Đề kiểm tra 45 phút Toán 11 Chương 4 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 45 phút Toán 11 Quan hệ song song trong không gian gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình thang (AB > CD). Lấy một điểm M thuộc cạnh CD. Mặt phẳng (\alpha) qua M song song với SA và BC. Giả sử (\alpha) \cap (SAD) = d. Kết luận nào sau đây đúng?

    Hình vẽ minh họa

    Ta có: \left\{ \begin{matrix}
M \in (\alpha) \cap (ABCD) \\
(\alpha)//BC \subset (ABCD) \\
\end{matrix} ight.

    \Rightarrow (\alpha) \cap (ABCD) =
MN//BC;(N \in AB)

    Trong mặt phẳng (ABCD) kéo dài AD cắt MN tại E.

    Ta lại có: \left\{ \begin{matrix}
E \in (\alpha) \cap (SAD) \\
(\alpha)//SA \subset (SAD) \\
\end{matrix} ight. suy ra (\alpha) \cap (SAD) = d//SA

  • Câu 2: Thông hiểu

    Cho hình chóp tứ giác S.ABCD, đáy ABCD là tứ giác (AB không song song với CD), O = AC
\cap BD. Lấy M là trung điểm của SD, lấy N \in SB sao cho SN = 2SB. Khi đó các cặp cạnh nào dưới đây cắt nhau?

    Hình vẽ minh hoạ

    Các cặp đường thẳng SO và AD, MN và SC, SA và BC là các cặp đường thẳng chéo nhau.

    Hai đường thẳng MN và SO nằm trên cùng mặt phẳng và là hai đường thẳng cắt nhau.

  • Câu 3: Thông hiểu

    Cho hình hộp ABCD.A'B'C'D', gọi I là trung điểm của AB. Xác định hình tạo bởi các giao tuyến của mặt phẳng (B'D'I) với hình hộp.

    Hình vẽ minh họa

    Ta có: \left\{
\begin{matrix}
B'D' \subset (B'D'I) \\
BD \subset (ABCD) \\
BD//B'D' \\
\end{matrix} ight.

    Suy ra giao tuyến của (B'D'I)(ABCD) là đường thẳng IE qua I song song với BD; (E \in
AD).

    IE//B'D' nên hình tạo bởi các giao tuyến của mặt phẳng (B'D'I) với hình hộp ABCD.A'B'C'D' là hình thang IED'B'.

  • Câu 4: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Lấy M \in AD sao cho \frac{AD}{AM} = 3, G là trọng tâm tam giác SAB. Đường thẳng GM song song với mặt phẳng:

    Hình vẽ minh họa

    Gọi N là trung điểm của AB, lấy K \in
SA sao cho AS = 3AK

    Ta có: \frac{AK}{AS} = \frac{AM}{AD} =
\frac{1}{3} \Rightarrow KM//SD

    Mặt khác \frac{SK}{SA} = \frac{SG}{SM} =
\frac{2}{3} \Rightarrow GK//AN

    \Rightarrow GK//CD

    \Rightarrow (GMK)//(SCD) \Rightarrow
GM//(SCD)

  • Câu 5: Nhận biết

    Phép chiếu song song biến ba đường thẳng song song thành:

    Theo tính chất của phép chiếu song song ta có:

    Phép chiếu song song biến ba đường thẳng song song thành ba đường thẳng đôi một song song.

    Vậy các đáp án đúng là:

    Ba đường thẳng đôi một song song với nhau.

    Một đường thẳng.

    Thành hai đường thẳng song song.

  • Câu 6: Vận dụng cao

    Cho tứ diện ABCDAC =6;BD = 3;BC = 9. Lấy một điểm M bất kì trên cạnh BC. Gọi mặt phẳng (\alpha) là mặt phẳng qua M song song với ACBD. Biết các giao tuyến của mặt phẳng (\alpha) với tứ diện tạo thành một tứ giác. Khi điểm M di chuyển đến vị trí M' hình tứ giác trên trở thành hình thoi. Tính giá trị biểu thức M'B.M'C.

    Hình vẽ minh họa:

    Giao tuyến của (\alpha) với mặt phẳng (ABC) là đường thẳng qua M và song song với AC, đường thẳng này cắt AB tại Q.

    => MQ//AC

    Giao tuyến của (\alpha) với mặt phẳng (ABD) là đường thẳng qua Q và song song với BD, đường thẳng này cắt AD tại P.

    => QP//BD

    Giao tuyến của (\alpha) với mặt phẳng (ACD) là đường thẳng qua P và song song với AC, đường thẳng này cắt CD tại N.

