Đề kiểm tra 45 phút Toán 11 Chương 8 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 45 phút Toán 11 Các quy tắc tính xác suất gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Để quyết định người chiến thắng cuộc thi người ta thực hiện gieo đồng thời ba con xúc xắc cân đối và đồng chất một vài lần. Người thắng cuộc nếu xuất hiện ít nhất 2 mặt 6 chấm. Tính xác suất để trong ba lần gieo, người đó thắng ít nhất 2 lần?

    Xác suất để một con xúc xắc xuất hiện mặt 6 chấm là \frac{1}{6}

    Xác suất để người chơi thắng cuộc trong một lần gieo là C_{3}^{2}.\left( \frac{1}{2}
ight)^{2}.\frac{5}{6} + \left( \frac{1}{6} ight)^{3} =
\frac{2}{27}

    Xác suất để trong 3 lần gieo người đó thắng ít nhất hai lần là:

    C_{3}^{2}.\left( \frac{2}{27}
ight)^{2}.\left( 1 - \frac{2}{27} ight) + \left( \frac{2}{27}
ight)^{3} = \frac{308}{19683}

  • Câu 2: Nhận biết

    Giả sử ta dùng 5 màu để tô cho 3 nước khác nhau trên bản đồ và không có màu nào
    được dùng hai lần. Số các cách để chọn những màu cần dùng là:

     Số các cách để chọn những màu cần dùng là: A_5^3 = 20

  • Câu 3: Nhận biết

    Gieo một con súc sắc. Xác suất để mặt chấm chẵn xuất hiện là:

    Khả năng các mặt chấm xuất hiện là: {1; 2; 3; 4; 5; 6}

    Số phần tử không gian mẫu là: n\left( \Omega  ight) = 6

    Biến cố để mặt chấm chẵn xuất hiện là: D = {2; 4; 6}

    => P\left( D ight) = \frac{{n\left( D ight)}}{{n\left( \Omega  ight)}} = \frac{3}{6} = \frac{1}{2}

  • Câu 4: Thông hiểu

    Hai bệnh nhân A và B bị bệnh tiểu đường type 2. Biết rằng biến chứng về suy thận của bệnh nhân A và B lần lượt là 0,20,1. Khả năng bị biến chứng suy thận của hai bệnh nhân là độc lập.

    a) Xác suất để bệnh nhân A không bị biến chứng suy thận là 0,8Đúng||Sai

    b) Xác suất để cả hai bệnh nhân đều bị biến chứng suy thận 0,02 Đúng||Sai

    c) Xác suất để cả hai bệnh nhân đều không bị biến chứng suy thận là 0,85 Sai||Đúng

    d) Xác suất để bệnh nhân A bị biến chứng suy thận, bệnh nhân B không bị biến chứng suy thận là 0,16 Sai||Đúng

    Đáp án là:

    Hai bệnh nhân A và B bị bệnh tiểu đường type 2. Biết rằng biến chứng về suy thận của bệnh nhân A và B lần lượt là 0,20,1. Khả năng bị biến chứng suy thận của hai bệnh nhân là độc lập.

    a) Xác suất để bệnh nhân A không bị biến chứng suy thận là 0,8Đúng||Sai

    b) Xác suất để cả hai bệnh nhân đều bị biến chứng suy thận 0,02 Đúng||Sai

    c) Xác suất để cả hai bệnh nhân đều không bị biến chứng suy thận là 0,85 Sai||Đúng

    d) Xác suất để bệnh nhân A bị biến chứng suy thận, bệnh nhân B không bị biến chứng suy thận là 0,16 Sai||Đúng

    Gọi A là biến cố “Bệnh nhân A bị suy thận” ta có: P(A) = 0,2;P\left( \overline{A} ight) =0,8

    B là biến cố “Bệnh nhân B bị suy thận” ta có: P(B) = 0,1;P\left( \overline{B} ight) =0,9

    Khi đó A \cap B là biến cố “Cả hai bệnh nhân đều bị biến chứng suy thận”

    Khi đó \overline{A}\overline{B} là biến cố “Cả hai bệnh nhân đều không bị biến chứng suy thận.

