Giả sử đường thẳng ∆ cắt mặt phẳng (P) tại M. Trên ∆ lấy hai điểm A và B. Khi đó bằng:
Giả sử đường thẳng ∆ cắt mặt phẳng (P) tại M. Trên ∆ lấy hai điểm A và B. Khi đó bằng:
Cho tứ diện OABC có OA, OB, OC đôi một vuông góc. Nếu H là hình chiếu vuông góc của điểm O trên mặt phẳng (ABC) thì H là:
Vì
Tương tự:
Vậy H là trực tâm tam giác ABC.
Cho khối chóp và lăng trụ có diện tích đáy, chiều cao tương ứng với nhau và thể tích lần lượt là và
. Khi đó tỉ số
1/3
(Kết quả ghi dưới dạng phân số tối giản a/b)
Cho khối chóp và lăng trụ có diện tích đáy, chiều cao tương ứng với nhau và thể tích lần lượt là và
. Khi đó tỉ số
1/3
(Kết quả ghi dưới dạng phân số tối giản a/b)
Ta có:
Thể tích khối chóp là:
Thể tích hình lăng trụ là:
Khi đó:
Cho hình chóp có đáy
là tam giác đều cạnh
, cạnh bên
vuông góc với mặt đáy và
. Gọi
là trung điểm của
. Tính côsin của góc
là góc giữa đường thẳng
và mặt phẳng
?
Hình vẽ minh họa
Gọi là trung điểm cạnh
.
Khi đó nên
vuông góc
tại
.
Do đó do
vuông tại
.
Ta có:
.
Cho hình hộp chữ nhật ABCD.A’B’C’D’ nội tiếp mặt cầu (S) có bán kính . Gọi I; J là trung điểm BC, CD và
là góc giữa đường thẳng AC’ và mặt phẳng (C’IJ). Giá trị lớn nhất của
là
Đặt
Gọi K là hình chiếu của A lên (C’IJ)
Ta có
Trong (ABCD) kẻ tại E
Trong (CEC’) kẻ tại H
Suy ra
Do đó
Ta có:
Vậy đạt giá trị lớn nhất là
Dấu xảy ra khi:
Cho khối chóp có
; đáy
là hình chữ nhật
. Tính thể tích khối chóp
, biết mặt phẳng
tạo với mặt phẳng đáy một góc bằng
.
Hình vẽ minh họa
Ta có:
Vì
Vậy
Xét tam giác vuông SAB có
Vậy
Cho hình chóp S.ABCD có đáy là hình vuông, SA = SB và (SAB) ⊥ (ABCD). Khẳng định nào sau đây sai?
Hình vẽ minh họa:
Ta có:
(SAB) ⊥ (ABCD)
BC ⊥ BA
=> BC ⊥ (SAB).
Từ B kẻ BK ⊥ SA => d(BC, SA) = BK.
Ta có:
Tam SAB cân tại S, do vậy d(BC, SA) = BK ≠ AB
Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O cạnh a. Cạnh bên và vuông góc với đáy (ABCD). Tính khoảng cách d từ điểm B đến mặt phẳng (SCD)
Hình vẽ minh họa:
Do AB // CD =>
Kẻ tại E (1)
Ta có:
Từ (1) và (2) =>
=>
Xét tam giác vuông SAD ta có:
Vậy
Cho tứ diện ABCD có SC = AC = AB = , SC ⊥ (ABC), tam giác ABC vuông tạo A, các điểm M thuộc SA, N thuộc BCc sao cho AM = CN = t (0 < t < 2a). Tìm t để MN ngắn nhất.
Hình vẽ minh họa:
Theo giả thiết, ta có: SA = 2a, BC = 2a
Vì 0 < t < 2a
Đặt . Ta có:
Vậy
Từ đó suy ra MN nhỏ nhất khi và chỉ khi
Cho hình chóp , đáy
là hình chữ nhật, biết
. Xác định tính đúng sai của các kết luận sau?
a) Đúng||Sai
b) Đúng||Sai
c) Sai||Đúng
d) Sai||Đúng
Cho hình chóp , đáy
là hình chữ nhật, biết
. Xác định tính đúng sai của các kết luận sau?
a) Đúng||Sai
b) Đúng||Sai
c) Sai||Đúng
d) Sai||Đúng
Hình vẽ minh họa
a) Ta có:
b) Ta có:
mà
c) Ta có:
Suy ra góc giữa (SCD) và (ABCD) là góc giữa AD và SD đó là góc .
d) Ta có:
Suy ra SD là hình chiếu vuông góc của SC lên (SAD)
Nên góc giữa SC và (SAD) là góc giữa SC và SD đó là góc trong tam giác vuông SCD.
