Đề kiểm tra 45 phút Toán 11 Chương 3 Cánh Diều

Cùng nhau thử sức với bài kiểm tra 45 phút Toán 11 Cánh Diều Chương 3: Giới hạn. Hàm số liên tục nha!

  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Biết  \lim_{x
ightarrow 0}\frac{\sqrt{3x + 1} - 1}{x} = \frac{a}{b}, trong đó a,b là hai số nguyên dương và phân số \frac{a}{b} tối giản. Tính giá trị của biểu thức T = a^{2} +
b^{2}

    Ta có:

    \lim_{x ightarrow 0}\frac{\sqrt{3x +
1} - 1}{x}

    = \lim_{x ightarrow 0}\frac{\left(
\sqrt{3x + 1} - 1 ight)\left( \sqrt{3x + 1} + 1 ight)}{x\left(
\sqrt{3x + 1} + 1 ight)}

    = \lim_{x ightarrow 0}\frac{3x + 1 -
1}{x\left( \sqrt{3x + 1} + 1 ight)} = \lim_{x ightarrow
0}\frac{3x}{x\left( \sqrt{3x + 1} + 1 ight)}

    = \lim_{x ightarrow
0}\frac{1}{\sqrt{3x + 1} + 1} = \frac{3}{2}

    \Rightarrow a = 3;b = 2

    \Rightarrow T = 3^{2} + 2^{2} =
13

  • Câu 2: Thông hiểu

    Kiểm tra sự đúng sai của các kết luận sau?

    a) Phương trình \cos^{2}x - \sqrt{x} =0 vô nghiệm. Sai||Đúng

    b) Hàm số y = \frac{1}{x^{4} - 3x^{2} +
2} có 4 điểm gián đoạn. Đúng||Sai

    c) \lim_{x ightarrow 0}\dfrac{1 -\cos2x}{2\sin\dfrac{3x}{2}} = 0 Đúng||Sai

    d) Để hàm số f(x) = \left\{\begin{matrix}\dfrac{x^{2} + 4x}{2x}\ \ \ khi\ x eq 0 \\f(0)\ \ \ \ \ \ \ khi\ x = \ 0 \\\end{matrix} ight. liên tục trên khoảng ( - \infty; + \infty) thì f(0) nhận giá trị bằng 2. Đúng||Sai

    Đáp án là:

    Kiểm tra sự đúng sai của các kết luận sau?

    a) Phương trình \cos^{2}x - \sqrt{x} =0 vô nghiệm. Sai||Đúng

    b) Hàm số y = \frac{1}{x^{4} - 3x^{2} +
2} có 4 điểm gián đoạn. Đúng||Sai

    c) \lim_{x ightarrow 0}\dfrac{1 -\cos2x}{2\sin\dfrac{3x}{2}} = 0 Đúng||Sai

    d) Để hàm số f(x) = \left\{\begin{matrix}\dfrac{x^{2} + 4x}{2x}\ \ \ khi\ x eq 0 \\f(0)\ \ \ \ \ \ \ khi\ x = \ 0 \\\end{matrix} ight. liên tục trên khoảng ( - \infty; + \infty) thì f(0) nhận giá trị bằng 2. Đúng||Sai

     

    a) Xét hàm số \cos^{2}x - \sqrt{x} =f(x) có tập xác định D = \lbrack 0;
+ \infty)

     

    Hàm số liên tục trên \left\lbrack
0;\frac{\pi}{2} ightbrack ta có: f(0) = 1;f\left( \frac{\pi}{2} ight) = -
\sqrt{\frac{\pi}{2}}

    f(0).f\left( \frac{\pi}{2} ight)
< 0 nên phương trình f(x) =
0 có ít nhất một nghiệm trên \left(
0;\frac{\pi}{2} ight).

    b) Ta có:

    x^{4} - 3x^{2} + 2 = 0 \Leftrightarrow
\left( x^{2} - 1 ight)\left( x^{2} - 2 ight) = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
x^{2} - 1 = 0 \\
x^{2} - 2 = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x^{2} = 1 \\
x^{2} = 2 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x = \pm 1 \\
x = \pm 2 \\
\end{matrix} ight.

    Vậy hàm số đã cho có 4 điểm gián đoạn.

    c) Ta có:

    \lim_{x ightarrow 0}\dfrac{1 -\cos2x}{2\sin\dfrac{3x}{2}} = \lim_{x ightarrow 0}\left\lbrack x.\left(\dfrac{\sin x}{x} ight)^{2}.\dfrac{3}{2}.\left(\dfrac{\sin\dfrac{3x}{2}}{\dfrac{3x}{2}} ight) ightbrack =0

    d) Ta có: D = \mathbb{R}

    với x eq 0 thì f(x) = \frac{x^{2} + 4x}{2x} là hàm phân thức hữu tỉ xác định với mọi x eq
0. Do đó hàm số liên tục trên các khoảng ( - \infty;0),(0; + \infty)

    Tại x = 0 ta có: \lim_{x ightarrow 0}f(x) = \lim_{x ightarrow
0}\left( \frac{x^{2} + 4x}{2x} ight) = \lim_{x ightarrow 0}\left(
\frac{x + 4}{2} ight) = 2

    Để hàm số liên tục trên khoảng ( -
\infty; + \infty) thì hàm số phải liên tục tại x = 0 khi đó:

    \lim_{x ightarrow 0}f(x) = f(0) =
2.

    Vậy để hàm số f(x) = \left\{\begin{matrix}\dfrac{x^{2} + 4x}{2x}\ \ \ khi\ x eq 0 \\f(0)\ \ \ \ \ \ \ khi\ x = \ 0 \\\end{matrix} ight. liên tục trên khoảng ( - \infty; + \infty) thì f(0) nhận giá trị là 2.