    => NP//AC

    Vậy các giao tuyến của mặt phẳng (\alpha) với tứ diện tạo thành một tứ giác là hình bình hành MNPQ.

    Do đó \Delta CMN\sim\Delta CBD\Rightarrow \frac{MN}{BD} = \frac{CM}{CB}

    Chứng minh tương tự ta được \frac{MQ}{AC}= \frac{BM}{BC}

    Do đó: \frac{MN}{BD} + \frac{MQ}{AC} =\frac{CM}{CB} + \frac{BM}{BC} = 1

    Khi M trùng với M' ta có: M'N = M'Q

    Suy ra \frac{M'N}{BD} +\frac{M'N}{AC} = 1 \Rightarrow M'N = M'Q = 2

    \Rightarrow \frac{M'N}{BD} =\frac{M'C}{CB} \Rightarrow M'C = 6; = M'B = 3

    Vậy M'B.M'C = 18

  • Câu 7: Thông hiểu

    Cho tứ diện ABCD. Trung điểm của các cạnh AB,BC,CD lần lượt là các điểm P,Q,R. Giả sử (ACD) \cap (PQR) = d. Hỏi đường thẳng d đi qua trung điểm của đoạn thẳng nào?

    Hình vẽ minh họa

    Ta có: PQ//AC nên giao tuyến của hai mặt phẳng (ACD);(PQR) sẽ đi qua điểm R và song song với AC.

    Do đó giao tuyến d sẽ đi qua trung điểm của AD.

  • Câu 8: Thông hiểu

    Cho hình chóp S.ABCD có đáy là hình thang ABCD, (AD // BC). Gọi M là trung điểm của CD. Giao tuyến của hai mặt phẳng (MSB) và (SAC) là:

    Hình vẽ minh họa

    Gọi I là giao điểm của AC và BM

    Ta có: I và S là hai điểm chung của hai mặt phẳng (MSB) và (SAC)

    => Giao tuyến cần tìm chính là đường thẳng SI.

  • Câu 9: Vận dụng

    Cho hình chóp S.ABC có các mặt bên là tam giác đều. Gọi M là trung điểm của BC, lấy N \in
SA sao cho NA = 2NS. Hình chiếu của điểm N qua phép chiếu song song phương SM, mặt phẳng chiếu (ABC) là:

    Hình vẽ minh họa

    Do các mặt bên của hình chóp S.ABC là các tam giác đều nên tam giác ABC đều.

    Gọi G là trọng tâm tam giác ABC.

    Ta có NA = 2NS \Rightarrow \frac{NS}{NA}
= \frac{MG}{GA} = \frac{1}{2}

    \Rightarrow NG//SM

    Nên G là hình chiếu song song theo phương SM của N trên (ABC).

    Lại do tam giác ABC đều nên G vừa là trọng tâm, vừa là tâm đường tròn ngoại tiếp, vừa là tâm đường tròn nội tiếp của tam giác ABC.

  • Câu 10: Nhận biết

    Cho hai đường thẳng trong không gian không có điểm chung, khẳng định nào sau đây là đúng?

    Cho hai đường thẳng trong không gian không có điểm chung có hai trường hợp xảy ra là hai đường thẳng song song hoặc chéo nhau

  • Câu 11: Vận dụng

    Cho hình chóp S.ABCD có đáy ABCD là hình thang cân đáy nhỏ BC. Lấy M,N,P lần lượt là trung điểm của AB,DC,SB. Giao tuyến của mặt phẳng (MNP) với các mặt của hình chóp S.ABCD là hình:

    Hình vẽ minh họa

    Xét mặt phẳng (MNP) và (SBC) có

    \left\{ \begin{matrix}\begin{matrix}P \in (MNP) \cap (SCD) \\MN \subset (MNP) \\BC \subset (SBC) \\\end{matrix} \\MN//BC \\\end{matrix} ight. (1)

    = > (MNP) \cap (SCD) = PQ//BC,(Q \inSD) (2)

    Từ (1) và (2) = > MN//BC.

    Xét tứ giác MNQPMN//BC

    => MNQP là hình thang.

    Vậy giao điểm của mặt phẳng (MNP) với các mặt của hình chóp S.ABCD là hình thang.

  • Câu 12: Thông hiểu

    Cho hình chóp S\ ABCDEFcó đáy ABCDEF là lục giác đều tâm O. Có bao nhiêu mặt phẳng qua các điểm là đỉnh của hình chóp có chung giao tuyến là SO

    Đáp án: 3

    Đáp án là:

    Cho hình chóp S\ ABCDEFcó đáy ABCDEF là lục giác đều tâm O. Có bao nhiêu mặt phẳng qua các điểm là đỉnh của hình chóp có chung giao tuyến là SO

    Đáp án: 3

    Hình vẽ minh họa

    (SAD),(SCF),(SBE)có chung giao tuyến SO.

  • Câu 13: Thông hiểu

    Giả sử có ba đường thẳng a, b, c trong đó b // a và c //a. những phát biểu nào sau đây là sai?

    (1) Nếu mặt phẳng (a, b) không trùng với mặt phẳng (a, c) thì b và c chéo nhau.

    (2) Nếu mặt phẳng (a, b) trùng với mặt phẳng (a, c) thì ba đường thẳng a, b, c song song với nhau từng đôi một.

    (3) Dù cho hai mặt phẳng (a, b) và (a, c) có trùng nhau hay không, ta vẫn có b // c.

    Phát biểu (1) sai vì nếu mặt phẳng (a, b) không trùng với mặt phẳng (a, c) thì b và c song song

    Phát biểu (2) Sai vì nếu mặt phẳng (a, b) trùng với mặt phẳng (a, c) thì b trùng c

    Phát biểu (3) Sai vì có thể xảy ra b trùng c.

  • Câu 14: Nhận biết

    Cho hình chóp S.ABCH là trung điểm của đoạn thẳng SC. Tìm khẳng định sai dưới đây.

    Hình vẽ minh họa

    Ta có: BHAC không đồng phẳng nên khẳng định BHAC cắt nhau là sai.

  • Câu 15: Nhận biết

    Trong các mệnh đề sau đây, mệnh đề nào sai?

    Hai đường thẳng phân biệt m,n cùng song song với (\alpha) thì m,n có thể cắt nhau cùng nằm trong (\alpha).

  • Câu 16: Thông hiểu

    Cho ba đường thẳng a,b,c đôi một chéo nhau. Mệnh đề nào đúng trong các mệnh đề sau?

    Gọi M là điểm bất kì nằm trên a.

    Giả sử d là đường thẳng qua M cắt cả b và c.

    Khi đó, d là giao tuyến của mặt phẳng tạo bởi M và b với mặt phẳng tạo bởi M và c.

    Với mỗi điểm M ta được một đường thẳng d.

    Vậy có vô số đường thẳng cắt cả 3 đường thẳng a, b, c.

  • Câu 17: Nhận biết

    Cho mặt phẳng (\alpha) và đường thẳng d ⊄ (\alpha). Khẳng định nào sau đây là sai?

    Mệnh đề Nếu d\ //\
(\alpha)b \subset
(\alpha) thì b\ //\ d“ sai vì bd có thể chéo nhau.

  • Câu 18: Thông hiểu

    Trong không gian, cho 3 đường thẳng a, b, c, biết a//b, a và c chéo nhau. Khi đó hai đường thẳng b và c:

    Giả sử b//c

    => c // a (mâu thuẫn với giả thiết). 

    Vậy hai đường thẳng b và c cắt nhau hoặc chéo nhau.

  • Câu 19: Nhận biết

    Trong không gian cho các đường thẳng a, b và các mặt phẳng (α), (β). Trong các khẳng định sau đây, đâu là khẳng định đúng?

    Mệnh đề “a // (β) và (β) // b thì a // b” là sai vì a và b có thể cắt nhau.

    Mệnh đề “a // b và b ⊂ (α) thì a // (α)” là sai vì có thể a ⊂ (α).

    Mệnh đề “a // b và b // (α) thì a // (α)” là sai vì có thể a ⊂ (α).

  • Câu 20: Vận dụng cao

    Cho tứ diện ABCD có tất cả các cạnh bằng a. Lấy I là trung điểm của AC, J \in
AD sao cho \frac{AJ}{AD} =
2. Giả sử mặt phẳng (\alpha) chứa IJ và song song với AB. Xác định các giao tuyến của mặt phẳng (\alpha) với tứ diện. Tính diện tích hình tạo bởi các giao tuyến đó.

    Hình vẽ minh hoạ

    Trong mp(ABD) kẻ JN // AB, (N ∈ BD).

    Trong mp(ABC) kẻ IM // AB, (M ∈ BC).

    Gọi P là điểm đối xứng của C qua D.

    Khi đó AD = \frac{1}{2}CD =
BD

    => Tam giác ACP và tam giác BCP lần lượt vuông tại A, B, và có J là trọng tâm tam giác ACP, N là trọng tâm tam giác BCP.

    \Rightarrow \frac{PJ}{PI} =
\frac{PN}{PM} = \frac{2}{3}

    Ta lại có: \frac{S_{PJN}}{S_{PIM}} =
\frac{PJ}{PI}.\frac{PN}{PM} = \frac{2}{3}.\frac{2}{3} =
\frac{4}{9}

    \Rightarrow \frac{S_{JNMI}}{S_{PIM}} =
\frac{5}{9}

    Mặt khác

    JN//AB \Rightarrow \frac{JN}{AB} =
\frac{DJ}{DA} = \frac{1}{3} \Rightarrow JN = \frac{1}{3}AB =
\frac{a}{3}

    IM//AB \Rightarrow \frac{IM}{AB} =
\frac{CI}{CA} = \frac{1}{2} \Rightarrow IM = \frac{1}{2}AB =
\frac{a}{2}

    Trong tam giác PAC vuông tại A ta có:

    AP = \sqrt{CP^{2} - AC^{2}} =
\sqrt{(2a)^{2} - a^{2}} = a\sqrt{3}

    PI = \sqrt{AI^{2} + AP^{2}} =
\sqrt{\left( \frac{a}{2} ight)^{2} + \left( a\sqrt{3} ight)^{2}} =
\frac{a\sqrt{13}}{2} = PM

    Diện tích tam giác PIM

    S_{PIM} = \sqrt{p(p - PI)(p - PM)(p -
IM)}

    Với p = \frac{PI + PM + IM}{2} = \frac{1
+ 2\sqrt{13}}{4}.a

    \Rightarrow S_{PIM} =
\frac{a^{2}\sqrt{51}}{16}

    \Rightarrow S_{JNMI} =
\frac{5}{9}S_{PIM} = \frac{5a^{2}\sqrt{51}}{144}

  • Câu 21: Thông hiểu

    Cho hình chóp S.\ ABCD có đáy là hình bình hành tâm O. Gọi N là trung điểm của cạnh SC. Lấy điểm M đối xứng với B qua A, OMcắt ADtại K. Gọi giao điểm G của đường thẳng MN với mặt phẳng(SAD). Xét tính đúng sai các khẳng định sau:

    a) MD//AC. Đúng||Sai

    b) Đường ONSA cắt nhau. Sai||Đúng

    c) GK//ON. Đúng||Sai

    d) Tỉ số \frac{GM}{GN} = 3. Sai||Đúng

    Đáp án là:

    Cho hình chóp S.\ ABCD có đáy là hình bình hành tâm O. Gọi N là trung điểm của cạnh SC. Lấy điểm M đối xứng với B qua A, OMcắt ADtại K. Gọi giao điểm G của đường thẳng MN với mặt phẳng(SAD). Xét tính đúng sai các khẳng định sau:

    a) MD//AC. Đúng||Sai

    b) Đường ONSA cắt nhau. Sai||Đúng

    c) GK//ON. Đúng||Sai

    d) Tỉ số \frac{GM}{GN} = 3. Sai||Đúng

    Hình vẽ minh họa

    a) Xét tứ giác AMDC\left\{ \begin{matrix}
AM//DC \\
AM = DC( = AB) \\
\end{matrix} ight..

    Suy ra tứ giác AMDC là hình bình hành

    Nên MD//AC. Vậy khẳng định a đúng

    b) Vì O là trung điểm AC,N là trung điểm SC nên ON\ //\ SA (tính chất đường trung bình).

    Vậy khẳng định b sai.

    c) \left\{ \begin{matrix}
ON\ //\ SA \\
ON \subset (OMN) \\
SA \subset (SAD) \\
(OMN) \cap (SAD) = GK \\
\end{matrix} ight.\  \Rightarrow GK//ON//SA

    Vậy khẳng định c đúng.

    d) Áp dụng định lí Talet choGK\ //\
ON, ta có:

    \frac{GM}{GN} = \frac{KM}{KO} (1)

    Gọi I là trung điểm của AB, vì O là trung điểm của BD nên theo tính chất đường trung

    bình, OI\ //\ AD, vậy theo định lí Talet:

    \frac{KM}{KO} = \frac{AM}{AI} =
\frac{AB}{AI} = 2. (2)

    Từ (1) và (2), ta có \frac{GM}{GN} =
2.

    Vậy khẳng định d sai.

  • Câu 22: Vận dụng

    Cho hình chóp S.ABCD. Điểm A' nằm trên cạnh SC (A'
eq S).Thiết diện của hình chóp với mặt phẳng (ABA') là một đa giác có bao nhiêu cạnh?

    Đáp án: 4 cạnh.

    Đáp án là:

    Cho hình chóp S.ABCD. Điểm A' nằm trên cạnh SC (A'
eq S).Thiết diện của hình chóp với mặt phẳng (ABA') là một đa giác có bao nhiêu cạnh?

    Đáp án: 4 cạnh.

    Hình vẽ minh họa

    Xét (ABA')(SCD) ta có:

    \left\{ \begin{matrix}
A' \in SC,SC \subset (SCD) \\
A' \in (ABA') \\
\end{matrix} ight.\  \Rightarrow A' là điểm chung thứ nhất.

    Gọi I = AB \cap CD

    \left\{ \begin{matrix}
I \in AB,AB \subset (ABA') \\
I \in CD,CD \subset (SCD) \\
\end{matrix} ight.\  \Rightarrow I là điểm chung thứ hai.

    \Rightarrow (ABA') \cap (SCD) =
IA'

    Gọi M = IA' \cap SD. Ta có:

    (ABA') \cap (SCD) = A'M

    (ABA')\cap (SAD)=AM

    (ABA') \cap (ABCD) = AB

    (ABA') \cap (SBC) =
BA'

    Thiết diện là tứ giác ABA'M.

    Vậy thiết diện là đa giác có 4 cạnh.

  • Câu 23: Vận dụng

    Cho hình chóp S.ABCD, M, N, P, Q lần lượt là trọng tâm các tam giác SAB, SBC, SCD, SDA. Khẳng định nào sau đây là đúng?

    Hình vẽ minh họa

    Chọn khẳng định đúng

    Gọi F, G, H, I lần lượt là trung điểm của AB; BC; CD và DA

    Vì M, N, P, Q lần lượt là trọng tâm của các tam giác SAB, SBC, SCD, SDA.

    => \frac{{SM}}{{SF}} = \frac{{SN}}{{SG}} = \frac{{SP}}{{SH}} = \frac{{SQ}}{{SI}} = \frac{2}{3}

    Khi đó: MN // FG; NP // GH; QP // IH; MQ // FI

    Xét tam giác ABD có FI là đường trung bình (vì F và I lần lượt là trung điểm của AB và AD)

    =>  FI // BD

    Chứng minh tương tự ta có: GH // BD

    =>  FI // GH // BD

    Tương tự FG // IH // AC

    => MQ // NP // FI // GHMN // PQ // FG // IH

    Vậy tứ giác MNPQ là hình bình hành.

  • Câu 24: Vận dụng cao

    Cho hình hộp chữ nhật ABCD.A'B'C'D'M,\ \ N,\ \ P lần lượt là các điểm nằm trên ba cạnh AA',\ \ BB',\ \
CC' sao cho AM =
\frac{1}{2}AA',\ \ BN = \frac{1}{3}BB',\ \ CP =
\frac{1}{4}CC'. Gọi Q là giao điểm của mặt phẳng (MNP) với đường thẳng DD'. Khi đó tỉ số \frac{D'Q}{DD'} bằng bao nhiêu?

    Đáp án: 5/12 (Kết quả ghi dưới dạng phân số tối giản).

    Đáp án là:

    Cho hình hộp chữ nhật ABCD.A'B'C'D'M,\ \ N,\ \ P lần lượt là các điểm nằm trên ba cạnh AA',\ \ BB',\ \
CC' sao cho AM =
\frac{1}{2}AA',\ \ BN = \frac{1}{3}BB',\ \ CP =
\frac{1}{4}CC'. Gọi Q là giao điểm của mặt phẳng (MNP) với đường thẳng DD'. Khi đó tỉ số \frac{D'Q}{DD'} bằng bao nhiêu?

    Đáp án: 5/12 (Kết quả ghi dưới dạng phân số tối giản).

    Hình vẽ minh họa

    Lấy M', N' lần lượt là các cạnh trên DD'CC'sao cho MA = M'DNB = N'C.

    (ABB'A')\ //\
(CDD'C') nên 2 giao tuyến giữa mặt phẳng (MNP) lần lượt với các mặt phẳng (ABB'A')(CDD'C') sẽ song song với nhau.

    Do đó, ta sẽ lấy Q nằm trên cạnh DD'sao cho MN\ //\ PQ.

    Ta có:

    D'Q = D'M' - QM' =
\frac{DD'}{2} - (N'C - PC)

    = \frac{DD'}{2} - \left(
\frac{DD'}{3} - \frac{DD'}{4} ight) =
\frac{5DD'}{12}.

    Khi đó, \frac{D'Q}{DD'} =
\frac{5}{12}.

  • Câu 25: Nhận biết

    Cho hình hộp ABCD.A'B'C'D'. Tìm mặt phẳng song song với mặt phẳng (AB'D').

     Hình vẽ minh họa

    Tìm mặt phẳng song song với mặt phẳng cho trước

    Mặt phẳng (AB’D’) song song với mặt phẳng (BDC’).

    AB’//DC’AD’// BC’.

  • Câu 26: Thông hiểu

    Cho hình chóp S.ABCD. Gọi A′,B′,C′,D′lần lượt là trung điểm của các cạnh SA,SB,SCSD. Trong các đường thẳng sau đây, đường thẳng nào không song song với A'B'?

    Hình vẽ minh họa

    Tìm đường thẳng không song song với A'B'

    Ta có: A′,B′,C′,D′ lần lượt là trung điểm của các cạnh SA,SB,SC,SD

    => A'B', B'C', C'D', A'D' lần lượt là đường trung bình của tam giác SAB, SBC, SCD, SAD.

    ABCD là hình bình hành

    => \left\{ \begin{gathered}  AB//A\prime B\prime  \hfill \\  CD//A\prime B\prime  \hfill \\  C'D'//A\prime B\prime  \hfill \\ \end{gathered}  ight.

    Vậy SC không song song với A'B'.

  • Câu 27: Nhận biết

    Cho hình chóp S.ABCD. Gọi MN lần lượt là trung điểm của SA SC. Khẳng định nào sau đây đúng?

    Hình vẽ minh họa

    MNlà đường trung bình của tam giác SAC nên MN//ACAC
\in (ABCD) \Rightarrow MN//(ABCD).

  • Câu 28: Vận dụng

    Cho hình chóp S.ABCDABCD là hình bình hành. Lấy M \in AB sao cho \overrightarrow{AM} =
3\overrightarrow{BM}. Giả sử (\alpha)qua M và song song với hai đường thẳng SC,BD. Tìm khẳng định đúng.

    Hình vẽ minh họa:

    Trong mặt phẳng (ABCD), kẻ đường thẳng qua M và song song với BD cắt các cạnh CD, CB lần lượt tại E, F.

    Xét mặt phẳng (SBC), kẻ FG // SC (G ∈ SB).

    Xét mặt phẳng (SCD), kẻ EK // SC (K ∈ SD).

    Gọi I là giao điểm của AC và EF, trong mặt phẳng (SAC) kẻ đường thẳng qua I và song song với SC cắt SA tại điểm H.

    Khi đó EFGHK là hình tạo bởi các giao tuyến của mặt phẳng (P) với các mặt của hình chóp.

  • Câu 29: Thông hiểu

    Cho hình lăng trụ ABC.A'B'C'. Gọi trung điểm của AB,A'B' lần lượt là I,I'. Qua phép chiếu song song phương AI', mặt phẳng chiếu (A'B'C') biến điểm I thành điểm nào?

    Hình vẽ minh họa

    Ta có: \left\{ \begin{matrix}
AI//B'I' \\
AI = B'I' \\
\end{matrix} ight. suy ra AIB'I' là hình bình hành.

    Suy ra phép chiếu song song phương AI', mặt phẳng chiếu (A'B'C') biến điểm I thành B'.

  • Câu 30: Nhận biết

    Mệnh đề nào dưới đây SAI?

    Nếu ba mặt phẳng đôi một cắt nhau theo ba giao tuyến phân biệt thì ba giao tuyến đó đồng quy hoặc đôi một song song.

  • Câu 31: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Gọi I là trung điểm của cạnh SC. Mặt phẳng (\alpha) chứa AI và song song với BD cắt các cạnh SB,SD lần lượt tại M,N. Tìm khẳng định đúng dưới dây?

    Hình vẽ minh họa:

    Ta có: E là giao điểm của AI và SO, kẻ đường thẳng qua E song song với BD và cắt SB, SD lần lượt tại M và N. Khi đó: (\alpha) \equiv
(AMIN)

    Dễ thấy E là trọng tâm tam giác SAC nên \frac{OS}{OE} = \frac{1}{3}

    MN//BD \Rightarrow \frac{MB}{SB} =
\frac{OE}{SO} = \frac{1}{3}

  • Câu 32: Thông hiểu

    Cho tứ diện ABCD. Gọi M, N lần lượt là trung điểm của các cạnh AD và BC; G là trọng tâm của tam giác BCD. Tìm giao điểm của đường thẳng MG và mặt phẳng (ABC).

    Hình vẽ minh họa

    Giao điểm của đường thẳng MG và đường thẳng AN là giao điểm của đường thẳng MG và đường thẳng AN.

  • Câu 33: Thông hiểu

    Cho hình chóp tứ giác S.ABCD, đáy ABCD là tứ giác lồi. Gọi O = AC \cap BD;M = AB \cap CD; N = AD \cap BC. Xác định giao tuyến của hai mặt phẳng (SAB)(SCD)?

    Hình vẽ minh họa

    Nhận thấy S và M lần lượt là hai điểm chung của hai mặt phẳng (SAB) và (SCD).

    Do đó giao tuyến của hai mặt phẳng (SAB) và (SCD) là SM.

  • Câu 34: Nhận biết

    Trong không gian, cho ba đường thẳng a,\
\ b,\ \ c. Trong các mệnh đề sau mệnh đề nào đúng?

    Nếu bc chéo nhau thì bc không cùng thuộc một mặt phẳng.

  • Câu 35: Thông hiểu

    Cho tứ diện ABCD. Gọi G_{1}G_{2} lần lượt là trọng tâm các tam giác BCDACD. Tìm tỉ số \frac{G_{1}G_{2}}{AB} (làm tròn đến hàng phần trăm)

    Đáp án: 0,33

    Đáp án là:

    Cho tứ diện ABCD. Gọi G_{1}G_{2} lần lượt là trọng tâm các tam giác BCDACD. Tìm tỉ số \frac{G_{1}G_{2}}{AB} (làm tròn đến hàng phần trăm)

    Đáp án: 0,33

    Hình vẽ minh họa

    Ta có:

    G_{1}G_{2} lần lượt là trọng tâm các tam giác BCDACD nên BG _ { 1 }, AG_{2}CD đồng qui tại M(là trung điểm của CD) .

    G_{1}G_{2}//AB nên G_{1}G_{2}//(ABD)G_{1}G_{2}//(ABC).

    Lại có \frac{G_{1}G_{2}}{AB} =
\frac{MG_{1}}{MB} = \frac{1}{3} = 0,33

  • Câu 36: Vận dụng cao

    Cho hình hộp ABCD.A'B'C'D'. Trên các cạnh AA', BB', CC' lần lượt lấy ba điểm M, N, P sao cho \frac{A'M}{AA'} =
\frac{1}{3}, \frac{B'N}{BB'} = \frac{2}{3}, \frac{C'P}{CC'} =
\frac{1}{2}. Biết mặt phẳng (MNP) cắt cạnh DD' tại Q. Tính tỉ số \frac{D'Q}{DD'}.

    Đáp án: 1/6 (Kết quả ghi dưới dạng phân số tối giản a/b).

    Đáp án là:

    Cho hình hộp ABCD.A'B'C'D'. Trên các cạnh AA', BB', CC' lần lượt lấy ba điểm M, N, P sao cho \frac{A'M}{AA'} =
\frac{1}{3}, \frac{B'N}{BB'} = \frac{2}{3}, \frac{C'P}{CC'} =
\frac{1}{2}. Biết mặt phẳng (MNP) cắt cạnh DD' tại Q. Tính tỉ số \frac{D'Q}{DD'}.

    Đáp án: 1/6 (Kết quả ghi dưới dạng phân số tối giản a/b).

    Hình vẽ minh họa

    Ta có \left\{ \begin{matrix}
(BB'C'C)\ //\ (AA'D'D) \\
(MNP) \cap (BB'C'C) = NP \\
(MNP) \cap (AA'D'D) = MQ \\
\end{matrix} ight.\  \Rightarrow NP\ //\ MQ.

    Tương tự: \left\{ \begin{matrix}
(AA'B'B)\ //\ (CC'D'D) \\
(MNP) \cap (AA'B'B) = MN \\
(MNP) \cap (CC'D'D) = PQ \\
\end{matrix} ight.\  \Rightarrow MN\ //\ PQ

    Suy ra mặt phẳng (MNP) cắt hình hộp theo thiết diện là hình bình hành MNPQ.

    Mặt khác \left\{ \begin{matrix}
BN = \frac{1}{3}BB' = \frac{1}{3}AA' \\
AM = \frac{2}{3}AA' \\
\end{matrix} ight.\  \Rightarrow \frac{BN}{AM} =
\frac{1}{2}.

    Trong mặt phẳng (ABB'A'), gọi E là giao điểm của hai đường thẳng MNAB thì BN là đường trung bình của tam giác AME \Rightarrow N là trung điểm của đoạn thẳng ME.

    Trong mặt phẳng (MNPQ), gọi F là giao điểm của EPMQ thì NP là đường trung bình của tam giác MEF (vì NP\
//\ MQN là trung điểm EM) \Rightarrow NP = \frac{1}{2}MF

    Mà tứ giác MNPQ là hình bình hành nên NP = MQ \Rightarrow Q là trung điểm MF hay \frac{FQ}{FM} = \frac{1}{2}

    Lại có D'Q\ //\ A'M \Rightarrow
\frac{D'Q}{A'M} = \frac{FQ}{FM} = \frac{1}{2}

    \Leftrightarrow\dfrac{D'Q}{\dfrac{1}{3}AA'} = \dfrac{1}{2} \Leftrightarrow\dfrac{D'Q}{DD'} = \frac{1}{2}.\dfrac{1}{3} =\dfrac{1}{6}

  • Câu 37: Nhận biết

    Tìm mệnh đề sai trong các mệnh đề sau?

    Phép chiếu song song chỉ có thể biến đường thẳng thành đường thẳng hoặc thành một điểm.

  • Câu 38: Vận dụng

    Cho hình chóp tứ giác S.ABCD. Gọi A_{1} là trung điểm của SA, B_{1} \in
SB. Xác định các giao tuyến của mặt phẳng \left( A_{1}B_{1}C ight)với các mặt của hình chóp. Khi đó hình tạo bởi các giao tuyến trên là:

    Trường hợp 1:

    Hình vẽ minh hoạ

    Nếu B_{1} eq S. Gọi O = AC \cap BD,\ I = SO \cap A_{1}C

    Nếu P = IB_{1} \cap SD

    => Hình tạo bởi các giao tuyến của mặt phẳng \left( A_{1}B_{1}C ight) với hình chóp là tứ giác A_{1}B_{1}CP

    Nếu P = IB \cap BD. Gọi Q = CP \cap AD

    Hình tạo bởi các giao tuyến của mặt phẳng \left( A_{1}B_{1}C ight) với hình chóp là tứ giác A_{1}B_{1}CQ

    Trường hợp 2:

    Hình vẽ minh hoạ

    Nếu B_{1} \equiv S. Hình tạo bởi các giao tuyến của mặt phẳng \left(
A_{1}B_{1}C ight) với hình chóp là tam giác SAC.

    Vậy hình tạo bởi các giao tuyến trên có thể là tứ giác hoặc tam giác.

  • Câu 39: Nhận biết

    Cho điểm A thuộc mặt phẳng (P), mệnh đề nào sau đây đúng:

    Mệnh đề đúng A \in (P).

  • Câu 40: Vận dụng

    Cho hình chóp S.ABCD với đáy là hình thang ABCD, đáy lớn BC gấp đôi đáy nhỏ AD. Gọi E là trung điểm AD và O là giao điểm của AC và BE, I là một điểm thuộc đoạn OC (I khác O và C). Mặt phẳng (α) qua I song song với (SBE). Xác định hình tạo bởi các giao tuyến của mặt phẳng (α) với hình chóp S.ABCD.

    Hình vẽ minh họa

    Ta có: \left\{ \begin{matrix}
(\alpha)//(SBE) \\
(SBE) \cap (ABCD) = BE \\
(\alpha) \cap (ABCD) = Ix \\
\end{matrix} ight.

    => Ix//BE => Ix cắt BC tại M, AD tại Q.

    Ta có: \left\{ \begin{matrix}
(\alpha)//(SBE) \\
(\alpha) \cap (SBC) = Mx \\
(SBE) \cap (SBC) = SB \\
\end{matrix} ight.

    => Mx//SB

    => Mx cắt SC tại N.

    Ta có: \left\{ \begin{matrix}
(\alpha)//(SBE) \\
(\alpha) \cap (SAD) = Qx \\
(SBE) \cap (SAD) = SE \\
\end{matrix} ight.

    => Qx//SE

    => Qx cắt SD tại P

    Tứ giác BCDE là hình bình hành

    => CD // BE // MQ

    => CD // (α).

    Ta có: \left\{ \begin{matrix}
CD//\ (\alpha) \\
CD \subset (SCD) \\
(SCD) \cap (\alpha) = PN \\
\end{matrix} ight.

    => CD//P\ N \Rightarrow MQ//P\
N

    Vậy hình tạo bởi các giao tuyến của mặt phẳng (α) với hình chóp S.ABCD là hình thang MNPQ.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 4 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 16 lượt xem
Sắp xếp theo