Xét tam giác SCD vuông tại D ta có:
Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và D với AB = 2a, AD = DC = a. Hai mặt phẳng (SAB) và (SAD) cùng vuông góc với đáy. Góc giữa SC và mặt đáy bằng 600. Tính khoảng cách d giữa hai đường thẳng AC và SB.
Hình vẽ minh họa:
Xác định góc 600
Gọi M là trung điểm AB => ADCM là hình vuông => CM = AD = a
Xét tam giác ACB ta có:
=> Tam giác ACB vuông tại C
Lấy điểm E sao cho ACBE là hình chữ nhật
=> AC // BE
=> d(AC, SB) = d(AC, (SBE)) = d(A,(SBE))
Kẻ AK ⊥ SE. Khi đó:
Cho hình hộp chữ nhật ABCD.A’B’C’D’ có các cạnh AB = 2, AD = 3, AA’ = 4. Góc giữa hai mặt phẳng (AB’D’) và (A’C’D) là α. Tính giá trị gần đúng của α.
Hình vẽ minh họa:
Phần 1: Xác định góc
Bước 1: Tìm giao tuyến giữa hai mặt phẳng:
Trong mặt phẳng (ADD’A’) gọi E là giao điểm của AD’ và A’D.
Trong mặt phẳng (A’B’C’D’) gọi F là giao điểm của B’D’ và A’C’.
Khi đó EF là giao tuyến của hai mặt phẳng (AB’D’) và (A’C’D).
Bước 2: Trong mỗi mặt phẳng, ta cần tìm đường thẳng vuông góc với giao tuyến:
Trong mặt phẳng (DA’C’) kẻ A’H ⊥ EF tại H, A’H cắt DC’ tại K.
Ta chứng minh D’H ⊥ EF.
Ta có:
Mặt khác:
Bước 3: Xác định góc giữa hai mặt phẳng:
Ta có:
=> α = ((AB’D’), (DA’C’)) = (D’H, A’H)
Phần 2: Tính góc α:
Ta sẽ sử dụng định lý cosin trong tam giác A’HD’
Bước 1: Chứng minh tam giác A’HD’ cân:
Trong tam giác A’DC’ ta có EF là đường trung bình, nên suy ra H là trung điểm A’K.
Vì A’D’ ⊥ (DD’C’C) nên A’D’ ⊥ D’K.
Do đó tam giác A’D’K vuông tại D’.
Xét tam giác A’D’K vuông tại D’ có D’K là đường trung tuyến ứng với cạnh huyền nên D’H = A’H = A’K/2
Bước 2: Tính độ dài cạnh A’K:
Ta tính đường cao A’K của tam giác ADC’ thông qua diện tích.
Áp dụng định lý Pi – ta - go ta tính được độ dài các cạnh tam giác A’DC’ là:
Sử dụng công thức Hê-rông ta tính được
Mặt khác
Từ đó suy ra D’H = A’H = A’K/2 =
Bước 3: Tính góc α bằng định lý cosin:
Trong tam giác A’HD’ ta có:
Do đó góc giữa hai đường thẳng A’H và D’H bằng 61,60
Vậy α = 61,60
Cho hình chóp S.ABCD có và
. Đáy ABCD là hình chữ nhật có
. Gọi M là trung điểm của CD, góc giữa SA và mặt phẳng (SBM) bằng \alpha . Giá trị
bằng:
Gọi K, I lần lượt là hình chiếu vuông góc của A lên BM và SK.
Ta có
Mà
Ta có
Suy ra hình chiếu vuông góc của điểm A lên mặt phẳng (SBM) là điểm I. Do đó bằng góc giữa hai đường thẳng SA và SI và bằng góc .
