Đề kiểm tra 45 phút Toán 11 Chương 9 Chân trời sáng tạo

Mô tả thêm: Đề kiểm tra 45 phút Toán 11 Xác suất gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Chân trời sáng tạo.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Một hộp đựng 5 viên bi màu xanh, 7 viên bi màu vàng. Có bao nhiêu cách lấy ra 6 viên bi trong đó có 2 viên bi màu xanh, 4 viên bi màu vàng?

    Số cách lấy 2 viên bi màu xanh là: C_5^2 = 10 cách

    Số cách lấy 4 viên bi màu vàng là: C_7^4 = 35 cách 

    Áp dụng quy tắc nhân ta có số cách lấy ra 6 viên bi thỏa mãn đề bài là:

    C_5^2.C_7^4 = 10.35 = 350 cách

  • Câu 2: Nhận biết

    Giả sử ta dùng 5 màu để tô cho 3 nước khác nhau trên bản đồ và không có màu nào
    được dùng hai lần. Số các cách để chọn những màu cần dùng là:

     Số các cách để chọn những màu cần dùng là: A_5^3 = 20

  • Câu 3: Nhận biết

    Giả sử hai biến cố A;B là hai biến cố xung khắc. Công thức nào sau đây đúng?

    Vì hai biến cố A và B là hai biến cố xung khắc nên theo công thức cộng xác suất ta có: P(A \cup B) = P(A) +
P(B).

  • Câu 4: Thông hiểu

    Một bình đựng 5 quả cầu xanh và 4 quả cầu đỏ và 3 quả cầu vàng. Chọn ngẫu nhiên 3 quả cầu. Xác suất để được 3 quả cầu khác màu là:

    Số quả cầu có trong bình là: 5 + 4 + 3 = 12 quả

    Số phần tử không gian mẫu là: n\left( \Omega  ight) = C_{12}^3

    Giả sử A là biến cố "3 quả cầu khác màu"

    => Số phần tử của biến cố A là: n\left( A ight) = C_5^1.C_4^1.C_3^1

    => Xác suất để được 3 quả cầu khác màu là P\left( A ight) = \frac{{n\left( A ight)}}{{n\left( \Omega  ight)}} = \frac{{C_5^1.C_4^1.C_3^1}}{{C_{12}^3}} = \frac{3}{{11}}

  • Câu 5: Thông hiểu

    Gieo liên tiếp ba lần con súc sắc. Tìm xác suất để tổng số chấm trên mặt xuất hiện là một số nguyên tố nhỏ hơn 9?

    Không gian mẫu là số cách xuất hiện các mặt của con súc sắc trong ba lần gieo liên tiếp

    Suy ra số phần tử của không gian mẫu là |\Omega| = C_{6}^{1}.C_{6}^{1}.C_{6}^{1} =
216

    Gọi B là biến cố '' Tổng số chấm trên các mặt của ba lần gieo là một số nguyên tố nhỏ hơn 9 ''

    Ta có các số nguyên tố nhỏ hơn 9 gồm: 2, 3, 5, 7.

    Bộ các số tương ứng với số chấm có tổng bằng 2: không có.

    Bộ các số tương ứng với số chấm có tổng bằng 3: (1,1,1): 1 cách

    Bộ các số tương ứng với số chấm có tổng bằng 5: (1,1,3): 3 cách; (1,2,2): 3 cách

    Bộ các số tương ứng với số chấm có tổng bằng 7: (1,1,5): 3 cách; (1,2,4): 6 cách; (1,3,3): 3 cách; (2,3,2): 3 cách.

    Do đó số phần tử của biến cố B là \left|
\Omega_{B} ight| = 22

    Vậy xác suất cần tìm là: P(B) =
\frac{\left| \Omega_{B} ight|}{|\Omega|} = \frac{22}{216} =
\frac{11}{108}

  • Câu 6: Nhận biết

    Không gian mẫu của một phép thử được mô tả như sau \Omega = \left\{ 1;2;3;4;5;6;7
ight\}

    Cặp biến cố không đối nhau là: E =
\left\{ 1;4;6 ight\},F = \left\{ 2;3;7 ight\}\left\{ \begin{matrix}
E \cap F = \varnothing \\
E \cup F eq \Omega \\
\end{matrix} ight.