    Khi đó A\overline{B} là biến cố “Bệnh nhân A bị biến chứng suy thận, bệnh nhân B không bị biến chứng suy thận”.

    b) Hai biến cố A, B độc lập nên ta có:

    P(A \cap B) = P(AB) = P(A).P(B) =0,2.0,1 = 0,02

    b) Hai biến cố \overline{A};\overline{B} độc lập nên ta có:

    P\left( \overline{A}\overline{B} ight)= P\left( \overline{A} ight).P\left( \overline{B} ight) = 0,8.0,9 =0,72

    c) Hai biến cố A;\overline{B} độc lập nên ta có:

    P\left( A\overline{B} ight) =P(A).P\left( \overline{B} ight) = 0,2.0,9 = 0,18

  • Câu 5: Thông hiểu

    Trong một thùng có chứa 7 bi xanh, 5 bi đỏ và 4 bi vàng. Lấy ngẫu nhiên 4 viên bi trong hộp. Hỏi có bao nhiêu cách chọn sao cho 4 viên bi được chọn có đủ ba màu?

    TH1: Lấy 1 bi xanh, 1 bi đỏ và 2 bi vàng ta có: 7.5.C_{4}^{2} cách.

    TH2: Lấy 2 bi xanh, 1 bi đỏ và 1 bi vàng ta có: 4.5.C_{7}^{2} cách.

    TH3: Lấy 1 bi xanh, 2 bi đỏ và 1 bi vàng ta có: 7.4.C_{5}^{2} cách.

    Vậy có tất cả 910 cách chọn số viên bi theo yêu cầu.

  • Câu 6: Thông hiểu

    Rút ngẫu nhiên hai tấm thẻ trong chiếc hộp có 9 tấm thẻ được đánh số thứ tự từ 1 đến 9. Xét các biến cố sau:

    A: “Cả hai tấm thẻ đều mang số chẵn”.

    B “Chỉ có một tấm thẻ mang số chẵn”.

    C: “Tích hai số ghi trên hai tấm thẻ là một số chẵn”

    Tính xác suất của biến cố C?

    Ta có hai biến cố A và B là hai biến cố xung khắc suy ra P(A \cup B) = P(A) + P(B) = P(C)

    n(\Omega) = C_{9}^{2} = 36

    Biến cố A là tập hợp tất cả các tập con có hai phần tử của tập \left\{ 2;4;6;8 ight\}

    n(A) = C_{4}^{2} = 6 \Rightarrow P(A) =
\frac{6}{36} = \frac{1}{6}

    Biến cố B được hình thành từ hai công đoạn:

    + Chọn một số chẵn từ tập \left\{ 2;4;6;8
ight\} có 4 cách

    + Chọn một số lẻ từ tập \left\{ 1;3;5;7;9
ight\} có 4 cách

    Theo quy tắc nhân tập B có 4.5 = 20 cách

    Do đó n(B) = 20 \Rightarrow P(B) =
\frac{20}{36}

    \Rightarrow P(C) = P(A) + P(B) =
\frac{1}{6} + \frac{20}{36} = \frac{13}{18}

  • Câu 7: Nhận biết

    Gieo ngẫu nhiên một con súc sắc. Xác suất để mặt 6 chấm xuất hiện:

    Số phần tử không gian mẫu là: n\left( \Omega  ight) = 6

    Biến cố A là biến cố "mặt 6 chấm xuất hiện"

    => n\left( A ight) = 1

    => Xác suất để mặt 6 chấm xuất hiện: P\left( A ight) = \frac{{n\left( A ight)}}{{n\left( \Omega  ight)}} = \frac{1}{6}

  • Câu 8: Vận dụng

    Lấy ngẫu nhiên một số có 5 chữ số. Tính xác suất để chọn được số có dạng \overline{abcde} thỏa mãn a \leq b \leq c \leq d \leq e hoặc a \geq b \geq c \geq d \geq
e.

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Lấy ngẫu nhiên một số có 5 chữ số. Tính xác suất để chọn được số có dạng \overline{abcde} thỏa mãn a \leq b \leq c \leq d \leq e hoặc a \geq b \geq c \geq d \geq
e.

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 9: Nhận biết

    Thực hiện tung ngẫu nhiên một con xúc xắc một lần. Biết H là biến cố mặt xuất hiện có số chấm chẵn, K là biến cố mặt xuất hiện có số chấm lẻ. Khẳng định nào sau đây đúng?

    \left\{ \begin{matrix}H \cap K = \varnothing \\H \cup K = \Omega \\\end{matrix} ight. nên hai biến cố H và K là hai biến cố đối nhau.

  • Câu 10: Thông hiểu

    Cấu trúc đề thi cuối học kì môn Toán lớp 11 gồm 50 câu hỏi trắc nghiệm. Giáo viên chủ nhiệm đã áp dụng phần mềm để hoán vị 4 phương án trong cùng câu hỏi với nhau. Xác suất để có hai đề thi được tạo ra chỉ có sự giống nhau ở năm câu hỏi là x%. Giá trị của x gần nhất với giá trị nào sau đây?

    Hoán vị 4 phương án trắc nghiệm có 4! = 24 cách

    Xác suất đẻ hai câu hỏi giống nhau là \frac{1}{24}, xác suất để hai câu hỏi khác nhau là \frac{23}{24}

    Chọn năm câu hỏi có sự giống nhau C_{20}^{5}

    Xác suất cần tìm là:

    x = C_{20}^{5}.\left( \frac{1}{24}
ight)^{5}.\left( \frac{23}{24} ight)^{45} = 0,0391 =
3,91\%

    Vậy giá trị của x gần nhất với giá trị 4%.

  • Câu 11: Thông hiểu

    Một lớp học sinh có 40 học sinh gồm 25 nam và 15 nữ. Chọn ngẫu nhiên 5 học sinh để trực nhật lớp. Hỏi số cách chọn 5 học sinh đó, biết rằng nhóm học sinh được chọn có 3 nam và 2 nữ?

    Chọn 3 học sinh nam từ 25 học sinh nam có C_{25}^{2} cách.

    Chọn 2 học sinh nam từ 15 học sinh nam có C_{15}^{2} cách.

    Vậy số cách chọn thỏa mãn yêu cầu đề bài là C_{25}^{2}.C_{15}^{2} = 241500 chọn.

  • Câu 12: Vận dụng

    Hai tuyển thủ A và B đấu với nhau trong một trận bóng bàn với quy tắc người thắng trước 3 hiệp sẽ chiến thắng chung cuộc. Tính xác suất tuyển thủ B thắng chung cuộc, biết xác suất tuyển thủ B chiến thắng mỗi hiệp là 0,4?

    Gọi số hiệp hai tuyển thủ thi đấu là x;\left( {x \in {\mathbb{N}^*}} ight)

    Để tuyển thủ B chiến thắng chung cuộc thì tuyển thủ B phải thắng 3 trận trước, do đó 3 \leqslant x \leqslant 5

    Gọi H là biến cố tuyển thủ B thắng chung cuộc. Ta có các trường hợp:

    TH1: tuyển thủ B thắng sau khi thi đấu 3 hiệp đầu, khi đó xác suất của trường hợp này là:

    P_{1} = (0,4)^{3} = 0,064

    TH2: tuyển thủ B thắng sau khi thi đấu 4 hiệp, khi đó xác suất của trường hợp này là:

    P_{2} = 3.0,6.(0,4)^{3} =
0,1152

    TH3: tuyển thủ B thắng sau khi thi đấu 5 hiệp, khi đó xác suất của trường hợp này là:

    P_{3} = C_{4}^{2}.(0,6)^{2}.(0,4)^{3} =
0,13824

    Vậy xác suất để tuyển thủ B thắng chung cuộc là

    P = P_{1} + P_{2} + P_{3} = 0,064 +
0,1152 + 0,13824 = 0,31744

  • Câu 13: Nhận biết

    Số cách xếp 6 học sinh A;B;C;D;E;F ngồi bất kì vào một ghế dài là:

    Sắp xếp 6 học sinh vào một ghế dài là hoán vị của 6 phần tử

    Vậy số cách sắp xếp là 6! = 720 cách.

  • Câu 14: Thông hiểu

    Một hộp đựng 4 bi xanh và 6 bi đỏ lần lượt rút 2 viên bi. Xác suất để rút được một bi xanh và một bi đỏ là:

    Tổng số viên bi là 4 + 6 = 10 (viên bi)

    Số cách lấy hai viên bi từ số viên bi đã cho là: C_{10}^2 (Số phần tử không gian mẫu)

    Số cách để rút được một bi xanh và 1 bi đỏ là: C_4^1.C_6^1

    => Xác suất để rút được một bi xanh và 1 bi đỏ là: P = \frac{{C_4^1.C_6^1}}{{C_{10}^2}} = \frac{8}{{15}}

  • Câu 15: Nhận biết

    Một phép thử có không gian mẫu là: \Omega = \left\{ 1;2;3;4;5;6 ight\}. Cặp biến cố nào sau đây không đối nhau?

    Cặp biến cố không đối nhau là: E =
\left\{ 1;4;6 ight\},F = \left\{ 2;3 ight\}\left\{ \begin{matrix}
E \cap F = \varnothing \\
E \cup F eq \Omega \\
\end{matrix} ight.

  • Câu 16: Vận dụng cao

    Lấy ngẫu nhiên 3 số từ tập T = \left\{ 1;2;3;4;6;8 ight\} . Xác định số phần tử của biến cố F lấy được ba số là số đo ba cạnh của một tam giác có góc tù? 4||8||10||5

    Đáp án là:

    Lấy ngẫu nhiên 3 số từ tập T = \left\{ 1;2;3;4;6;8 ight\} . Xác định số phần tử của biến cố F lấy được ba số là số đo ba cạnh của một tam giác có góc tù? 4||8||10||5

    Giả sử lấy được ba số là: (a;b;c) với a
< b < c do đó c \geq 4
\Rightarrow c \in \left\{ 4;6;8 ight\}

    Lại có a;b;c là ba cạnh của tam giác ABC, với BC = a;AC = b;AB = a có góc C tù.

    \Rightarrow \left\{ \begin{gathered}
  \cos C = \frac{{{a^2} + {b^2} - {c^2}}}{{2ab}} \hfill \\
  4 \leqslant c < a + b \hfill \\ 
\end{gathered}  ight. \Rightarrow \left\{ \begin{gathered}
  {a^2} + {b^2} < {c^2} \hfill \\
  4 \leqslant c < a + b \hfill \\ 
\end{gathered}  ight.

    \Rightarrow \sqrt{a^{2} + b^{2}} < c
< a + b với c \in \left\{ 4;6;8
ight\}

    Xét c = 4 thì bộ (a;b) = (2;3) thỏa mãn

    Xét c = 6 do \left\{ \begin{matrix}
a < b < c \\
6 = c < a + b < 2b \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
b = 4 \\
a = 3 \\
\end{matrix} ight.

    \Rightarrow (a;b) = 3;4 thỏa mãn

    Xét c = 8 do \left\{ \begin{matrix}
a < b < c \\
8 = c < a + b < 2b \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
b = 6 \\
\left\lbrack \begin{matrix}
a = 3 \\
a = 4 \\
\end{matrix} ight.\  \\
\end{matrix} ight.

    \Rightarrow \left\lbrack \begin{matrix}
(a;b) = (3;6) \\
(a;b) = (4;6) \\
\end{matrix} ight. thỏa mãn

    Vậy số phần tử của biến cố F là n(F) =
4

  • Câu 17: Thông hiểu

    Giáo viên trong lớp chuẩn bị 3 chiếc hộp:

    Hộp 1 chứa 3 quả cầu đỏ và 5 quả cầu trắng.

    Hộp 2 chứa 2 quả cầu đỏ và 2 quả cầu vàng.

    Hộp 3 chứa 2 quả cầu đỏ và 3 quả cầu xanh.

    Lấy ngẫu nhiên một hộp rồi lấy một quả cầu trong hộp đó. Gọi X_{1} là biến cố lấy được hộp 1, X_{2} là biến cố lấy được hộp 2, X_{3} là biến cố lấy được hộp 3. Khi đó biến cố lấy ngẫu nhiên một hộp rồi lấy được một quả màu đỏ trong hộp đó biểu diễn như thế nào?

    Lấy ngẫu nhiên một hộp trong hộp đó lấy ngẫu nhiên 1 quả cầu được quả màu đỏ thì hoặc là lấy được quả đỏ từ hộp 1 hoặc là lấy được quả đỏ từ hộp 2 hoặc lấy được quả đỏ từ hộp 3. Do đó ta biểu diễn biến cố cần tìm như sau:

    \left( X \cap X_{1} ight) \cup \left(
X \cap X_{2} ight) \cup \left( X \cap X_{3} ight)

  • Câu 18: Nhận biết

    Từ thành phố A đến thành phố B có 3 con đường, từ thành phố A đến thành phố C có 2 con đường, từ thành phố B đến thành phố D có 2 con đường, từ thành phố C đến thành phố D có 3 con đường. không có con đường nào nối từ thành phố C đến thành phố B. Hỏi có bao nhiêu con đường đi từ thành phố A đến thành phố D:

     Số cách đi từ A đến D bằng cách đi từ A đến B rồi đến D là 3.2 = 6

    Số cách đi từ A đến D bằng cách đi từ A đến C rồi đến D là 2.3 = 6

    => Số con đường đi từ thành phố A đến thành phố D là: 6 + 6 = 12 đường

  • Câu 19: Vận dụng cao

    Cho tập hợp A =
\left\{ 1;2;3;4;5;6;7;8 ight\}. Lập từ A số tự nhiên có 8 chữ số đôi một khác nhau. Chọn ngẫu nhiên một số từ A. Tính xác suất để chọn được số chia hết cho 1111?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho tập hợp A =
\left\{ 1;2;3;4;5;6;7;8 ight\}. Lập từ A số tự nhiên có 8 chữ số đôi một khác nhau. Chọn ngẫu nhiên một số từ A. Tính xác suất để chọn được số chia hết cho 1111?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 20: Thông hiểu