Ta có
Có
Ta có
Xét tam giác vuông SAK có
Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a và SA = SB = SC = a. Giả sử góc BAD bằng 600. Khoảng cách từ điểm S đến mặt phẳng (ABCD) bằng:
Hình vẽ minh họa
Từ S vẽ SO ⊥ (ABCD) ⇒ OA = OB = OC (là hình chiếu của các đường xiên bằng nhau) ⇒ O là tâm đường tròn ngoại tiếp đáy
Cho hình chóp , đáy
là hình chữ nhật, biết
. Xác định tính đúng sai của các kết luận sau?
a) Đúng||Sai
b) Đúng||Sai
c) Sai||Đúng
d) Sai||Đúng
Cho hình chóp , đáy
là hình chữ nhật, biết
. Xác định tính đúng sai của các kết luận sau?
a) Đúng||Sai
b) Đúng||Sai
c) Sai||Đúng
d) Sai||Đúng
Hình vẽ minh họa
a) Ta có:
b) Ta có:
mà
c) Ta có:
Suy ra góc giữa (SCD) và (ABCD) là góc giữa AD và SD đó là góc .
d) Ta có:
Suy ra SD là hình chiếu vuông góc của SC lên (SAD)
Nên góc giữa SC và (SAD) là góc giữa SC và SD đó là góc trong tam giác vuông SCD.
Xét tam giác SCD vuông tại D ta có:
Cho hình chóp có
là hình vuông cạnh
, tam giác
đều. góc giữa
và
là:
Hình vẽ minh họa
Vì
Tính thể tích khối chóp tam giác đều cạnh đáy bằng . Biết độ dài chiều cao của tam giác đáy và cạnh bên của hình chóp tỉ lệ
?
Hình vẽ minh họa
Gọi H là trọng tâm tam giác ABC suy ra
Gọi M là trung điểm của BC
Vì độ dài chiều cao của tam giác đáy và cạnh bên của hình chóp tỉ lệ 1 : 2
Hay
Xét tam giác SAH vuông tại H ta có:
Vậy
Một hình chóp có đáy
là cân
. Tam giác
đều và nằm trong mặt phẳng vuông góc với mặt phẳng
. Tính thể tích khối chóp
theo
.
Hình vẽ minh họa
Gọi H là trung điểm của AB
Tam giác SAB đều nên
Ta có:
Vậy SH là đường cao của hình chóp tam giác S.ABC
Xét tam giác AHS vuông tại H ta có:
Cho hình chóp có đáy
là tam giác cân tại
,
. Gọi
là trung điểm của
,
là hình chiếu của
trên
. Chọn khẳng định đúng?
Hình vẽ minh họa
Ta có:
Theo giả thiết ta có:
Từ (1) và (2) suy ra
Mà nên
Cho lăng trụ đứng ABC.A’B’C’ có diện tích tam giác ABC bằng . Gọi M, N, P lần lượt thuộc các cạnh AA’, BB’, CC’, diện tích tam giác MNP bằng 4. Tính góc giữa hai mặt phẳng (ABC) và (MNP).
Hình vẽ minh họa:
Gọi α là góc giữa 2 mặt phẳng (ABC) và (MNP).
Dễ thấy tam giác ABC là hình chiếu của tam giác MNP trên mặt phẳng (ABC).
=>
Từ đó suy ra:
Vậy góc giữa hai mặt phẳng (ABC) và (MNP) bằng 30◦
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Tam giác SAB đều cạnh a và nằm trong mặt phẳng vuông góc với mặt phẳng đáy. Gọi α là góc giữa đường thẳng SD và mặt phẳng (ABCD). Mệnh đề nào sau đây là mệnh đề đúng?
Hình vẽ minh họa:
Giả sử H là trung điểm của AB => SH ⊥ AB => SH ⊥ (ABCD)
=> Hình chiếu vuông góc của SD trên mặt phẳng (ABCD) là cạnh HD.
=>
Tam giác SAB đều cạnh a =>
Ta lại có:
=>
Cho hình chóp S.ABCD có đáy ABCD là hình vuông và SB vuông góc với mặt phẳng (ABCD) (tham khảo hình vẽ). Khẳng định nào sau đây đúng?
Hình vẽ minh họa:
Từ giả thiết ABCD là hình vuông và SB vuông góc với đáy
Ta có:
Cho tứ diện ABCD với các đường thẳng AB, BC, CD đôi một vuông góc. Góc giữa mặt phẳng (BCD) và mặt phẳng (ACD) bằng góc nào trong các góc sau đây?
Dễ thấy rằng:
Như vậy góc giữa mặt phẳng (BCD) và mặt phẳng (ACD) bằng góc giữa hai đường thẳng AC và BC, tức là bằng góc
Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O, cạnh bằng 2. Đường thẳng SO vuông góc với mặt phẳng đáy (ABCD) và . Tính khoảng cách d giữa hai đường thẳng SA và BD.
Hình vẽ minh họa:
Ta có:
Trong (SAC) kẻ OK⊥SA(1) ta có:
Từ (1) và (2) ta có OK là đường vuông góc chung của SA và BD
Khi đó
Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và B với AB = BC = a ; AD = 2a, . Tính góc giữa hai mặt phẳng (SCD) và (SAB).
Gọi M là trung điểm của AD.
Xét tứ giác ABCM có: AM // BC, AM = AB = BC = a,
Suy ra ABCM là hình vuông => MC = AB = a
Xét tam giác ACD có AM là trung tuyến và
Suy ra ACD vuông tại C => AC ⊥ CD
Trong (SAC), dựng AH ⊥ SC
Ta có: mà AH ⊂ (SAC) suy ra CD ⊥ AH.
Ta có:
Ta có:
Từ (1) và (2) suy ra góc giữa hai mặt phẳng (SAB) và (SCD) là góc giữa hai đường thẳng AH và AD.
Xét tam giác ABC vuông tại B có:
Xét tam giác SAC vuông tại A có:
Xét tam giác SAC vuông tại A và nên SAC vuông cân tại A.
Suy ra H là trung điểm SC và
Xét tam giác AHD vuông tại H (vì AH ⊥ (SCD)).
Ta có: suy ra
Vậy
Cho hình chóp có đáy
là hình vuông cạnh
,
. Tam giác
vuông tại
và nằm trong mặt phẳng vuông góc với mặt phẳng đáy. Tính thể tích hình chóp
theo
?
Hình vẽ minh họa
Gọi H là hình chiếu vuông góc của S lên AC
Ta có:
Suy ra tam giác SAO đều
Thể tích khối chóp là:
Cho một khối chóp có diện tích đáy bằng , chiều cao bằng
. Thể tích khối chóp đã cho là:
Ta có:
Thể tích khối chóp là:
Trong các mệnh đề sau, mênh đề nào đúng?
Mệnh đề: “Nếu hai mặt phẳng vuông góc với nhau thì mọi đường thẳng thuộc mặt phẳng này sẽ vuông góc với mặt phẳng kia.” Sai vì nếu hai mặt phẳng vuông góc với nhau thì mọi đường thẳng thuộc mặt phẳng này vuông góc với giao tuyến sẽ vuông góc với mặt phẳng kia.
Mệnh đề: “Hai mặt phẳng phân biệt vuông góc với một mặt phẳng thứ ba thì song song với nhau.” sai vì còn trường hợp hai mặt phẳng cắt nhau.
Mệnh đề: “Với mỗi điểm A ∊ (α) và mỗi điểm B ∊ (β) thì ta có đường thẳng AB vuông góc với giao tuyến d của (α) và (β).” Sai vì ít nhất nếu cả A và B đều thuộc giao tuyến của (α) và (β) thì AB trùng với (α) ⋂ (β).
Cho hình chóp S.ABC có AB = AC và . Tính số đo góc giữa hai đường thẳng chéo chau SA và BC.
Hình vẽ minh họa:
Xét
Ta có:
Từ (1) và (2)
Cho tứ diện OABC có OA, OB, OC đôi một vuông góc với nhau và OB = OC = a. Tính khoảng cách giữa hai đường thẳng OA và BC.
Hình vẽ minh họa:
Gọi M là trung điểm CB, ta có: OM ⊥ BC.
Mặt khác vì OA, OB, OC đôi một vuông góc nên OA ⊥ (OBC)
=> OA ⊥ OM. Do đó khoảng cách giữa OA và BC là OM.
Ta có:
Cho hình chóp có đáy
là hình vuông cạnh bằng
,
. Gọi
trung điểm các cạnh
,
là trung điểm của
. Tính
?
Hình vẽ minh họa
Gọi I là trung điểm của AD, H là trung điểm của SI.
Ta có: GH // FI; BD // FI nên GH // BD =>
Ta có:
Khi đó:
Ta có:
Cho hình tứ diện ABCD có AB, BC, CD đôi một vuông góc với nhau và AB = a, BC = b, CD = c.
