
Đúng||Sai
b) Khi thì
. Sai||Đúng
c) Khi thì
. Đúng||Sai
d) Khi thì
Đúng||Sai
Ta có
Nhận lượng liên hợp :
Giá trị của với
bằng:
Với a>0 nhỏ tùy ý, ta chọn
Suy ra:
Vậy .
Cho . Khi đó:
a) Khi thì
. Đúng||Sai
b) Khi thì
. Sai||Đúng
c) Khi thì
. Sai||Đúng
d) thì giá trị của
là một nghiệm của phương trình
. Đúng||Sai
Cho . Khi đó:
a) Khi thì
. Đúng||Sai
b) Khi thì
. Sai||Đúng
c) Khi thì
. Sai||Đúng
d) thì giá trị của
là một nghiệm của phương trình
. Đúng||Sai
Ta có:
.
Vì vậy giá trị của là một nghiệm của phương trình
.
Kết luận:
a) Đúng |
b) Sai |
c) Sai |
d) Đúng |
Tìm m để hàm số liên tục trên
.
Ta có:
Dễ thấy hàm số liên tục khi . Hàm số liên tục tại
khi và chỉ khi
Giá trị của bằng:
Kết quả đúng của là?
Ta có: