Đề kiểm tra 45 phút Toán 11 Chương 8 Chân trời sáng tạo

Mô tả thêm: Đề kiểm tra 45 phút Toán 11 Quan hệ vuông góc trong không gian gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Chân trời sáng tạo.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Cho hai mặt phẳng (P), (Q) là hai mặt phẳng vuông góc với nhau có giao tuyến là đường thẳng m và a, b, c, d là các đường thẳng. Trong các khẳng định sau, khẳng định nào sai?

    "Nếu b ⊥ m thì b ⊂ (P) hoặc b ⊂ (Q)" là khẳng định sai vì có thể b ⊂ (P) và b ⊂ (Q).

  • Câu 2: Vận dụng

    Cho tứ diện ABCD có các cạnh AB,AC,AD đôi một vuông góc với nhau. Gọi trung điểm của các cạnh BC,CD,DB lần lượt là J;Q;K. Tính thể tích tứ diện AJQK, biết AB = 6cm;AC = 7cm;AD = 4cm.

    Hình vẽ minh họa

    Ta có: V_{ABCD} =\frac{1}{2}AB.\frac{1}{2}AD.AC = \frac{1}{2}.6.7.4 = 28\left( cm^{3}ight)

    Nhận thấy S_{JQK} = \frac{1}{2}S_{JQKD} =\frac{1}{4}S_{BCD}

    V_{JQK} = \frac{1}{4}V_{ABCD} = 7\left(cm^{3} ight)

  • Câu 3: Nhận biết

    Cho hình lập phương ABCD.EFGH. Góc giữa cặp vecto \overrightarrow {AF} ;\overrightarrow {EG} là:

    Hình vẽ minh họa:

    Tính góc giữa hai vecto

    Ta có tam giác ACF là tam giác đều

    \overrightarrow {EG}  = \overrightarrow {AC}

    => Góc giữa cặp vecto \overrightarrow {AF} ;\overrightarrow {EG} là:

    \left( {\overrightarrow {AF} ;\overrightarrow {EG} } ight) = \left( {\overrightarrow {AF} ;\overrightarrow {AC} } ight) = \widehat {CAF} = {60^0}

  • Câu 4: Nhận biết

    Cho hình chóp S.ABC có đường thẳng SA vuông góc với đáy (ABC), SA =
2a. Khoảng cách từ điểm S đến đường thẳng AB bằng:

    SA vuông góc với đáy (ABC) nên SA\bot AB \Rightarrow d(S,AB) = SA =
2a

  • Câu 5: Thông hiểu

    Một hình chóp S.ABC có đáy ABC là cân AB
= AC = a;\widehat{CAB} = 120^{0}. Tam giác SAB đều và nằm trong mặt phẳng vuông góc với mặt phẳng (ABC). Tính thể tích khối chóp S.ABC theo a.

    Hình vẽ minh họa

    Gọi H là trung điểm của AB

    Tam giác SAB đều nên SH\bot
AB

    Ta có: \left\{ \begin{matrix}
SH\bot AB \\
(SAB)\bot(ABC) \\
SH \subset (SAB) \\
AB = (SAB) \cap (ABC) \\
\end{matrix} ight.\  \Rightarrow SH\bot(ABC)

    Vậy SH là đường cao của hình chóp tam giác S.ABC

    Xét tam giác AHS vuông tại H ta có:

    SH = \sqrt{SA^{2} - AH^{2}} =
\sqrt{a^{2} - \left( \frac{a}{2} ight)^{2}} =
\frac{a\sqrt{3}}{2}

    \Rightarrow V_{S.ABC} =\frac{1}{3}.\frac{a\sqrt{3}}{2}.\frac{1}{2}a^{2}.\sin120^{0} =\frac{a^{3}}{8}

  • Câu 6: Thông hiểu

    Cho khối chóp tam giác đều S.ABC có cạnh đáy bằng 1cm và các cạnh bên bằng 2cm. Khi đó thể tích khối chóp bằng bao nhiêu?

    Hình vẽ minh họa

    Do đáy là tam giác đều nên gọi I là trung điểm của BC khi đó AI là đường cao của tam giác đáy.

    Theo định lí Pythagore ta có:

    AI = \sqrt{1 - \frac{1}{4}} =
\frac{\sqrt{3}}{2}cm

    \Rightarrow AO = \frac{2}{3}AI =
\frac{\sqrt{3}}{3}cm

    Trong tam giác SOA vuông tại O ta có: SO
= \sqrt{4 - \frac{1}{3}} = \frac{\sqrt{11}}{\sqrt{3}}cm

    Vậy thể tích khối chóp tam giác là: V =
\frac{1}{3}.\frac{1}{2}.\frac{\sqrt{3}}{2}.\frac{\sqrt{11}}{\sqrt{3}} =
\frac{\sqrt{11}}{12}cm^{3}

  • Câu 7: Thông hiểu

    Đáy của hình lăng trụ đứng tam giác ABC.A’B’C’ là tam giác đều cạnh bằng 4. Tính khoảng cách giữa hai đường thẳng AA’ và BC.

    Hình vẽ minh họa:

    Gọi M là trung điểm của BC. Khi đó AM ⊥ AA’ tại A, AM ⊥ BC tại M.

    Do đó, AM là đoạn vuông góc chung của AA’ và BC.

    => d(AA’, BC) = \frac{4\sqrt{3}}{2} =
2\sqrt{3}

  • Câu 8: Vận dụng

    Cho lăng trụ đều ABC.A’B’C’ có AB = 1; AA’ = m (m > 0). Để góc giữa AB’ và BC’ bằng 600 thì m có giá trị là bao nhiêu?

    Hình vẽ minh họa

    Tìm giá trị của m để góc tạo bời 2 đường thẳng thỏa mãn điều kiện

    Giả sử M, N, O lần lượt là trung điểm của BB’; B’C’; AB

    => MP // AB’; MN // BC’

    => Góc cần tìm là góc giữa MP và MN

    => MP = MN = \frac{{\sqrt {{m^2} + 1} }}{2}

    Lấy Q là trung điểm của A’B’ khi đó suy ra:

    \begin{matrix}  PN = \sqrt {P{Q^2} + Q{N^2}}  = \sqrt {{m^2} + \dfrac{1}{4}}  \hfill \\   \Rightarrow \cos \widehat {PMN} = \dfrac{{P{M^2} + M{N^2} - P{N^2}}}{{2.PM.MN}} =  \pm \dfrac{1}{2} \hfill \\   \Rightarrow m = \sqrt 2  \hfill \\ \end{matrix}

  • Câu 9: Nhận biết

    Cho lăng trụ đều ABC.A’B’C’ có tất cả các cạnh bằng a. Góc giữa đường thẳng A’B và mặt phẳng (A’B’C’) bằng:

    Hình vẽ minh họa:

    Vì BB’ ⊥ (A’B’C’) nên A’B’ là hình chiếu vuông góc của A’B lên (A’B’C’)

    => Góc giữa đường thẳng A’B và mặt phẳng (A’B’C’) là \widehat{BA'B'}

    Ta có: A’B’ = BB’ = a nên tam giác B’A’B vuông cân tại B’

    => \widehat{BA'B'} =45^{0}

  • Câu 10: Thông hiểu

    Một tấm ván hình chữ nhật ABCD được dùng làm mặt phẳng nghiêng để kéo một vật lên khỏi hố sâu 2\ m. Cho biết AB = 1\ m, AD
= 3,5\ m. Tính góc giữa đường thẳng BD và đáy hố. (Kết quả làm tròn đến độ).

    Đáp án : 33\ ^{0}

    Đáp án là:

    Một tấm ván hình chữ nhật ABCD được dùng làm mặt phẳng nghiêng để kéo một vật lên khỏi hố sâu 2\ m. Cho biết AB = 1\ m, AD
= 3,5\ m. Tính góc giữa đường thẳng BD và đáy hố. (Kết quả làm tròn đến độ).

    Đáp án : 33\ ^{0}

    Gọi H, K lần lượt là hình chiếu của C, D lên đáy hố là mặt phẳng (AKHB).

    Khi đó BD có hình chiếu lên đáy là KB, suy ra

    \left( BD,(AKHB) ight) = (BD,BK) =
\widehat{DBK}.

    Với độ sâu hố là DK = CH = 2(m), ta có

    AK = \sqrt{AD^{2} - DK^{2}} =
\frac{\sqrt{33}}{2}.

    KB = \sqrt{AK^{2} + AB^{2}} =
\frac{\sqrt{37}}{2}.

    \tan DBK = \frac{DK}{KB} =
\frac{4\sqrt{37}}{37}

    \Rightarrow \widehat{DBK} \approx
33{^\circ}.

  • Câu 11: Nhận biết

    Cho tứ diện ABCD có đáy BCD là tam giác vuông cân tại C. Gọi trung điểm các cạnh AB,AC,BC,CD lần lượt là M,N,P,Q. Khi đó (MN,PQ) bằng:

    Hình vẽ minh họa

    Ta có: \left\{ \begin{matrix}
MN//BC \\
PQ//BD \\
\end{matrix} ight.

    \Rightarrow (MN,PQ) = (BC,BD) =
\widehat{DBC} = 45^{0}

  • Câu 12: Thông hiểu

    Cho tứ diện OABC có OA, OB, OC đôi một vuông góc. Nếu H là hình chiếu vuông góc của điểm O trên mặt phẳng (ABC) thì H là:

    \left\{ \begin{matrix}
AB\bot OH \\
AB\bot OC \\
\end{matrix} ight.\  \Rightarrow AB\bot CH

    Tương tự: BC\bot AH

    Vậy H là trực tâm tam giác ABC.

  • Câu 13: Thông hiểu

    Cho hình chóp SABCD có SA ⊥ (ABCD), đáy ABCD là hình thang vuông tại A và B có độ dài cạnh AB = a. Gọi I, J lần lượt là trung điểm của AB và CD. Tính khoảng cách giữa hai đường thẳng IJ và SD.

    Hình vẽ minh họa:

    Ta có AD // (IJ) ⇒ IJ // (SAD) ⇒ d(IJ, SD) = d(IJ, (SAD)) = d(I, (SAD)) = IA = a/2

  • Câu 14: Nhận biết

    Mệnh đề nào sau đây là sai?

    Mệnh đề sai là: "Nếu a // (P) và b ⊥ a thì b ⊥ (P)"

  • Câu 15: Thông hiểu

    Cho hình chóp tứ giác đều S.ABCD, cạnh đáy bằng 2a, đường cao bằng a\sqrt{2}. Giả sử \left( (SCD);(ABCD) ight) = \alpha. Mệnh đề nào sau đây đúng?

    Hình vẽ minh họa

    Gọi O = AC \cap BC, M là trung điểm của CD.

    Ta có:

    \left\{ \begin{matrix}
(SCD) \cap (ABCD) = CD \\
OM\bot CD \\
SM\bot CD \\
\end{matrix} ight.\  \Rightarrow \alpha = (OM;SM) =
\widehat{SMO}

    Trong tam giác SMO có \tan\widehat{SMO} =
\frac{SO}{OM} = \frac{a\sqrt{2}}{a} = \sqrt{2}

    \Rightarrow \tan\alpha =
\sqrt{2}

  • Câu 16: Nhận biết

    Hình tứ diện ABCD có AB = AC = AD = 3 và AB, AC, AD đôi một vuông góc với nhau. Diện tích của tam giác BCD bằng:

    Do ∆BCD là tam giác đều cạnh \sqrt{18} nên có diện tích là S_{BCD} = \frac{18\sqrt{3}}{4} =
\frac{9\sqrt{3}}{2}

  • Câu 17: Thông hiểu

    Cho hình chóp S.ABCD có đáy là hình vuông cạnh bằng a, SA\bot(ABCD)SA = a\sqrt{6}. Giả sử \alpha = \left( SB;(SAC) ight). Chọn kết luận đúng?

    Hình vẽ minh họa

    Dễ thấy BO\bot(SAC) \Rightarrow \alpha =
\left( SB;(SAC) ight) = \widehat{BSO}

    Ta có: \sin\alpha = \dfrac{BO}{SB} =\dfrac{\dfrac{a\sqrt{2}}{2}}{a\sqrt{7}} =\dfrac{\sqrt{14}}{14}

  • Câu 18: Vận dụng

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng a. Tam giác SAB đều và SC= a\sqrt{2}. Hình chiếu vuông góc của S lên mặt phẳng (ABC) trùng với điểm H của AB. Cosin của góc giữa AC(SHD) bằng:

    Hình vẽ minh họa

    Dựng CE\bot DH

    Ta có: SH\bot(ABCD) \Rightarrow SH\botCE

    \Rightarrow CE\bot(SDH)

    => SE là hình chiếu vuông góc của SC lên mặt phẳng (SHD)

    Do đó: Số đo của góc giữa SC lên mặt phẳng (SHD) bằng với số đo của góc \widehat{CSE}

    Ta có: \cos\widehat{CSE} =\frac{SE}{SC}

    \Rightarrow S_{CHD} =\frac{1}{2}S_{ABCD}

    \Rightarrow CE.HD = a^{2} \Rightarrow CE= \frac{a^{2}}{HD}

    \Rightarrow HD = \sqrt{AD^{2} + AH^{2}}= \frac{a\sqrt{5}}{2}

    \Rightarrow HD = \sqrt{AD^{2} + AH^{2}}= \frac{a\sqrt{5}}{2}

    \Rightarrow CE =\frac{2a\sqrt{5}}{2}

    \Rightarrow SE = \sqrt{SC^{2} - CE^{2}}= \frac{a\sqrt{30}}{5}

    \Rightarrow \cos\widehat{CSE} =\sqrt{\frac{3}{5}}

  • Câu 19: Nhận biết

    Cho hình chóp S.ABCDSA\bot(ABCD). Kết luận nào sau đây sai về góc giữa SB(ABC)

    SA\bot(ABCD) nên AB là hình chiếu của SB trên (ABC)

    Vậy \widehat{\left( SB;(ABC) ight)} =
\widehat{SBA}.

  • Câu 20: Nhận biết

    Các đường thẳng cùng vuông góc với một đường thẳng thì: 

    Đáp án "Thuộc một mặt phẳng"  sai vì có thể xảy ra trường hợp chúng nằm trên nhiều mặt phẳng khác nhau.

    Đáp án "Vuông góc với nhau" sai vì có thể xảy ra trường hợp chúng song song với nhau.

    Đáp án "Song song với nhau" sai vì có thể xảy ra trường hợp chúng cắt nhau.

    Đáp án "Song song với một mặt phẳng"  đúng vì chúng đồng phẳng.

  • Câu 21: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA vuông góc với mặt phẳng đáy và SA =a\sqrt{6}. Gọi α là góc giữa SC và (SAB). Giá trị tan α bằng:

    Hình vẽ minh họa:

    Ta có: \left\{ \begin{matrix}BC\bot SA \\BC\bot AB \\\end{matrix} ight.=> BC ⊥ (SAB)

    => SB là hình chiếu của SC lên mặt phẳng (SAB)

    => \alpha = \widehat{BSC}

    SB = \sqrt{SA^{2} + AB^{2}} =a\sqrt{7}

    Vậy \tan\alpha = \frac{BC}{SB} =\frac{\sqrt{7}}{7}

  • Câu 22: Thông hiểu

    Cho tứ diện ABCD có AB vuông góc với CD. Mặt phẳng (P) song song với AB và CD lần lượt cắt BC, DB, AD, AC tại M, N, P, Q. Tứ giác MNPQ là hình gì?

    Hình vẽ minh họa:

    Ta có: (MNPQ) // AB; (MNPQ) ∩ (ABC) = MQ

    => MQ // AB

    Tương tự ta có: MN // CD; NP // AB; QP // CD

    Khi đó tứ giác MNPQ là hình bình hành

    Ta có: MN ⊥ MQ (Do AB ⊥ CD)

    Hay tứ giác MNPQ là hình chữ nhật.

  • Câu 23: Vận dụng cao

    Cho hai tam giác ACD và BCD nằm trên hai mặt phẳng vuông góc với nhau. Biết AC = AD = BC = BD = a, CD = 2x. Tìm giá trị của x theo a để hai mặt phẳng (ABC) và (ABD) vuông góc với nhau.

    Hình vẽ minh họa:

    Ta có AC = AD = BC = BD = a, suy ra các tam giác ACD, BCD, CAB, DAB là các tam giác cân.

    Gọi M là trung điểm của CD, suy ra AM ⊥ CD và BM ⊥ CD. Suy ra AM ⊥ MB và tam giác ABM vuông cân tại M.

    Ta có MD = MC = x, suy ra AM = AB = \sqrt{a^{2} - x^{2}}

    Gọi I là trung điểm của AB, suy ra IM = \frac{AM}{\sqrt{2}} = \frac{\sqrt{a^{2} -
x^{2}}}{\sqrt{2}}

    Mặt khác, (ABC) ⊥ (ABD) nên tam giác ICD vuông tại I.

    Suy ra: ID^{2} = IC^{2} = \frac{x^{2} +
a^{2}}{2}

    Ta có: ID^{2} + IC^{2} =
CD^{2}

    \Rightarrow a^{2} + x^{2} = 4x^{2}
\Rightarrow x = \frac{a\sqrt{3}}{3}

  • Câu 24: Thông hiểu

    Cho hình lập phương ABCD.A'B'C'D'. Đường thẳng nào dưới đây vuông góc với mặt phẳng (A'BD)?

    Hình vẽ minh họa

    Ta có: AB = AD = AA' = a nên A cách đều các điểm B,D,A'

    BC' = DC' = C'A' =
a\sqrt{2} nên C' cách đều các điểm B,D,A'

    Do đó A; C’ cùng nằm trên đường tròn ngoại tiếp tam giác A'BD

    \Rightarrow
AC'\bot(A'BD)

  • Câu 25: Thông hiểu

    Cho hình chóp S.ABC có SA ⊥ (ABC) và đáy ABC là tam giác vuông tại B. Xác định góc α giữa hai mặt phẳng (ABC) và (SBC).

    Hình vẽ minh họa:

    Ta có:

    Giao tuyến của hai mặt phẳng (SBC) và (ABC) là BC. (1)

    Ta có: SA ⊥ (ABC), mà đường thẳng BC nằm trong (ABC) => SA ⊥ BC.

    Ta có:\left\{ \begin{matrix}
BC\bot BA \subset (SAB) \\
BC\bot SA \subset (SAB) \\
BA\  \cap \ SA\  = \ A \\
\end{matrix} ight.\  \Rightarrow BC\bot(SAB)\ \ \ (2)

    Lại có: \left\{ \begin{matrix}
(SBA)\  \cap \ (ABC)\  = \ BA \\
(SBA)\  \cap \ (SBC)\  = \ BS \\
\end{matrix} ight.\ (3)

    Từ (1), (2), (3) => \alpha =
\widehat{SBA}

  • Câu 26: Thông hiểu

    Cho hình chóp S.ABCD có đáy là hình vuông cạnh bằng 2a. Biết góc giữa hai mặt phẳng (SAB) và mặt phẳng (ABCD) bằng 90^{0}, SA =
SB. Tính tan góc giữa SC và mặt phẳng (ABCD), biết thể tích khối chóp S.ABCD bằng \frac{4a^{3}}{3}?

    Hình vẽ minh họa

    Kẻ SH\bot AB , gọi \alpha = \left( SC;(ABCD) ight)

    Ta có: \left\{ \begin{matrix}
(SAB)\bot(ABCD) \\
(SAB) \cap (ABCD) = AB \\
SH \subset (SAB) \\
\end{matrix} ight.\  \Rightarrow SH\bot(ABCD)

    \Rightarrow \alpha =
\widehat{SCH}

    Lại có: V_{S.ABCD} =
\frac{1}{3}SH.S_{ABCD} = \frac{4a^{3}}{3} \Rightarrow SH =
a

    Do tam giác SAB cân tại S nên H là trung điểm của AB

    \Rightarrow HC = \sqrt{BH^{2} + BC^{2}}
= a\sqrt{5}

    \Rightarrow \tan\alpha =
\tan\widehat{SCH} = \frac{SH}{HC} = \frac{a}{a\sqrt{5}} =
\frac{\sqrt{5}}{5}

  • Câu 27: Thông hiểu

    Cho tứ diện đều ABCD, M là trung điểm của AB. Gọi α là góc giữa hai đường thẳng CM và DM. Tính giá trị của cos α?

    Gọi a là độ dài cạnh của tứ diện đều. Khi đó:

    CD = a;MC = MD = \frac{{a\sqrt 3 }}{2}

    Ta có hình vẽ minh họa:

    Tính cosin góc giữa hai đường thẳng

    Áp dụng định lí cosin vào tam giác CMD ta được:

    \begin{matrix}  \cos \widehat {CMD} = \dfrac{{M{C^2} + M{D^2} - C{D^2}}}{{2MC.MD}} \hfill \\   = \dfrac{{\dfrac{{3{a^2}}}{2} - {a^2}}}{{\dfrac{{3{a^2}}}{2}}} = \dfrac{{\dfrac{{{a^2}}}{2}}}{{\dfrac{{3{a^2}}}{2}}} = \dfrac{1}{3} \hfill \\   \Rightarrow \cos \alpha  = \dfrac{1}{3} \hfill \\ \end{matrix}

  • Câu 28: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a; SA\bot(ABCD);SA = a\sqrt{2}. Tính khoảng cách giữa hai đường chéo nhau ACSB bằng:

    Hình vẽ minh họa

    Kẻ đường thẳng d qua B và song song AC

    Gọi M là hình chiếu vuông góc của A lên d

    Gọi H là hình chiếu của A lên SM.

    Ta có: \left\{ \begin{matrix}
SA\bot BM \\
BM\bot AM \\
\end{matrix} ight.\  \Rightarrow BM\bot(SAM) \Rightarrow
AH\bot(SBM)

    \Rightarrow d(AC;SB) = d\left( A;(SBM)
ight) = AH

    Xét tam giác SAM có đường cao AH nên

    \frac{1}{AH^{2}} = \frac{1}{AS^{2}} +
\frac{1}{AM^{2}} = \frac{5}{2a^{2}}

    \Rightarrow AH =
\frac{a\sqrt{10}}{5}

  • Câu 29: Vận dụng

    Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng 1, cạnh bên hợp với mặt đáy một góc 600. Tính khoảng cách d từ O đến mặt phẳng (SBC)

    Hình ảnh minh họa

    Tính khoảng cách d từ O đến mặt phẳng (SBC)

    Gọi O là tâm ABCD => SO \bot (ABCD)

    Ta có: \left\{ {\begin{array}{*{20}{c}}  {OB = \dfrac{{BD}}{2} = \dfrac{{\sqrt 2 }}{2}} \\   {OM = \dfrac{{AB}}{2} = \dfrac{1}{2}} \end{array}} ight.

    \begin{matrix}  {60^0} = \left( {SB;\left( {ABCD} ight)} ight) = \left( {SB;OB} ight) = \widehat {SBO} \hfill \\  SO = OB.\tan \widehat {SBO} = \dfrac{{\sqrt 6 }}{2} \hfill \\ \end{matrix}

    Gọi M là trung điểm của BC, kẻ OK vuông góc với SM (1)

    Ta có: \left\{ {\begin{array}{*{20}{c}}  {BC \bot OM} \\   {BC \bot SO} \end{array}} ight. \Rightarrow BC \bot \left( {SOM} ight) \Rightarrow BC \bot OK\left( 2 ight)

    Xét tam giác vuông SOM ta có:

    \begin{matrix}  OK = \dfrac{{SO.OM}}{{\sqrt {S{O^2} + O{M^2}} }} = \dfrac{{\sqrt {42} }}{{14}} \hfill \\   \Rightarrow d\left( {O;\left( {SBC} ight)} ight) = OK = \dfrac{{\sqrt {42} }}{{14}} \hfill \\ \end{matrix}

  • Câu 30: Nhận biết

    Cho hình chóp S.ABC có đáy là tam giác đều cạnh bằng x; SC\bot(ABC);SC = x. Xác định thể tích hình chóp S.ABC?

    Ta có SC\bot(ABC) nên SC là đường cao của hình chóp

    Tam giác ABC đều cạnh x nên S_{ABC} =
\frac{x^{2}\sqrt{3}}{4}

    Vậy thể tích hình chóp là: V_{S.ABC} =
\frac{1}{3}SC.S_{ABC} = \frac{1}{3}.\frac{x^{2}\sqrt{3}}{4}.x =
\frac{x^{3}\sqrt{3}}{12}

  • Câu 31: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông, SA\bot(ABCD). Kết luận nào sau đây sai?

    Hình vẽ minh họa

    Ta có:

    (SCD)\bot(SAD)\left\{ \begin{matrix}
CD\bot AD \\
CD\bot SA \\
CD \subset (SCD) \\
\end{matrix} ight.\  \Rightarrow CD\bot(SAD)

    (SBC)\bot(SAB)\left\{ \begin{matrix}
BC\bot SA \\
BC\bot AB \\
BC \subset (SBC) \\
\end{matrix} ight.\  \Rightarrow BC\bot(SAB)

    (SBD)\bot(SAC)\left\{ \begin{matrix}
BD\bot SA \\
BD\bot AC \\
BD \subset (SBD) \\
\end{matrix} ight.\  \Rightarrow BD\bot(SAC)

  • Câu 32: Vận dụng cao

    Cho khối chóp S.ABCD có đáy ABCD là hình vuông cạnh 2a. Hình chiếu vuông góc của S trên mặt phẳng (ABCD) là điểm H thuộc đoạn BD sao cho HD = 3HB. Biết góc giữa mặt (SCD) và mặt phẳng đáy bằng 450. Khoảng cách giữa hai đường thẳng SA và BD là:

    Hình vẽ minh họa:

    Kẻ HI // BC (I ∈ CD) ta có: \left\{\begin{matrix}CD\bot HI \\CD\bot SI \\\end{matrix} ight.

    => Góc giữa mặt phẳng (SCD) và mặt phẳng đáy là góc \widehat{SIH} = 45^{0}

    Dựng hình bình hành ADBE

    Ta có: BD // (SAE) => d(SA, BD) = d(BD, (SAE)) = d(B, (SAE)) = d(H, (SAE))

    Kẻ HJ ⊥ AE (J ∈ AE) ta có: AE ⊥ (SHJ) => (SAE) ⊥ (SHJ) theo giao tuyến SJ

    Kẻ HK ⊥ SJ (K ∈ SJ) ta có: HK ⊥ (SAE) => HK = d(H, (SAE))

    Ta có: HK = \frac{HJ.HS}{\sqrt{HJ^{2} +HS^{2}}}

    Với \left\{ \begin{matrix}HJ = AO = a\sqrt{2} \\HS = HI = \dfrac{3}{4}BC = \dfrac{3}{2} \\\end{matrix} ight.

    Vậy HK =\dfrac{a\sqrt{2}.\dfrac{3}{2}a}{\sqrt{\left( a\sqrt{2} ight)^{2} +\left( \dfrac{3}{2}a ight)^{2}}} = \dfrac{3a\sqrt{31}}{17}

  • Câu 33: Thông hiểu

    Cho hình chóp S. ABCD có đáy là hình vuông ABCD cạnh bằng a và các cạnh bên đều bằng a. Gọi M và N lần lượt là trung điểm của AD và SD. Số đo góc (MN; SC) bằng:

    Hình vẽ minh họa:

    Do ABCD là hình vuông cạnh a

    => AC = a\sqrt{2} \Rightarrow AC^{2} =
2a^{2} = SA^{2} + SC^{2}

    => Tam giác SAC vuông tại S

    Từ giả thiết ta có MN là đường trung bình của tam giác DSA

    => \overrightarrow{NM} =
\frac{1}{2}\overrightarrow{SA}. Khi đó \overrightarrow{NM}.\overrightarrow{SC} =
\frac{1}{2}\overrightarrow{SA}.\overrightarrow{SC} = 0

    => MN\bot SC \Rightarrow (MN;SC) =
90^{0}

  • Câu 34: Vận dụng

    Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a\sqrt 2 và cạnh bên bằng 2a. Góc giữa đường thẳng SB với mặt phẳng (SAC) bằng

    Gọi O = AC \cap BD. Ta có S.ABCD là hình chóp tứ giác đều suy ra SO \bot \left( {ABCD} ight).

    \left\{ \begin{gathered}  SO \bot \left( {ABCD} ight) \hfill \\  BD \subset \left( {ABCD} ight) \hfill \\ \end{gathered}  ight. \Rightarrow SO \bot BD

    \left\{ \begin{gathered}  BD \bot SO \hfill \\  BD \bot AC \hfill \\  SO,AC \subset \left( {SAC} ight) \hfill \\  SO \cap AC = \left\{ O ight\} \hfill \\ \end{gathered}  ight. \Rightarrow BD \bot \left( {SAC} ight)

    Suy ra hình chiếu vuông góc của đường thẳng SB lên mặt phẳng (SAC) là đường thẳng SO.

    Do đó góc giữa SB và mặt phẳng (SAC) bằng góc giữa hai đường thẳng SB và SO và bằng góc \widehat {BSO}.