    Gieo hai con súc sắc cân đối và đồng chất. Xác suất để tổng số chấm xuất hiện ở hai mặt trên chia hết cho 3 là:

    Gieo hai con súc sắc cân đối và đồng chất

    => Số phần tử không gian mẫu là: n\left( \Omega  ight) = {6^2} = 36

    Giả sử D là biến cố "tổng số chấm xuất hiện ở hai mặt trên chia hết cho 3"

    Các bộ số chia hết cho 3 là (1; 2), (3; 3); (2; 4), (1; 5), (5; 4), (3; 6), (6; 6)

    Ngoài bộ số (6; 6) và (3; 3) ta có các bộ số còn lại hoán vị 

    => n\left( D ight) = 12

    => Xác suất để tổng số chấm xuất hiện ở hai mặt trên chia hết cho 3 là: 

    P\left( D ight) = \frac{{n\left( D ight)}}{{n\left( \Omega  ight)}} = \frac{{12}}{{36}} = \frac{1}{3}

  • Câu 21: Thông hiểu

    Cho A = \{1, 2, 3, 4, 5\}. Từ tập A có thể lập được bao nhiêu số tự nhiên có 3 chữ số đôi một khác nhau chia hết cho 5?

    Số tự nhiên có 3 chữ số đôi một khác nhau có dạng: \overline {abc} ;\left( {a e b e c} ight)

    Do số cần tìm chia hết cho 5 => c = 5

    Số cách chọn a là 4 cách

    Số cách chọn b là 3 cách

    => Số các số tự nhiên có 3 chữ số đôi một khác nhau chia hết cho 5 là: 1 . 4 . 3 = 12 số

  • Câu 22: Nhận biết

    Một lớp học có 40 học sinh gồm 25 nam và 15 nữ. Chọn 3 học sinh tham gia vệ sinh công cộng toàn trường, hỏi có bao nhiêu cách chọn 3 học sinh trong lớp?

    Số cách chọn ba học sinh trong lớp là tổ hợp chập 3 của 40 phần tử: C_{40}^3 = 9880 cách

  • Câu 23: Nhận biết

    Trên bàn có 8 cây bút chì khác nhau, 6 cây bút bi khác nhau và 10 cuốn tập khác nhau. Số cách khác nhau để chọn được đồng thời một cây bút chì, một cây bút bi và một cuốn tập.

    Để chọn “một cây bút chì - một cây bút bi - một cuốn tập”, ta có:

    Có 8 cách chọn bút chì.

    Có 6 cách chọn bút bi.

    Có 10 cách chọn cuốn tập.

    Vậy theo quy tắc nhân ta có 8 . 6 . 10 = 480 cách.

  • Câu 24: Nhận biết

    Biết M\overline{M} là hai biến cố đối nhau. Chọn khẳng định đúng?

    Ta có:

    P(M) = 1 - P\left( \overline{M}
ight)

  • Câu 25: Thông hiểu

    Có bao nhiêu số tự nhiên gồm 4 chữ số khác nhau:

    Số tự nhiên có 4 chữ số khác nhau có dạng: \overline {abcd} ,\left( {a e b e c e d} ight)

    Số cách chọn a là 9 cách

    Số cách chọn b là 9 cách

    Số cách chọn c là 8 cách

    Số cách chọn d là 7 cách

    => Số các số tự nhiên có 4 chữ số được tạo thành là: 9 . 9 . 8 . 7 = 4536 số

  • Câu 26: Thông hiểu

    Một lớp học có 40 học sinh gồm 25 nam và 15 nữ. Chọn 3 học sinh tham gia vệ sinh công cộng toàn trường. Hỏi có bao nhiêu cách chọn 3 học sinh trong đó có ít nhất 1 học sinh nam?

    Số cách chọn ba học sinh trong lớp là tổ hợp chập 3 của 40 phần tử: C_{40}^3 = 9880 cách

    Số cách chọn ba học sinh trong đó không có học sinh nam là: C_{15}^3 = 455

    => Số cách chọn ba học sinh trong đó có ít nhất một học sinh nam là: 9880 - 455 = 9425 cách

  • Câu 27: Thông hiểu

    Một người học bắn cung tên bắn liên tục 4 mũi tên vào mục tiêu. Gọi M_{k} là biến cố cung thủ bắn trúng lần thứ k,k \in
\left\{ 1;2;3;4 ight\}. Hãy mô tả biến cố lần thứ tư mới bắn trúng mục tiêu qua các biến cố M_{1};M_{2};M_{3};M_{4}.

    Gọi M là biến cố lần thứ tư mới bắn trúng mục tiêu

    Khi đó \overline{M_{k}} là biến cố lần thứ k bắn không trúng mục tiêu.

    Khi đó ta có: M = \overline{M_{1}} \cap
\overline{M_{2}} \cap \overline{M_{3}} \cap M_{4}

  • Câu 28: Thông hiểu

    Cho A = \{1, 2, 3, 4, 5, 6\}. Từ tập A có thể lập được bao nhiêu số chẵn có 5 chữ số?

     Số tự nhiên có 5 chữ số có dạng: \overline {abcde}

    Do số đang xét là số chẵn => e ∈ \{2; 4; 6\}

    => Có 3 cách chọn e

    => Số cách chọn a, b, c, d là: {6^4} = 1296

    => Từ tập A có thể lập được số các số chẵn có 5 chữ số là: 3 . 1296 = 3888 số

  • Câu 29: Thông hiểu

    Trong thùng bóng đèn có 5 bóng đèn loại I và 7 bóng đèn loại II, các bóng đèn khác nhau cả về hình dáng và màu sắc. Lấy ra lần lượt 5 bóng đèn. Giả sử biến cố A_{k} là biến cố lấy được bóng đèn loại I lần thứ k. Mô tả biến cố lấy được 4 bóng đèn loại I theo các biến cố A_{k}.

    Vì lấy được 4 bóng loại I nên trong 5 lượt lấy có một lần lấy được bóng loại II. Từ giả thiết suy ra \overline{A_{k}} là biến cố lần thứ k lấy được bóng đèn loại II. Do đó ta có:

    A =A_{1}.A_{2}.A_{3}.A_{4}.\overline{A_{5}}\cup A_{1}.\overline{A_{2}}.A_{3}.A_{4}.A_{5}\cup A_{1}.A_{2}.\overline{A_{3}}.A_{4}.A_{4} \cup A_{1}.A_{2}.A_{3}.\overline{A_{4}}.A_{5}

  • Câu 30: Nhận biết

    Một bó hoa có 5 hoa hồng trắng, 6 hoa hồng đỏ và 7 hoa hồng vàng. Hỏi có mấy cách chọn lấy ba bông hoa có đủ cả ba màu?

    Để chọn ba bông hoa có đủ cả ba màu (nghĩa là chọn một bông hoa hồng trắng - một bông hoa hồng đỏ - một bông hoa hồng vàng), ta có:

    Có 5 cách chọn hoa hồng trắng.

    Có 6 cách chọn hoa hồng đỏ.

    Có 7 cách chọn hoa hồng vàng.

    Vậy theo quy tắc nhân ta có 5 . 6 . 7 = 210 cách

  • Câu 31: Nhận biết

    Trong bài kiểm tra 15 phút, Minh tô ngẫu nhiên 5 câu trắc nghiệm. Tính xác suất để Minh tô sai cả 5 câu?

    Xác suất tô sai 1 câu là \frac{3}{4}

    Vậy xác suất để Minh tô sai cả 5 câu là \left( \frac{3}{4} ight)^{5} =
\frac{243}{1024}

  • Câu 32: Vận dụng

    Cho dãy số 0, 1, 2, 3, 4, 5, 6 có thể lập được bao nhiêu số có chẵn, mỗi số có 5 chữ số trong đó có đúng hai số lẻ, 2 số lẻ đó đứng cạnh nhau.

    Gọi số tự nhiên có hai chữ số lẻ khác nhau từ các số 0, 1, 2, 3, 4, 5, 6 là m

    Số cách chọn được m là: A_3^2

    Số chẵn có 5 chữ số mà hai số lẻ đứng kề nhau phải chứa M và ba trong bốn chữ số 0; 2; 4; 6

    Gọi \overline {abcd} ;\left( {a,b,c,d \in \left\{ {m,0;2;4;6} ight\}} ight) là số thỏa mãn yêu cầu bài toán

    Trường hợp 1:  Nếu a = m ta có:

    Số cách chọn a là 1 cách

    Số cách chọn b, c, d là A_4^3 cách

    Trướng hợp 2: Nếu a khác m thì ta có:

    Số cách chọn a là 3 cách

    Nếu b = m thì có 1 cách chọn b và A_3^2 cách chọn c, d

    Nếu c = m thì có 1 cách chọn c và A_3^2 cach chọn b, d

    => Số các số được tạo thành là: A_3^2.\left[ {A_4^3 + 3\left( {1.A_3^2 + 1.A_3^2} ight)} ight] = 360

  • Câu 33: Thông hiểu

    Có 4 nữ sinh tên là Linh, Hoa, Lan, Hiền và 4 nam sinh tên là Tuấn, Bình, Trung, Cường cùng ngồi quanh một bàn tròn có 8 chỗ ngồi. Hỏi có bao nhiêu cách sắp xếp biết nam và nữ ngồi xen kẽ nhau?