  • Câu 3: Thông hiểu

    Kiểm tra sự đúng sai của các kết luận sau?

    a) \lim_{x ightarrow \infty}\frac{2n +
5}{3n + 7} = \frac{5}{3} Sai||Đúng

    b) \lim_{x ightarrow - 2}\left( x^{2}
- 2ax + 3 + a^{2} ight) = 3 khi a
= - 2 Đúng||Sai

    c) Hàm số f(x) = \left\{ \begin{matrix}\dfrac{x^{2} - 3}{x - \sqrt{3}}\ \ \ khi\ x\  eq \sqrt{3} \\2\sqrt{3}\ \ \ khi\ x\  = \ \sqrt{3} \\\end{matrix} ight. liên tục tại x = \sqrt{3} Đúng||Sai

    c) \lim\frac{\cos n}{n} = +
\infty Sai||Đúng

    Đáp án là:

    Kiểm tra sự đúng sai của các kết luận sau?

    a) \lim_{x ightarrow \infty}\frac{2n +
5}{3n + 7} = \frac{5}{3} Sai||Đúng

    b) \lim_{x ightarrow - 2}\left( x^{2}
- 2ax + 3 + a^{2} ight) = 3 khi a
= - 2 Đúng||Sai

    c) Hàm số f(x) = \left\{ \begin{matrix}\dfrac{x^{2} - 3}{x - \sqrt{3}}\ \ \ khi\ x\  eq \sqrt{3} \\2\sqrt{3}\ \ \ khi\ x\  = \ \sqrt{3} \\\end{matrix} ight. liên tục tại x = \sqrt{3} Đúng||Sai

    c) \lim\frac{\cos n}{n} = +
\infty Sai||Đúng

    Ta có: \lim_{x ightarrow\infty}\dfrac{2n + 5}{3n + 7} = \lim_{x ightarrow\infty}\dfrac{\dfrac{2n}{n} + \dfrac{5}{n}}{\dfrac{3n}{n} + \dfrac{7}{n}} =\dfrac{2}{3}

    Ta có: Khi a = - 2 thì \lim_{x ightarrow - 2}\left( x^{2} + 4x + 3 + 4
ight) = \lim_{x ightarrow - 2}\left( x^{2} + 4x + 7 ight) =
3

    Ta có: \left\{ \begin{gathered}
  f\left( {\sqrt 3 } ight) = 2\sqrt 3  \hfill \\
  \mathop {\lim }\limits_{x \to \sqrt 3 } \left( {\frac{{{x^2} - 3}}{{x - \sqrt 3 }}} ight) = \mathop {\lim }\limits_{x \to \sqrt 3 } \left( {x + \sqrt 3 } ight) = 2\sqrt 3  \hfill \\ 
\end{gathered}  ight.

    Vậy hàm số f\left( x ight) = \left\{ \begin{gathered}
  \frac{{{x^2} - 3}}{{x - \sqrt 3 }}{\text{   khi x }} e \sqrt 3  \hfill \\
  2\sqrt 3 {\text{   khi x  =  }}\sqrt 3  \hfill \\ 
\end{gathered}  ight. liên túc tại x = \sqrt{3}

    Ta có: \left\{ \begin{gathered}
  \left| {\frac{{\cos n}}{n}} ight| \leqslant \frac{1}{n} \hfill \\
  \lim \frac{1}{n} = 0 \hfill \\ 
\end{gathered}  ight. \Rightarrow \lim \frac{{\cos n}}{n} = 0

  • Câu 4: Nhận biết

    Tính giới hạn \lim\sqrt{\frac{2n + 9}{n + 2}},\left( n \in
\mathbb{N}^{*} ight)

    Ta có: \lim\sqrt{\frac{2n + 9}{n + 2}} =\lim\sqrt{\dfrac{2 + \dfrac{9}{n}}{1 + \dfrac{2}{n}}} = \sqrt{\frac{2 +0}{1 + 0}} = \sqrt{2}

  • Câu 5: Vận dụng cao

    Cho hàm số f(x) = \left\{ \begin{matrix}
x^{2} + mx + n\ \ \ khi\ \ \ \ x < - 5\ \  \\
x + 17\ \ \ \ \ \ \ \ \ \ \ \ \ \ khi\ \ \ \  - 5 \leq x \leq 10 \\
mx + n + 10\ \ \ \ khi\ \ \ \ x > 10 \\
\end{matrix} ight. liên tục trên \mathbb{R}. Khi đó

    a) f( - 5) = 12;f(10) = 27. Đúng||Sai

    b) m > 0,\ \  n > 0. Sai||Đúng

    c) 2m + n là số nguyên tố. Sai||Đúng

    d) Giá trị lớn nhất của hàm số y = m.\sin x+ n.\cos x là \sqrt{12}. Sai||Đúng

    Đáp án là:

    Cho hàm số f(x) = \left\{ \begin{matrix}
x^{2} + mx + n\ \ \ khi\ \ \ \ x < - 5\ \  \\
x + 17\ \ \ \ \ \ \ \ \ \ \ \ \ \ khi\ \ \ \  - 5 \leq x \leq 10 \\
mx + n + 10\ \ \ \ khi\ \ \ \ x > 10 \\
\end{matrix} ight. liên tục trên \mathbb{R}. Khi đó

    a) f( - 5) = 12;f(10) = 27. Đúng||Sai

    b) m > 0,\ \  n > 0. Sai||Đúng

    c) 2m + n là số nguyên tố. Sai||Đúng

    d) Giá trị lớn nhất của hàm số y = m.\sin x+ n.\cos x là \sqrt{12}. Sai||Đúng

    a) Đúng.

    Ta có : f( - 5) = - 5 + 17 = 12, f(10) = 10 + 17 = 27 (mệnh đề a) đúng)

    b) Sai.

    Với x < - 5 ta có f(x) = x^{2} + mx + n, là hàm đa thức nên liên tục trên ( - \infty; - 5).

    Với - 5 < x < 10 ta có f(x) = x + 17, là hàm đa thức nên liên tục trên (-5; 10).

    Với x > 10 ta có f(x) = mx + n + 10, là hàm đa thức nên liên tục trên (10 ;+\infty).

    Để hàm số liên tục trên \mathbb{R} thì hàm số phải liên tục tại x = - 5x = 10.

    Ta có:

    f( - 5) = 12;f(10) = 27.

    \lim_{x ightarrow - 5^{-}}f(x) =\lim_{x ightarrow - 5^{-}}\left( x^{2} + mx + n ight) = - 5m + n + 25.

    \lim_{x ightarrow - 5^{+}}f(x) =
\lim_{x ightarrow - 5^{+}}(x + 17) = 12.

    \lim_{x ightarrow 10^{-}}f(x) = \lim_{x
ightarrow 10^{-}}(x + 17) = 27.

    \lim_{x ightarrow 10^{+}}f(x) = \lim_{x
ightarrow 10^{+}}(mx + n + 10) = 10m + n + 10.

    Hàm số liên tục tại x = - 5x = 10 khi

    \left\{ \begin{matrix}- 5m + n + 25 = 12 \\10m + n + 10 = 27 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}- 5m + n = - 13 \\10m + n = 17 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}m = 2 \ = - 3 \\\end{matrix} ight. (mệnh đề b) sai).

    c) Sai.

    Ta có 2m + n = 1 không phải số nguyên tố (mệnh đề c) sai).

    d) Sai.

    Ta có: y = m.sinx + n.cosx\ \
\  \Rightarrow \ \ \ y = 2sinx - 3cosx

    Xét phương trình ẩn x:

    2\sin x - 3\cos x = y

    \Leftrightarrow \sin x.\frac{2}{\sqrt{13}} - \cos x.\frac{3}{\sqrt{13}} =\frac{y}{\sqrt{13}}

    \Leftrightarrow \sin x.\cos\alpha - \cos x.\sin\alpha = \frac{y}{\sqrt{13}}, với \cos\alpha = \frac{2}{\sqrt{13}},\ \sin\alpha =
\frac{3}{\sqrt{13}}.

    \Leftrightarrow \sin(x - \alpha) =
\frac{y}{\sqrt{13}}

    Ta có

    \left| \sin(x - \alpha) ight| \leq
1

    \begin{matrix}
\Rightarrow \left| \frac{y}{\sqrt{13}} ight| \leq 1 \\
\Leftrightarrow - \sqrt{13} \leq y \leq \sqrt{13} \\
\end{matrix}

    Suy ra GTLN của y bằng \sqrt{13} khi \sin(x - \alpha) = 1 hay x = \alpha + \frac{\pi}{2} + k2\pi, với \cos\alpha = \frac{2}{\sqrt{13}},\
\sin\alpha = \frac{3}{\sqrt{13}}

    Vậy khẳng định d) sai.

  • Câu 6: Vận dụng

    Cho hai số thực a,b thỏa mãn \lim_{x ightarrow 2}\frac{ax^{2} + bx -
2}{x - 2} = 5. Tính giá trị biểu thức S = a + 2b.

    Đáp án: -4||- 4

    Đáp án là:

    Cho hai số thực a,b thỏa mãn \lim_{x ightarrow 2}\frac{ax^{2} + bx -
2}{x - 2} = 5. Tính giá trị biểu thức S = a + 2b.

    Đáp án: -4||- 4

    \lim_{x ightarrow 2}\frac{ax^{2} +
bx - 2}{x - 2} = 5 là 1 số hữu hạn và \lim_{x ightarrow 2}(x - 2) = 0 nên \lim_{x ightarrow 2}\left( ax^{2} + bx - 2
ight) = 0 hay 4a + 2b - 2 = 0
\Leftrightarrow b = 1 - 2a.

    Khi đó:

    \lim_{x ightarrow 2}\frac{ax^{2} + bx
- 2}{x - 2} = \lim_{x ightarrow 2}\frac{ax^{2} + (1 - 2a)x - 2}{x -
2}

    = \lim_{x ightarrow 2}\frac{ax^{2} + x
- 2ax - 2}{x - 2} = \lim_{x ightarrow 2}\frac{(ax^{2} - 2ax) + (x -
2)}{x - 2}

    = \lim_{x ightarrow 2}\frac{(x - 2)(ax
+ 1)}{x - 2} = \lim_{x ightarrow 2}(ax + 1)

    = 2a + 1 = 5 \Rightarrow a =
2

    Suy ra b = - 3.

    Vậy S = - 4.

  • Câu 7: Nhận biết

    Cho hàm số y =
f(x) liên tục trên đoạn \lbrack -
1;2brack và có đồ thị như hình vẽ. Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên đoạn \lbrack - 1;2brack. Giá trị của M.n là:

    Hàm số y = f(x) liên tục trên \lbrack - 1;2brack.

    Từ đồ thị hàm số đã cho ta thấy giá trị lớn nhất và giá trị nhỏ nhất của hàm số lần lượt là M = 3; m = -1

    Vậy M.n = -3

  • Câu 8: Nhận biết

    Giá trị của B =
\lim\frac{n.\sin n - 3n^{2}}{n^{2}} bằng:

    Ta có:

    B = \lim\frac{n.\sin n - 3n^{2}}{n^{2}}
= \lim\frac{\frac{\sin n}{n} - 3}{1} = - 3

  • Câu 9: Thông hiểu

    Cho dãy số \left(
u_{n} ight) với u_{n} =
\frac{n}{4^{n}}\frac{u_{n +
1}}{u_{n}} < \frac{1}{2}. Chọn giá trị đúng của \lim u_{n} trong các số sau:

    Áp dụng phương pháp quy nạp toán học ta có n \leq 2^{n},\ \forall n \in N

    Nên ta có :

    n \leq 2^{n} \Leftrightarrow
\frac{n}{2^{n}} \leq 1 \Leftrightarrow \frac{n}{2^{n}.2^{n}} \leq
\frac{1}{2^{n}} \Leftrightarrow \frac{n}{4^{n}} \leq \left( \frac{1}{2}
ight)^{n}

    Suy ra : 0 < u_{n} \leq \left(
\frac{1}{2} ight)^{n}, mà \lim\left( \frac{1}{2} ight)^{n} = 0

    Vậy \lim u_{n} = 0.

  • Câu 10: Nhận biết

    Xác định giới hạn D = \lim_{x ightarrow 0}\frac{(1 + 2x)^{2} -
1}{x}

    Ta có:

    D = \lim_{x ightarrow 0}\frac{(1 +
2x)^{2} - 1}{x}

    = \lim_{x ightarrow 0}\frac{4x^{2} +
4x}{x} = \lim_{x ightarrow 0}(4 + 4x) = 4

  • Câu 11: Nhận biết

    Tính \lim_{x
ightarrow 1}\frac{x^{2} + x - 2}{x - 1}.

    Ta có:

    \lim_{x ightarrow 1}\frac{x^{2} + x -
2}{x - 1} = \lim_{x ightarrow 1}\frac{(x - 1)(x + 2)}{x -
1}

    = \lim_{x ightarrow 1}(x + 2) =
3

  • Câu 12: Thông hiểu

    Nhận định sự đúng sai của các kết luận sau?

    a) \lim_{x ightarrow 1}\frac{3x + 2}{2
- x} = 5 . Đúng||Sai

    b) Phương trình x^{3} - 3x^{2} + 3 =
0 có đúng 3 nghiệm phân biệt. Đúng||Sai

    c) Nếu \lim_{x ightarrow 0}f(x) =
5 thì \lim_{x ightarrow
0}\left\lbrack 3x - 4f(x) ightbrack bằng - 15. Sai||Đúng

    d) Hàm số f(x) = \left\{ \begin{matrix}\dfrac{\sqrt{1 + 2x} - 1}{x}\ \ \ khi\ x\  > \ 0 \\1 + 3x\ \ \ \ \ \ \ \ \ khi\ x \leq 0 \\\end{matrix} ight. gián đoạn tại x = 0. Sai||Đúng

    Đáp án là:

    Nhận định sự đúng sai của các kết luận sau?

    a) \lim_{x ightarrow 1}\frac{3x + 2}{2
- x} = 5 . Đúng||Sai

    b) Phương trình x^{3} - 3x^{2} + 3 =
0 có đúng 3 nghiệm phân biệt. Đúng||Sai

    c) Nếu \lim_{x ightarrow 0}f(x) =
5 thì \lim_{x ightarrow
0}\left\lbrack 3x - 4f(x) ightbrack bằng - 15. Sai||Đúng

    d) Hàm số f(x) = \left\{ \begin{matrix}\dfrac{\sqrt{1 + 2x} - 1}{x}\ \ \ khi\ x\  > \ 0 \\1 + 3x\ \ \ \ \ \ \ \ \ khi\ x \leq 0 \\\end{matrix} ight. gián đoạn tại x = 0. Sai||Đúng

    Ta có: \lim_{x ightarrow 1}\frac{3x +
2}{2 - x} = \frac{3.1 + 2}{3 - 1} = 5

    Xét phương trình x^{2} - 3x^{2} + 3 =
0. Đặt x^{2} - 3x^{2} + 3 =
f(x) là hàm số liên tục trên \mathbb{R} suy ra hàm số cũng liên tục trên \lbrack - 1;3brack.

    Ta có: f( - 1) = - 1;f(1) = 1;f(2) = -
1;f(3) = 3

    Khi đó: \left\{ \begin{matrix}
f( - 1).f(1) < 0 \\
f(1).f(2) < 0 \\
f(2).f(3) < 0 \\
\end{matrix} ight. nên phương trình f(x) = 0 có ít nhất 3 nghiệm

    f(x) = 0 là phương trình bậc 3 có tối đa 3 nghiệm

    Vậy phương trình đã cho có đúng 3 nghiệm.

    Ta có:

    Nếu \lim_{x ightarrow 0}f(x) =
5 suy ra

    \lim_{x ightarrow 0}\left\lbrack 3x -
4f(x) ightbrack

    = \lim_{x ightarrow 0}(3x) - 4\lim_{x
ightarrow 0}f(x) = 3.0 - 4.5 = - 20

    Ta có:

    \lim_{x ightarrow 0^{+}}\frac{\sqrt{1
+ 2x} - 1}{x} = \lim_{x ightarrow 0^{+}}\frac{\left( \sqrt{1 + 2x} - 1
ight)\left( \sqrt{1 + 2x} + 1 ight)}{x\left( \sqrt{1 + 2x} + 1
ight)}

    = \lim_{x ightarrow
0^{+}}\frac{2}{\sqrt{1 + 2x} + 1} = 1

    \lim_{x ightarrow 0^{-}}f(x) = \lim_{x
ightarrow 0^{-}}(1 + 3x) = 1

    Vậy hàm số đã cho liên tục tại x = 0.

  • Câu 13: Vận dụng cao

    Số thập phân vô hạn tuần hoàn 0,5111… được biểu diễn bởi phân số tối giản \frac{m}{n}. Tính tổng T = m + n.

    Ta có:

    0,5111... = 0,5 + 10^{- 2} + 10^{- 3} +
... + 10^{- n} + ...

    Dãy số 10^{- 2};10^{- 3};...;10^{-
n};,,, là một cấp số nhân lùi vô hạn có số hạng đầu là u_{1} = 10^{- 2}, công sai là q = 10^{- 1}

    => S = \frac{u_{1}}{1 - q} =
\frac{10^{- 2}}{1 - 10^{- 1}} = \frac{1}{90}

    Vậy 0,5111... = 0,5 + S = \frac{46}{90} =
\frac{23}{45}

    \Rightarrow \left\{ \begin{matrix}
m = 23 \\
n = 45 \\
\end{matrix} ight.\  \Rightarrow T = 68

  • Câu 14: Nhận biết

    \lim \frac{{3{n^4} - 2n + 3}}{{4{n^4} + 2n + 1}} bằng:

    Ta có:

    \begin{matrix}  \lim \dfrac{{3{n^4} - 2n + 3}}{{4{n^4} + 2n + 1}} \hfill \\   = \lim \dfrac{{3 - \dfrac{2}{{{n^3}}} + \dfrac{3}{{{n^4}}}}}{{4 + \dfrac{2}{{{n^3}}} + \dfrac{1}{{{n^4}}}}} = \dfrac{3}{4} \hfill \\ \end{matrix}

  • Câu 15: Thông hiểu

    Kết quả đúng của \lim\left( 5 - \frac{n.\cos{2n}}{n^{2} + 1}
ight) là:

    Xét: \frac{n}{n^{2} + 1} \leq
\frac{n.\cos{2n}}{n^{2} + 1} \leq \frac{n}{n^{2} + 1}

    Ta có: \lim\left( - \frac{n}{n^{2} + 1}ight) = \lim( - \frac{1}{n}.\frac{1}{1 + 1:n^{2}}) = 0

    Suy ra \lim\left( - \frac{n}{n^{2} + 1}
ight) = 0

    \Rightarrow \lim\left(
\frac{n.\cos{2n}}{n^{2} + 1} ight) = 0\  \Rightarrow \lim\left( 5 -
\frac{n.\cos{2n}}{n^{2} + 1} ight) = 5.

  • Câu 16: Vận dụng

    Chọn kết quả đúng của giới hạn \lim\sqrt{3 + \frac{n^{2} - 1}{3 + n^{2}} -
\frac{1}{2^{n}}}?

    \lim\sqrt{3 + \frac{n^{2} - 1}{3 +
n^{2}} - \frac{1}{2^{n}}}

    = \lim\sqrt{3 + \frac{1 -
\frac{1}{n^{2}}}{\frac{3}{n^{2}} + 1} - \frac{1}{2^{n}}}

    = \sqrt{3 + \frac{1}{1} - 0} =
2

  • Câu 17: Thông hiểu

    Nhận định sự đúng sai của các kết luận sau?

    a) \lim_{x ightarrow 1}\frac{3x + 2}{2
- x} = 5 . Đúng||Sai

    b) Phương trình x^{3} - 3x^{2} + 3 =
0 có đúng 3 nghiệm phân biệt. Đúng||Sai

    c) Nếu \lim_{x ightarrow 0}f(x) =
5 thì \lim_{x ightarrow
0}\left\lbrack 3x - 4f(x) ightbrack bằng - 15. Sai||Đúng

    d) Hàm số f(x) = \left\{ \begin{matrix}\dfrac{\sqrt{1 + 2x} - 1}{x}\ \ \ khi\ x\  > \ 0 \\1 + 3x\ \ \ \ \ \ \ \ \ khi\ x \leq 0 \\\end{matrix} ight. gián đoạn tại x = 0. Sai||Đúng

    Đáp án là:

    Nhận định sự đúng sai của các kết luận sau?

    a) \lim_{x ightarrow 1}\frac{3x + 2}{2
- x} = 5 . Đúng||Sai

    b) Phương trình x^{3} - 3x^{2} + 3 =
0 có đúng 3 nghiệm phân biệt. Đúng||Sai

    c) Nếu \lim_{x ightarrow 0}f(x) =
5 thì \lim_{x ightarrow
0}\left\lbrack 3x - 4f(x) ightbrack bằng - 15. Sai||Đúng

    d) Hàm số f(x) = \left\{ \begin{matrix}\dfrac{\sqrt{1 + 2x} - 1}{x}\ \ \ khi\ x\  > \ 0 \\1 + 3x\ \ \ \ \ \ \ \ \ khi\ x \leq 0 \\\end{matrix} ight. gián đoạn tại x = 0. Sai||Đúng

    Ta có: \lim_{x ightarrow 1}\frac{3x +
2}{2 - x} = \frac{3.1 + 2}{3 - 1} = 5

    Xét phương trình x^{2} - 3x^{2} + 3 =
0. Đặt x^{2} - 3x^{2} + 3 =
f(x) là hàm số liên tục trên \mathbb{R} suy ra hàm số cũng liên tục trên \lbrack - 1;3brack.

    Ta có: f( - 1) = - 1;f(1) = 1;f(2) = -
1;f(3) = 3

    Khi đó: \left\{ \begin{matrix}
f( - 1).f(1) < 0 \\
f(1).f(2) < 0 \\
f(2).f(3) < 0 \\
\end{matrix} ight. nên phương trình f(x) = 0 có ít nhất 3 nghiệm

    f(x) = 0 là phương trình bậc 3 có tối đa 3 nghiệm

    Vậy phương trình đã cho có đúng 3 nghiệm.

    Ta có:

    Nếu \lim_{x ightarrow 0}f(x) =
5 suy ra

    \lim_{x ightarrow 0}\left\lbrack 3x -
4f(x) ightbrack

    = \lim_{x ightarrow 0}(3x) - 4\lim_{x
ightarrow 0}f(x) = 3.0 - 4.5 = - 20

    Ta có:

    \lim_{x ightarrow 0^{+}}\frac{\sqrt{1
+ 2x} - 1}{x} = \lim_{x ightarrow 0^{+}}\frac{\left( \sqrt{1 + 2x} - 1
ight)\left( \sqrt{1 + 2x} + 1 ight)}{x\left( \sqrt{1 + 2x} + 1
ight)}

    = \lim_{x ightarrow
0^{+}}\frac{2}{\sqrt{1 + 2x} + 1} = 1

    \lim_{x ightarrow 0^{-}}f(x) = \lim_{x
ightarrow 0^{-}}(1 + 3x) = 1

    Vậy hàm số đã cho liên tục tại x = 0.

  • Câu 18: Vận dụng

    Cho các số thực a,b,c thỏa mãn c^{2} + a = 18\lim_{x ightarrow + \infty}\left( \sqrt{ax^{2} +
bx} - cx ight) = - 2. Tính giá trị biểu thức P = a + b + 5c.

    Ta có:

    \lim_{x ightarrow + \infty}\left(\sqrt{ax^{2} + bx} - cx ight)= \lim_{x ightarrow +\infty}\frac{\left( a - c^{2} ight).x^{2} + bx}{\sqrt{ax^{2} + bx} +cx}= \lim_{x ightarrow + \infty}\frac{\left( a - c^{2} ight).x +b}{\sqrt{a + \frac{b}{x}} + c} = - 2

    Khi và chỉ khi: \left\{ \begin{matrix}a - c^{2} = 0 \\\dfrac{b}{\sqrt{a} + c} = - 2 \\\end{matrix} \Leftrightarrow \left\{ \begin{matrix}a = c^{2} \\b = - 2\sqrt{a} - 2c \\\end{matrix} ight.\  ight..

    Kết hợp với c^{2} + a = 18

    Khi đó 2c^{2} = 18 \Leftrightarrow c^{2}
= 9 ightarrow a = 9c= 3 (vì c eq -
\sqrt{a})

    Vậy b = - 2\sqrt{a} - 2c = - 2\sqrt{9} -
2.3 = - 12 nên a + b + 5c = 9 - 12
+ 5.3 = 12.

  • Câu 19: Nhận biết

    Cho \lim_{x ightarrow x_{0}} =
L\lim_{x ightarrow x_{0}}g(x)
= M. Công thức nào sau đây sai?

    Ta có: \lim_{x ightarrow
x_{0}}\frac{f(x)}{g(x)} = \frac{L}{M} chỉ đúng nếu M eq 0.

  • Câu 20: Thông hiểu

    Tính giới hạn \lim_{x ightarrow 0}\frac{\sqrt{4x^{2} - 2x + 1}
- \sqrt{1 - 2x}}{x}

    Ta có:

    \lim_{x ightarrow 0}\frac{\sqrt{4x^{2}
- 2x + 1} - \sqrt{1 - 2x}}{x}

    = \lim_{x ightarrow 0}\frac{\left(
\sqrt{4x^{2} - 2x + 1} - \sqrt{1 - 2x} ight)\left( \sqrt{4x^{2} - 2x +
1} + \sqrt{1 - 2x} ight)}{x\left( \sqrt{4x^{2} - 2x + 1} + \sqrt{1 -
2x} ight)}

    = \lim_{x ightarrow
0}\frac{4x^{2}}{x\left( \sqrt{4x^{2} - 2x + 1} + \sqrt{1 - 2x}
ight)}

    = \lim_{x ightarrow
0}\frac{4x^{2}}{x\left( \sqrt{4x^{2} - 2x + 1} + \sqrt{1 - 2x}
ight)}

    = \lim_{x ightarrow
0}\frac{4x}{\sqrt{4x^{2} - 2x + 1} + \sqrt{1 - 2x}} = \frac{0}{1 + 1} =
0

  • Câu 21: Thông hiểu

    Cho dãy số \left( u_{n} ight) với u_{n} = \sqrt{n^{2} + an + 5} -\sqrt{n^{2} + 1}, trong đó a là tham số thực.

    a) Khi a = 2 thì \lim u_{n} = 1. Đúng||Sai

    b) Khi a = 3 thì \lim u_{n} = \frac{1}{2}. Sai||Đúng

    c) Khi a = - 3 thì \lim u_{n} = - \frac{3}{2}. Đúng||Sai

    d) Khi a = - 2 thì \lim u_{n} = - 1. Đúng||Sai

    Đáp án là:

    Cho dãy số \left( u_{n} ight) với u_{n} = \sqrt{n^{2} + an + 5} -\sqrt{n^{2} + 1}, trong đó a là tham số thực.

    a) Khi a = 2 thì \lim u_{n} = 1. Đúng||Sai

    b) Khi a = 3 thì \lim u_{n} = \frac{1}{2}. Sai||Đúng

    c) Khi a = - 3 thì \lim u_{n} = - \frac{3}{2}. Đúng||Sai

    d) Khi a = - 2 thì \lim u_{n} = - 1. Đúng||Sai

    Ta có

    \sqrt{n^{2} + an + 5} - \sqrt{n^{2} + 1}ightarrow 0\overset{ightarrow}{}Nhận lượng liên hợp :

    \lim u_{n} = \lim\left( \sqrt{n^{2} + an+ 5} - \sqrt{n^{2} + 1} ight)

    = \lim\frac{an + 4}{\sqrt{n^{2} + an +5} + \sqrt{n^{2} + 1}}

    = \lim\frac{a + \dfrac{4}{n}}{\sqrt{1 +\dfrac{a}{n} + \dfrac{5}{n^{2}}} + \sqrt{1 + \dfrac{1}{n^{2}}}} =\dfrac{a}{2}

  • Câu 22: Thông hiểu

    Tính giới hạn M =
\lim_{x ightarrow + \infty}\left( \frac{cx^{2} + a}{x^{2} + b}
ight).

    Ta có:

    M = \lim_{x ightarrow + \infty}\left(
\frac{cx^{2} + a}{x^{2} + b} ight)

    M = \lim_{x ightarrow + \infty}\left(
\frac{cx^{2} + a}{x^{2} + b} ight)

  • Câu 23: Nhận biết

    Cho phương trình 2x^{4} - 5x^{2} + x + 1 = 0. Chọn khẳng định đúng trong các khẳng định sau.

    Ta có: \left\{ \begin{matrix}
f(0) = 1 \\
f(1) = - 1 \\
f(2) = 15 \\
\end{matrix} ight.

    => Phương trình có ít nhất hai nghiệm trên khoảng (0;2).

  • Câu 24: Thông hiểu

    Số điểm gián đoạn của hàm số f(x) = \left\{ \begin{matrix}
2x\ \ \ \ \ \ \ \ \ \ khi\ x < 0 \\
\begin{matrix}
x^{2} + 1\ \ \ \ \ \ \ \ \ \ \ \ khi\ 0 \leq x \leq 2 \\
3x - 1\ \ \ \ \ \ \ \ \ \ \ \ khi\ x > 2 \\
\end{matrix} \\
\end{matrix} ight. là:

    Hàm số xác định trên \mathbb{R}

    Dễ thấy hàm số liên tục trên mỗi khoảng (
- \infty;0),(0;2),(2; + \infty)

    Ta có: \left\{ \begin{matrix}
  \mathop {\lim }\limits_{x \to {0^ - }} f\left( x ight) = \mathop {\lim }\limits_{x \to {0^ - }} \left( {2x} ight) = 0 \hfill \\
  f\left( 0 ight) = 1 \hfill \\ 
\end{matrix}  ight.

    => Hàm số gián đoạn tại x =
0

    Ta lại có: \left\{ \begin{matrix}
  \mathop {\lim }\limits_{x \to {2^ + }} f\left( x ight) = \mathop {\lim }\limits_{x \to {2^ + }} \left( {{x^2} + 1} ight) = 5 \hfill \\
  f\left( 2 ight) = 5 \hfill \\
  \mathop {\lim }\limits_{x \to {2^ - }} f\left( x ight) = \mathop {\lim }\limits_{x \to {2^ - }} \left( {3x - 1} ight) = 5 \hfill \\ 
\end{matrix}  ight.

    => Hàm số liên tục tại x =
2

    Vậy có 1 điểm gián đoạn.

  • Câu 25: Nhận biết

    Giá trị của C =
\lim\frac{\sqrt{n^{2} + 1}}{n + 1} bằng:

    Với số thực a>0 nhỏ tùy ý, ta chọn n_{a} > \frac{1}{a} - 1

    Ta có:

    \left| \frac{\sqrt{n^{2} + 1}}{n +
1} - 1 ight| < \left| \frac{n + 2}{n - 1} - 1 ight| <
\frac{1}{n_{a} + 1} < a\ với\ mọi\ n > n_{a}

    Vậy C=1.

  • Câu 26: Nhận biết

    Tìm giới hạn \lim_{x ightarrow ( -
3)^{+}}\frac{3 + 2x}{x + 3}.

    Ta có \lim_{x ightarrow ( - 3)^{+}}(3 +
2x) = - 3, \lim_{x ightarrow ( -
3)^{+}}(x + 3) = 0x + 3 >
0 nên \lim_{x ightarrow ( - \
3)^{+}}\frac{3 + 2x}{x + 3} = - \infty.

  • Câu 27: Thông hiểu

    Giới hạn dãy số (u_{n}) với u_{n} = \frac{\left( 3n - n^{4} ight)}{4n -
5} là?

    Ta có:

    \lim u_{n} = \lim\frac{\left( 3n - n^{4}
ight)}{4n - 5} = \lim{n^{3}\frac{\frac{3}{n^{3}} - 1}{4 -
\frac{5}{n}}} = - \infty

    \lim n^{3} = + \infty nên suy ra:

     \lim\frac{\frac{3}{n^{3}} - 1}{4 -
\frac{5}{n}} = - \frac{1}{4}.

  • Câu 28: Nhận biết

    \lim(5n-4n^{3}) bằng

    Ta có: 

    \begin{matrix}  \lim \left( {5n - 4{n^3}} ight) \hfill \\   = \lim \left[ {{n^3}\left( {\dfrac{5}{{{n^2}}} - 4} ight)} ight] \hfill \\   =  - \infty  \hfill \\ \end{matrix}

  • Câu 29: Vận dụng

    Cho hàm số f(x) = \left\{ \begin{matrix}\dfrac{x^{2} - 2x - 3}{x + 1}\ \ \ \ khi\ \ x eq - 1 \\2a + 4\ \ \ \ khi\ \ x = - 1 \\\end{matrix} ight.

    Có bao nhiêu giá trị nguyên của a \in
(0;2025) để hàm số gián đoạn tại x
= 1

    Đáp án: 2024

    Đáp án là:

    Cho hàm số f(x) = \left\{ \begin{matrix}\dfrac{x^{2} - 2x - 3}{x + 1}\ \ \ \ khi\ \ x eq - 1 \\2a + 4\ \ \ \ khi\ \ x = - 1 \\\end{matrix} ight.