    BO = \frac{{BD}}{2} = \frac{{a\sqrt 2 .\sqrt 2 }}{2} = a

    \left\{ \begin{gathered}  SO \bot \left( {ABCD} ight) \hfill \\  OB \subset \left( {ABCD} ight) \hfill \\ \end{gathered}  ight. \Rightarrow SO \bot OB

    Xét tam giác SOB có

    Ta có \sin \widehat {BSO} = \frac{{BO}}{{SB}} = \frac{a}{{2a}} = \frac{1}{2} \Rightarrow BSO = {30^0}

  • Câu 35: Nhận biết

    Công thức tính thể tích khối lăng trụ có diện tích đáy B và chiều cao h là:

    Thể tích khối lăng trụ có diện tích đáy B và chiều cao h là:

    V = B.h

  • Câu 36: Vận dụng

    Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật với AB = a, AD = a\sqrt 3, SA vuông góc với mặt phẳng đáy và SA = 2a. Góc giữa hai đường thẳng SC và BD nằm trong khoảng nào?

     Góc giữa hai đường thẳng SC và BD

    Gọi O là giao điểm của AC và BD và M là trung điểm của SA.

    Trong hình chữ nhật ABCD ta có

    OB = OD = \frac{{BD}}{2} = \frac{{\sqrt {A{D^2} + A{B^2}} }}{2} = \frac{{\sqrt {{a^2} + 3{a^2}} }}{2} = a

    Xét tam giác MAB vuông tại A, ta có:

    MB = \sqrt {A{B^2} + M{A^2}}  = \sqrt {{a^2} + {a^2}}  = a\sqrt 2

    Xét tam giác MAO vuông tại O, ta có:

    MO = \sqrt {A{O^2} + M{A^2}}  = \sqrt {{a^2} + {a^2}}  = a\sqrt 2

    Do MO // SC nên góc giữa hai đường thẳng SC và BD là góc giữa hai đường thẳng MO và BD.

    Áp dụng định lý cosin vào tam giác MOB ta có

    \begin{matrix}  {\text{cos}}\widehat {MOB} = \dfrac{{O{B^2} + O{M^2} - B{M^2}}}{{2.OB.OM}} \hfill \\   = \dfrac{{{a^2} + 2{a^2} - 2{a^2}}}{{2.a.a\sqrt 2 }} = \dfrac{1}{{2\sqrt 2 }} \Rightarrow \widehat {MOB} \approx {69^o} \hfill \\ \end{matrix}

  • Câu 37: Vận dụng cao

    Cho hình hộp chữ nhật ABCD.A’B’C’D’ nội tiếp mặt cầu (S) có bán kính R = \frac{{\sqrt {17} }}{2}. Gọi I; J là trung điểm BC, CD và \alpha là góc giữa đường thẳng AC’ và mặt phẳng (C’IJ). Giá trị lớn nhất của \sin \alpha

    Giá trị lớn nhất của góc giữa đường thẳng và mặt phẳng

    Đặt CD = a\,,\,CB = b\,,CC' = c\,\,\,\left( {a,b,c > 0} ight).

    AC{'^2} = {a^2} + {b^2} + {c^2} = 17.

    Gọi K là hình chiếu của A lên (C’IJ)

    \left( {\widehat {AC',\left( {C;{\text{IJ}}} ight)}} ight) = \left( {\widehat {AC',AK}} ight) = \alpha

    Ta có \sin \alpha  = \frac{{d\left( {A,\left( {C'{\text{IJ}}} ight)} ight)}}{{AC'}} = \frac{{3d\left( {C,\left( {C'{\text{IJ}}} ight)} ight)}}{{\sqrt {17} }}

    Trong (ABCD) kẻ tại E

    \left\{ \begin{gathered}  IJ \bot CE \hfill \\  IJ \bot CC\prime  \hfill \\  CE \subset \left( {CEC'} ight) \hfill \\  \,CC' \subset \left( {CEC'} ight) \hfill \\  CE \cap CC' = C \hfill \\ \end{gathered}  ight. \Rightarrow IJ \bot \left( {CEC'} ight) \Rightarrow \left( {C'IJ} ight) \bot \left( {CEC'} ight)

    Trong (CEC’) kẻ CH \bot C'E tại H

    Suy ra d\left( {C,\left( {C'{\text{IJ}}} ight)} ight) = CH = h

    Do đó \sin \alpha  = \frac{{3h}}{{\sqrt {17} }}

    Ta có:

    \begin{matrix}  \dfrac{1}{{{h^2}}} = \dfrac{1}{{{c^2}}} + \dfrac{4}{{{a^2}}} + \dfrac{4}{{{b^2}}} = \dfrac{1}{{{c^2}}} + 4\left( {\dfrac{1}{{{a^2}}} + \dfrac{1}{{{b^2}}}} ight) \geqslant \dfrac{1}{{{c^2}}} + \dfrac{{16}}{{{a^2} + {b^2}}} \hfill \\   \Leftrightarrow \dfrac{1}{{{h^2}}} \geqslant \frac{1}{{{c^2}}} + \dfrac{{16}}{{17 - {c^2}}} = \dfrac{{17 - {c^2} + {c^2}}}{{17{c^2}}} + \dfrac{{16\left( {17 - {c^2} + {c^2}} ight)}}{{17\left( {17 - {c^2}} ight)}} \hfill \\   \Leftrightarrow \dfrac{1}{{{h^2}}} \geqslant \dfrac{{17 - {c^2}}}{{17{c^2}}} + \dfrac{{16{c^2}}}{{17\left( {17 - {c^2}} ight)}} + 1 \geqslant 2.\dfrac{4}{{17}} + 1 = \dfrac{{25}}{{17}} \Leftrightarrow h \leqslant \dfrac{{\sqrt {17} }}{5}. \hfill \\   \Rightarrow \sin \alpha  \leqslant \dfrac{3}{5}. \hfill \\ \end{matrix}

    Vậy đạt giá trị lớn nhất là \frac{3}{5}

    Dấu xảy ra khi: \left\{ \begin{gathered}  {a^2} = {b^2} = \frac{{34}}{5} \hfill \\  {c^2} = \frac{{17}}{5} \hfill \\ \end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}  a = b = \sqrt {\frac{{34}}{5}}  \hfill \\  c = \sqrt {\frac{{17}}{5}}  \hfill \\ \end{gathered}  ight.

  • Câu 38: Nhận biết

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông và SA vuông góc với mặt phẳng (ABCD). Tìm khẳng định đúng trong các khẳng định sau:

    Khẳng định đúng là “AB vuông góc với mặt phẳng (SAD)”

    Thật vậy, do SA ⊥ (ABCD) nên SA ⊥ AB

    Mặt khác AB ⊥ AD.

    Từ đó suy ra AB ⊥ (SDA)

  • Câu 39: Vận dụng cao

    Cho tứ diện ABCD có SC = AC = AB = \sqrt{2}, SC ⊥ (ABC), tam giác ABC vuông tạo A, các điểm M thuộc SA, N thuộc BCc sao cho AM = CN = t (0 < t < 2a). Tìm t để MN ngắn nhất.

    Hình vẽ minh họa:

    Theo giả thiết, ta có: SA = 2a, BC = 2a

    Vì 0 < t < 2a

    \begin{matrix}
\Rightarrow \frac{MA}{SA} = \frac{t}{2a} \Rightarrow \overrightarrow{MA}
= \frac{1}{2}\overrightarrow{SA} \\
\Rightarrow \frac{CN}{CB} = \frac{t}{2a} \Rightarrow \overrightarrow{CN}
= \frac{t}{2a}\overrightarrow{CB} \\
\end{matrix}

    Đặt \overrightarrow{x} =
\overrightarrow{CA};\overrightarrow{y} =
\overrightarrow{CB};\overrightarrow{z} = \overrightarrow{CS}. Ta có:

    \overrightarrow{x}.\overrightarrow{z} =
\overrightarrow{y}.\overrightarrow{z} =
0;\overrightarrow{x}.\overrightarrow{y} = 2a^{2}

    \begin{matrix}
\overrightarrow{MN} = \overrightarrow{MA} + \overrightarrow{AC} +
\overrightarrow{CN} \\
\Rightarrow \overrightarrow{MN} = \frac{t}{2a}\overrightarrow{SA} -
\overrightarrow{AC} + \frac{t}{2a}\overrightarrow{CB} \\
\Rightarrow \overrightarrow{MN} = \left( \frac{t}{2a} - 1
ight).\overrightarrow{x} + \frac{t}{2a}.\overrightarrow{y} -
\frac{t}{2a}.\overrightarrow{z} \\
\end{matrix}

    Vậy MN^{2} =
{\overrightarrow{MN}}^{2}

    \begin{matrix}
= \left( \frac{t}{2a} - 1 ight)^{2}.2a^{2} + \frac{t^{2}}{4a}.4a^{2} +
\frac{t^{2}}{4a}.2a^{2} + 2\left( \frac{t}{2a} - 1
ight).\frac{t}{2a}.2a^{2} \\
= 3t^{2} - 4at + 2a^{2} \\
\end{matrix}

    Từ đó suy ra MN nhỏ nhất khi và chỉ khi t
= \frac{2a}{3}

  • Câu 40: Thông hiểu

    Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, SA ⊥(ABC). Kẻ AH ⊥ SB. Chọn khẳng định sai trong các khẳng định dưới đây?

    Hình vẽ minh họa:

    AB ⊥ BC (hiển nhiên đúng)

    Ta có: SA ⊥(ABC) mà BC nằm trong (ABC) => SA ⊥ BC

    Ta lại có:

    \begin{matrix}\left\{ \begin{matrix}BC\bot BA \subset (SAB) \\BC\bot SA \subset (SAB) \\BA \cap SA = A \hfill \\\end{matrix} ight.\  \Rightarrow BC\bot(SAB) \hfill\\\Rightarrow BC\bot AH \hfill\\\left\{ \begin{matrix}BC\bot AH \\SB\bot AH \\\end{matrix} ight.\  \Rightarrow AH\bot(SBC) \Rightarrow SC\bot AH \hfill \\\end{matrix}

    Dễ thấy AH ⊥ AC là khẳng định sai.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 8 Chân trời sáng tạo Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 5 lượt xem
Sắp xếp theo