    Giả sử các ghế ngồi đánh số từ 1 đến 8.

    Chọn 1 bạn bất kì ngồi vào 1 vị trí ngẫu nhiên trên bàn tròn có 1 cách. (Nếu chọn 8 cách thì tức là nhầm với bàn dài).

    Xếp 3 bạn cùng giới tính còn lại vào 3 ghế (có số ghế cùng tính chẵn hoặc lẻ với bạn đầu) có 3! cách.

    Xếp 4 bạn còn lại ngồi xen kẽ 4 bạn đã xếp ở trên có 4! cách.

    Vậy có 3! · 4! = 144 cách.

  • Câu 34: Vận dụng

    Rút đồng thời 5 tấm thẻ từ một chiếc hộp có 12 tấm thẻ được đánh số từ 1 đến 12. Xác định số kết quả thuận lợi cho biến cố “Tổng các số ghi trên 5 tấm thẻ rút được là số lẻ?

    Đáp án: 396

    Đáp án là:

    Rút đồng thời 5 tấm thẻ từ một chiếc hộp có 12 tấm thẻ được đánh số từ 1 đến 12. Xác định số kết quả thuận lợi cho biến cố “Tổng các số ghi trên 5 tấm thẻ rút được là số lẻ?

    Đáp án: 396

    Gọi A là biến cố tổng các số ghi trên 5 tấm thẻ rút được là số lẻ.

    Ta có trong 12 tấm thẻ được đánh số từ 1 đến 12 thì có 6 tấm thẻ ghi số chẵn và 6 tấm thẻ ghi số lẻ

    Để tổng các số ghi trên 5 tấm thẻ rút được là số lẻ thì số thẻ ghi số lẻ là lẻ.

    Ta có các trường hợp như sau:

    TH1: 1 thẻ ghi số lẻ và 4 thẻ ghi số chẵn

    C_{6}^{1}.C_{6}^{4} = 90

    TH2: 3 thẻ ghi số lẻ và 2 thẻ ghi số chẵn

    C_{6}^{2}.C_{6}^{3} = 300

    TH3: 5 thẻ đều ghi số lẻ C_{6}^{5} =
6

    \Rightarrow n(A) = 90 + 300 + 6 =
396

  • Câu 35: Thông hiểu

    Mộp hộp chứa 4 bông hoa màu đỏ và 6 bông hoa màu xanh, các bông hoa có hình dáng khác nhau. Lấy ngẫu nhiên 5 bông hoa trong hộp. Tính xác suất để 5 bông hoa lấy được có ít nhất 3 bông màu đỏ?

    Lấy ngẫu nhiên 5 bông hoa từ 10 bông hoa ta có: n(\Omega) = C_{10}^{5}

    Gọi A là biến cố lấy được ít nhất 3 bông hoa đỏ.

    TH1: Lấy 3 bông hoa đỏ từ 4 bông hoa đỏ và 2 bông hoa xanh từ 6 bông hoa xanh có C_{4}^{3}.C_{6}^{2} cách.

    TH2: Lấy 4 bông hoa đỏ từ 4 bông hoa đỏ và 1 bông hoa xanh từ 6 bông hoa xanh có C_{4}^{4}.C_{6}^{1} cách.

    Suy ra n(\Omega) = C_{4}^{3}.C_{6}^{2} +
C_{4}^{4}.C_{6}^{1}

    Vậy xác suất để lấy được 5 bông hoa trong đó có ít nhất 3 bông hoa đỏ là: P(A) = \frac{n(A)}{n(\Omega)} =
\frac{11}{42}

  • Câu 36: Vận dụng

    Sắp 3 quyển sách Toán và 3 quyển sách Vật Lí lên một kệ dài. Xác suất để 3 quyển sách cùng một môn nằm cạnh nhau là:

    Số phần tử của không gian mẫu (Số cách xếp 6 quyển sách lên một kệ dài) là: 6! = 720 cách.