Điểm cách đều 4 điểm A, B, C, D là:
Hình vẽ minh họa
Gọi O là trung điểm của AD.
Từ giả thiết ta có:
Vậy vuông tại C
Do đó (1)
Mặt khác
=> vuông tại B.
Do đó (2)
Từ (1) và (2) ta có
Vậy điểm cách đều 4 điểm A, B, C, D là trung điểm của AD.
Cho tam giác ABC vuông tại A và có hai đỉnh B và C nằm trên mặt phẳng (P). Gọi A’ là hình chiếu vuông góc của đỉnh A lên mặt phẳng (P). Trong các mệnh đề sau mệnh đề nào đúng?
=> Góc BA’C là góc tù.
Cho lăng trụ đều ABC.A’B’C’ có tất cả các cạnh bằng a. Góc giữa đường thẳng A’B và mặt phẳng (A’B’C’) bằng:
Hình vẽ minh họa:
Vì BB’ ⊥ (A’B’C’) nên A’B’ là hình chiếu vuông góc của A’B lên (A’B’C’)
=> Góc giữa đường thẳng A’B và mặt phẳng (A’B’C’) là
Ta có: A’B’ = BB’ = a nên tam giác B’A’B vuông cân tại B’
=>
Cho hình chóp có đáy
là hình vuông,
,
. Gọi
là trung điểm cạnh
. Tính
?
Hình vẽ minh họa
Xét tam giác SAB vuông tại A có:
Gọi E là trung điểm cạnh MC, ta có:
và
Lại có:
Suy ra tam giác SBC vuông tại B.
Xét tam giá MBC vuông tại B ta có:
Xét tam giác có:
Góc giữa hai đường thẳng bất kì trong không gian là góc nào trong các góc dưới đây?
Góc giữa hai đường thẳng m và n trong không gian, kí hiệu là (m, n) là góc giữa hai đường thẳng a và b cùng đi qua một điểm và tương ứng song song với m và n.
Cho tứ diện ABCD có BCD là tam giác vuông tại đỉnh , cạnh
,
. Tính cosin của góc nhị diện [A, BC, D].
Hình vẽ minh họa
Gọi M, H lần lượt là trung điểm của BC, CD.
Do vuông tại
nên
hay
là tâm đường tròn ngoại tiếp
.
Mà nên AH là đường cao kẻ từ
xuống
hay
.
(1)
M, H là trung điểm của BC, CD nên MH là đường trung bình của
Mà nên
. (2)
Từ (1), (2) suy ra: .
Suy ra: .
Lại có: .
Cho hình lăng trụ tam giác đều ABC.A0’B’C’ có cạnh bên bằng cạnh đáy. Đường thẳng MN (M ∈ A’C, N ∈ BC’) là đường vuông góc chung của A’C và BC’. Tỉ số bằng:
Hình vẽ minh họa:
Gọi H, I lần lượt là trung điểm của AB, AC’
Suy ra HI // BC’
Trong mặt phẳng (ABB’A’), tia A’H cắt tia B’B tại S, gọi K là hình chiếu của B trên SH
Dễ thấy BK ⊥ (SCH)
Gọi M là hình chiếu của K trên A’C, chú ý rằng CH = HA’ nên HI ⊥ A’C, do đó KM // HI // BC’
Trong mặt phẳng (BC’MK) lấy điểm N trên BC’ sao cho BKMN là hình bình hành
Khi đó MN là đoạn vuông góc chung cần tìm
Ta có:
Do 2HB = SB nên:
=>
Cho tứ diện ABCD có AB = CD. Gọi I, J E, F lần lượt là trung điểm của AC, BC, BD, AD. Góc (IE; JF) bằng:
Hình vẽ minh họa
Ta có: IF là đường trung bình của tam giác ACD =>
JE là đường trung bình của tam giác BCD =>
=> => Tứ giác IJEF là hình bình hành
Mặt khác . MÀ AB = CD => IJ = JE
Do đó IJEF là hình thoi => (IE; JF) = 900
Cho hình chóp có đáy
là hình thoi tâm O, cạnh bên SA vuông góc với mặt phẳng đáy. Góc giữa SB và mặt phẳng (SAC) là góc nào dưới đây?
Hình vẽ minh họa
Ta có:
Hình chiếu của SB lên mặt phẳng (SAC) là SO.
Vậy