    Có bao nhiêu giá trị nguyên của a \in
(0;2025) để hàm số gián đoạn tại x
= 1

    Đáp án: 2024

    TXĐ: D\mathbb{= R}

    Ta có:

    f( - 1) = 2a + 4

    \lim_{x ightarrow - 1}f(x) = \lim_{x
ightarrow - 1}\frac{x^{2} - 2x - 3}{x + 1}

    = \lim_{x ightarrow - 1}\frac{(x +
1)(x - 3)}{x + 1} = \lim_{x ightarrow - 1}(x - 3) = - 4

    Để hàm số gián đoạn tại x = - 1 thì \lim_{x ightarrow - 1}f(x) eq
f(1)

    \Leftrightarrow 2a - 4 eq - 4
\Leftrightarrow a eq - 4

    Vậy có 2024 giá trị nguyên của a \in (0;2025) để hàm số gián đoạn tại x = 1

  • Câu 30: Thông hiểu

    Tính được các giới hạn sau, khi đó:

    a) \lim(\sqrt{3})^{n} = - \infty Sai||Đúng

    b) \lim\pi^{n} = 0 Sai||Đúng

    c) \lim\left( n^{3} + 2n^{2} - 4 ight)
= + \infty Đúng||Sai

    d) \lim\left( - n^{4} + 5n^{3} - 4n
ight) = - \infty Đúng||Sai

    Đáp án là:

    Tính được các giới hạn sau, khi đó:

    a) \lim(\sqrt{3})^{n} = - \infty Sai||Đúng

    b) \lim\pi^{n} = 0 Sai||Đúng

    c) \lim\left( n^{3} + 2n^{2} - 4 ight)
= + \infty Đúng||Sai

    d) \lim\left( - n^{4} + 5n^{3} - 4n
ight) = - \infty Đúng||Sai

    a) \lim(\sqrt{3})^{n} = +\infty (do \sqrt{3} >
1)

    b) \lim\pi^{n} = + \infty( do \pi > 1)

    c) \lim\left( n^{3} + 2n^{2} - 4 ight)
= \lim n^{3}.\left( 1 + \frac{2}{n} - \frac{4}{n^{3}} ight) = +
\infty.

    \left\{ \begin{matrix}
\lim n^{3} = + \infty \\
\lim\left( 1 + \frac{2}{n} - \frac{4}{n^{3}} ight) = 1 > 0 \\
\end{matrix} ight.

    d) \lim\left( - n^{4} + 5n^{3} - 4n
ight) = \lim n^{4}.\left( - 1 + \frac{5}{n} - \frac{4}{n^{3}} ight)
= - \infty.

    \left\{ \begin{matrix}
\lim n^{4} = + \infty \\
\lim\left( - 1 + \frac{5}{n} - \frac{4}{n^{3}} ight) = - 1 < 0 \\
\end{matrix} ight.

    Kết luận:

    a) Sai

    b) Sai

    c) Đúng

    d) Đúng

  • Câu 31: Thông hiểu

    Tính \lim\frac{2n + 1}{1 + n} được kết quả là:

    Ta có

    \lim\frac{2n + 1}{1 + n} =
\lim\frac{n\left( 2 + \frac{1}{n} ight)}{n\left( \frac{1}{n} + 1
ight)} = \lim\frac{2 + \frac{1}{n}}{\frac{1}{n} + 1} = \frac{2 + 0}{0
+ 1} = 2.

  • Câu 32: Nhận biết

    Cho hàm số f(x) xác định và liên tục trên ( - 4; + \infty) với f(x) = \frac{x}{\sqrt{x + 4} - 2} với x eq 0. Tính f(0).

    Ta có hàm số f(x) xác định và liên tục trên ( - 4; + \infty) nên suy ra

    f(0) = \lim_{x ightarrow
0}f(x)

    = \lim_{x ightarrow 0}\left(
\frac{x}{\sqrt{x + 4} - 2} ight)

    = \lim_{x ightarrow 0}\left( \sqrt{x +
4} + 2 ight) = 4

  • Câu 33: Thông hiểu

    Tính giới hạn của hàm số \lim_{x ightarrow - 2}\frac{2x^{4} + 9x^{3} +
11x^{2} - 4}{(x + 2)^{2}}.

    Ta có:

    \lim_{x ightarrow - 2}\frac{2x^{4} +
9x^{3} + 11x^{2} - 4}{(x + 2)^{2}}

    = \lim_{x ightarrow - 2}\frac{(x +
2)^{2}\left( 2x^{2} + x - 1 ight)}{(x + 2)^{2}}

    = \lim_{x ightarrow - 2}\left\lbrack
2x^{2} + x - 1 ightbrack = 5

  • Câu 34: Thông hiểu

    Xác định khoảng liên tục của hàm số f(x) = \left\{ \begin{matrix}
\cos\frac{\pi x}{2}\ \ \ \ \ \ \ \ khi\ |x| \leq 1 \\
x - 1\ \ \ \ \ \ \ \ \ \ \ \ khi\ |x| > 1 \\
\end{matrix} ight.. Mệnh đề nào dưới đây sai?

    Hàm số liên tục trên các khoảng ( -
\infty; - 1),(1; + \infty);( - 1;1)

    Ta có: \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to {{\left( { - 1} ight)}^ - }} f\left( x ight) = \mathop {\lim }\limits_{x \to {{\left( { - 1} ight)}^ - }} \left( {x - 1} ight) =  - 2 \hfill \\
  f\left( { - 1} ight) = 0 \hfill \\ 
\end{gathered}  ight.

    => Hàm số gián đoạn tại x = -
1

    Ta lại có: \left\{ \begin{matrix}
  \mathop {\lim }\limits_{x \to {1^ + }} f\left( x ight) = \mathop {\lim }\limits_{x \to {1^ + }} \left( {x - 1} ight) = 0 \hfill \\
  f\left( 1 ight) = 0 \hfill \\
  \mathop {\lim }\limits_{x \to {1^ - }} f\left( x ight) = \mathop {\lim }\limits_{x \to {1^ - }} \cos \dfrac{{\pi x}}{2} = 0 \hfill \\ 
\end{matrix}  ight.

    => Hàm số liên tục tại x =
1

  • Câu 35: Vận dụng

    Xác định giới hạn của dãy số \lim\left\lbrack \frac{1}{1.2} + \frac{1}{2.3} +
... + \frac{1}{n(n + 1)} ightbrack là:

    Ta có:

    \lim\left\lbrack \frac{1}{1.2} +
\frac{1}{2.3} + ... + \frac{1}{n(n + 1)} ightbrack

    = \lim\left\lbrack 1 - \frac{1}{2} +
\frac{1}{2} - \frac{1}{3} + ... + \frac{1}{n} - \frac{1}{n + 1}
ightbrack

    = \lim\left( 1 - \frac{1}{n + 1} ight)
= 1

  • Câu 36: Thông hiểu

    Tìm được các giới hạn sau:

    a) \lim_{x ightarrow 2^{+}}(\sqrt{x +
2} - 1) = 1. Đúng||Sai

    b) \lim_{x ightarrow 1^{+}}\frac{4x -
3}{x - 1} = + \infty. Đúng||Sai

    c) \lim_{x ightarrow 2^{-}}\left(
\frac{1}{x - 2} - \frac{1}{x^{2} - 4} ight) = - \infty. Đúng||Sai

    d) \lim_{x ightarrow - 1^{-}}\frac{|x +
1|}{x^{2} - 1} = - \infty. Sai||Đúng

    Đáp án là:

    Tìm được các giới hạn sau:

    a) \lim_{x ightarrow 2^{+}}(\sqrt{x +
2} - 1) = 1. Đúng||Sai

    b) \lim_{x ightarrow 1^{+}}\frac{4x -
3}{x - 1} = + \infty. Đúng||Sai

    c) \lim_{x ightarrow 2^{-}}\left(
\frac{1}{x - 2} - \frac{1}{x^{2} - 4} ight) = - \infty. Đúng||Sai

    d) \lim_{x ightarrow - 1^{-}}\frac{|x +
1|}{x^{2} - 1} = - \infty. Sai||Đúng

    a) Ta có:

    \lim_{x ightarrow 2^{+}}(\sqrt{x +
2} - 1) = \sqrt{2 + 2} - 1 = 1.

    b) Ta có:

    \lim_{x ightarrow 1^{+}}\frac{4x -
3}{x - 1} = \lim_{x ightarrow 1^{+}}\left\lbrack (4x - 3) \cdot
\frac{1}{x - 1} ightbrack = + \infty\lim_{x ightarrow 1^{+}}(4x - 3) = 1,\lim_{x
ightarrow 1^{+}}\frac{1}{x - 1} = + \infty.

    c) Ta có:

    \lim_{x ightarrow 2^{-}}\left(
\frac{1}{x - 2} - \frac{1}{x^{2} - 4} ight)

    = \lim_{x ightarrow 2^{-}}\frac{x + 2
- 1}{(x - 2)(x + 2)} = \lim_{x ightarrow 2^{-}}\frac{x + 1}{(x - 2)(x
+ 2)}

    = \lim_{x ightarrow 2^{-}}\left\lbrack
\frac{x + 1}{x + 2} \cdot \frac{1}{(x - 2)} ightbrack = -
\infty, do \left\{ \begin{matrix}\lim_{x ightarrow 2^{-}}\dfrac{x + 1}{x + 2} = \dfrac{3}{4} \\\lim_{x ightarrow 2^{-}}\dfrac{1}{x - 2} = - \infty \\\end{matrix} ight.

    d) Ta có:

    \lim_{x ightarrow - 1^{-}}\frac{|x +
1|}{x^{2} - 1} = \lim_{x ightarrow - 1^{-}}\frac{- x - 1}{(x - 1)(x +
1)} = \lim_{x ightarrow - 1^{-}}\frac{- 1}{x - 1} =
\frac{1}{2}.

  • Câu 37: Nhận biết

    Hình nào trong các hình dưới đây là đồ thị của hàm số không liên tục tại x = 1?

    Xét đồ thị hàm số

    \lim_{x ightarrow 1^{+}}y eq
\lim_{x ightarrow 1^{-}}y nên hàm số không liên tục tại x = 1

  • Câu 38: Thông hiểu

    Cho hàm số f\left( x ight) = \left\{ {\begin{array}{*{20}{c}}
  {\dfrac{{{x^2}}}{x}{\text{           khi }}x < 1,x e 0} \\ 
  \begin{gathered}
  {\text{0      khi }}x = 0 \hfill \\
  \sqrt x {\text{   khi }}x \geqslant 1 \hfill \\ 
\end{gathered}  
\end{array}} ight.. Hàm số f(x) liên tục tại:

    Tập xác định D\mathbb{= R}

    Dễ thấy hàm số y = f(x) liên tục trên mỗi khoảng ( - \infty;0),(0;1);(1; +
\infty)

    Ta có:

    f(0) = 0

    \lim_{x ightarrow 0^{-}}f(x) = \lim_{x
ightarrow 0^{-}}\frac{x^{2}}{x} = \lim_{x ightarrow 0^{-}}(x) =
0

    \lim_{x ightarrow 0^{+}}f(x) = \lim_{x
ightarrow 0^{+}}\frac{x^{2}}{x} = \lim_{x ightarrow 0^{+}}(x) =
0

    Vậy hàm số liên tục tại x = 0

    Tương tự ta có:

    f(1) = 1

    \lim_{x ightarrow 1^{-}}f(x) = \lim_{x
ightarrow 1^{-}}\frac{x^{2}}{x} = \lim_{x ightarrow 1^{-}}(x) =
1

    \lim_{x ightarrow 1^{+}}f(x) = \lim_{x
ightarrow 1^{+}}\sqrt{x} = 1

    Vậy hàm số liên tục tại x = 1

    Vậy hàm số đã cho liên tục trên tập số thực.

  • Câu 39: Nhận biết

    Cho hàm số y =
f(x) có đồ thị như hình dưới đây. Chọn khẳng định đúng.

    Dựa vào đồ thị ta thấy hàm số liên tục trên (1;4)

  • Câu 40: Vận dụng

    Cho hàm số f\left( x ight) = \left\{ {\begin{array}{*{20}{c}}  {\sin \pi x{\text{     khi }}\left| x ight| \leqslant 1} \\   {x + 1{\text{       khi }}\left| x ight| > 1} \end{array}} ight.. Mệnh đề nào sau đây là đúng?

    Ta có: \left\{ {\begin{array}{*{20}{c}}  {\mathop {\lim }\limits_{x \to {1^ + }} f\left( x ight) = \mathop {\lim }\limits_{x \to {1^ + }} \left( {x + 1} ight) = 2} \\   {\mathop {\lim }\limits_{x \to {1^ - }} f\left( x ight) = \mathop {\lim }\limits_{x \to {1^ - }} \left( {\sin \pi x} ight) = \sin \pi  = 0} \end{array}} ight.

    => Hàm số gián đoạn tại x=1

    Ta lại có: \left\{ {\begin{array}{*{20}{c}}  \begin{gathered}  \mathop {\lim }\limits_{x \to  - {1^ - }} f\left( x ight) = \mathop {\lim }\limits_{x \to  - {1^ - }} \left( {x + 1} ight) = 0 \hfill \\  f\left( { - 1} ight) = \sin \left( { - \pi } ight) = 0 \hfill \\ \end{gathered}  \\   {\mathop {\lim }\limits_{x \to  - {1^ + }} f\left( x ight) = \mathop {\lim }\limits_{x \to  - {1^ + }} \left( {\sin \pi x} ight) = \sin \left( { - \pi } ight) = 0} \end{array}} ight.

    => Hàm số liên tục tại x=-1

    Vậy hàm số liên tục trên các khoảng \left( { - \infty ; 1} ight)\left( {  1; + \infty } ight).

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 3 Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 10 lượt xem
Sắp xếp theo