    Sắp xếp 3 sách Toán với nhau và 3 sách Vật lí với nhau

    Coi 6 quyển sách là hai bộ sách Toán và Vật Lí

    Số cách sắp xếp hai bộ sách là 2! = 2 (cách)

    Cách sắp xếp bộ sách Toán là 3! = 6

    Cách sắp xếp bộ sách Vật Lí là 3! = 6 

    => Số cách sắp xếp để 3 quyển sách cùng một môn nằm cạnh nhau là: 2 . 6 . 6 = 72 (cách)

    => Xác suất để 3 quyển sách cùng một môn nằm cạnh nhau là: P = \frac{{72}}{{720}} = \frac{1}{{10}}

  • Câu 37: Nhận biết

    Gieo hai con súc sắc cân đối và đồng chất. Tính xác suất để một trong hai con súc sắc xuất hiện mặt 5 chấm?

    Gọi hai súc sắc là M; N

    Gọi C là biến cố "Có đúng một trong hai con súc sắc xuất hiện mặt 5 chấm".

    Ta có C là hợp của hai biến cố xung khắc A\overline{B};\overline{A}B tức là C = A\overline{B} \cup \overline{A}B

    \Rightarrow P(C) = P\left( A\overline{B}
\cup \overline{A}B ight) = P\left( A\overline{B} ight) + P\left(
\overline{A}B ight)

    Ta có \left\{ \begin{matrix}
P\left( \overline{A} ight) = 1 - P(A) = \frac{5}{6} \\
P\left( \overline{B} ight) = 1 - P(B) = \frac{5}{6} \\
\end{matrix} ight.

    Vì A, B là hai biến cố độc lập với nhau

    Nên \overline{A} và B độc lập với nhau; \overline{B} và A độc lập với nhau

    \Rightarrow P(C) = P\left( A\overline{B}
ight) + P\left( \overline{A}B ight)

    = P(A)P\left( \overline{B} ight) +
P\left( \overline{A} ight).P(B) = \frac{1}{6}.\frac{5}{6} +
\frac{5}{6}.\frac{1}{6} = \frac{5}{18}

  • Câu 38: Thông hiểu

    Hai học sinh ném mỗi người một phi tiêu vào bia một cách độc lập. Tính xác suất của biến cố có ít nhất một học sinh không ném trúng bia. Biết rằng xác suất ném trúng bia của hai học sinh lần lượt là \frac{1}{2}\frac{1}{3}.

    Giả sử có hai học sinh là A và B

    Ta có xác suất để ném trúng mục tiêu của hai bạn A và B tương ứng là P(A),P(B)

    Gọi biến cố D là biến cố có ít nhất một bạn không ném trúng bia.

    Suy ra \overline{D} là biến cố cả hai bạn đều ném trúng bia, khi đó \overline{D} = A \cap B

    \Rightarrow P\left( \overline{D} ight)
= P(A).P(B) = \frac{1}{2}.\frac{1}{3} = \frac{1}{6}

    \Rightarrow P(D) = 1 - \frac{1}{6} =
\frac{5}{6}

  • Câu 39: Nhận biết

    Biết hai biến cố A;B độc lập với nhau và P(A) = 0,4;P(B) = 0,3. Tính giá trị P(A.B)?

    Do A và B là hai biến cố độc lập với nhau nên P(AB) = P(A).P(B) = 0,4.0,3 = 0,12

  • Câu 40: Vận dụng

    Có bao nhiêu số tự nhiên có 7 chữ số biết rằng chữ số 2 có mặt 2 lần, chữ số 3 có mặt 3 lần, chữ số còn lại có mặt nhiều nhất 1 lần.

    Số tự nhiên có 7 chữ số có dạng: \overline {abcdefg}

    Xét trường hợp có chữ số 0 đứng đầu

    Số cách chọn vị trí cho chữ số 2 là: C_7^2

    Số cách chọn vị trí cho chữ số 3 là: C_5^3

    Số cách chọn 2 chữ số còn lại trong tập hợp các số đã cho để xếp vào hai vị trí cuối là A_8^2

    => Số các số được tạo thành là:  C_7^2.C_5^3.A_8^2 = 11760

    Xét trường hợp không có chữ số 0 đứng đầu

    Ta có:

    Vì a = 0 => a có 1 cách chọn

    Số cách chọn vị trí cho chữ số 2 là: C_6^2

    Số cách chọn vị trí cho chữ số 3 là: C_4^3

    Số cách chọn chữ số cuối trong tập hợp dãy số đã cho là 7 cách

    => Số các số được tạo thành là: C_2^6.C_4^3.7 = 420

    Vậy số các số được lập thành thỏa mãn yêu cầu đề bài là: 11760 - 420 = 11340 số

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 8 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
Sắp xếp theo