  • Câu 7: Thông hiểu

    Đầu giờ học cô giáo gọi 3 bạn A, B, C và một vài bạn khác để kiểm tra miệng. Cô giáo sẽ ngừng kiểm tra khi đã cho 2 bạn thuộc bài. Biết xác suất thuộc bài của A, B, C lần lượt là \frac{9}{10};\frac{7}{10};\frac{4}{5} . Tính xác suất để cô giáo chỉ kiểm tra đúng 3 bạn A, B, C?

    Đáp án: 0,398

    (Kết quả ghi dưới dạng số thập phân)

    Đáp án là:

    Đầu giờ học cô giáo gọi 3 bạn A, B, C và một vài bạn khác để kiểm tra miệng. Cô giáo sẽ ngừng kiểm tra khi đã cho 2 bạn thuộc bài. Biết xác suất thuộc bài của A, B, C lần lượt là \frac{9}{10};\frac{7}{10};\frac{4}{5} . Tính xác suất để cô giáo chỉ kiểm tra đúng 3 bạn A, B, C?

    Đáp án: 0,398

    (Kết quả ghi dưới dạng số thập phân)

    TH1: A thuộc bài, B không thuộc bài, C thuộc bài có xác suất là:

    P_{1} = 0,9.(1 - 0,7).0,8 =
0,216

    TH2: A không thuộc bài, B thuộc bài, C thuộc bài có xác suất là:

    P_{2} = (1 - 0,9).0,7.0,8 =
0,056

    TH2: A thuộc bài, B thuộc bài, C không thuộc bài có xác suất là:

    P_{3} = 0,9.0,7.(1 - 0,8) =
0,126

    Vậy xác suất cần tìm là: P = 0,216 +
0,056 + 0,126 = 0,398

  • Câu 8: Nhận biết

    Từ các chữ số 2, 3, 4, 5 có thể lập được bao nhiêu số gồm 4 chữ số khác nhau?

    Số tự nhiên có 4 chữ số khác nhau có dạng: \overline {abcd} ,\left( {a e b e c e d} ight)

    Số cách chọn a là 4 cách

    Số cách chọn b là 3 cách

    Số cách chọn c là 2 cách

    Số cách chọn d là 1 cách

    => Từ các chữ số 2, 3, 4, 5 có thể lập được số các số gồm 4 chữ số khác nhau là 4! = 24 số

  • Câu 9: Nhận biết

    Xét phép thử: “Gieo hai con xúc xắc 2 lần sau đó gieo một đồng tiền xu”. Gọi C = \left\{
(1,1,S);(2,2,S);(3,3,S);(4,4,S);(5,5,S);(6,6,S) ight\} là một biến cố. Đáp án nào dưới đây mô tả đúng biến cố C?

    Mô tả đúng là: “Hai lần gieo xúc xắc kết quả như nhau và đồng xu xuất hiện mặt sấp”.

  • Câu 10: Thông hiểu

    Có hai hộp, hộp thứ nhất đựng 3 bi đỏ, 2 bi xanh và 5 bi vàng, hộp thứ hai đựng 2 bi đỏ, 3 bi xanh và 2 bi vàng. Lấy ngẫu nhiên 2 bi, mỗi hộp một bi. Tính xác suất để trong một lần lấy ra được đúng một bi đỏ?

    Gọi A là biến cố “Trong một lần lấy ra được đúng một bi đỏ”, A_{1} là biến cố “Lấy được bi đỏ ở hộp thứ nhất”, A_{2} là biến cố “Lấy được bi đỏ ở hộp thứ hai”.

    Ta có: \left\{ \begin{matrix}A = A_{1}\overline{A_{2}} \cup \overline{A_{1}}A_{2} \\P\left( A_{1} ight) = \dfrac{3}{10};P\left( \overline{A_{1}} ight) =\dfrac{7}{10} \\P\left( A_{2} ight) = \dfrac{2}{7};P\left( \overline{A_{2}} ight) =\dfrac{5}{7} \\\end{matrix} ight.

    Suy ra

    P(A) = P\left( A_{1}\overline{A_{2}}
\cup \overline{A_{1}}A_{2} ight) = P\left( A_{1}\overline{A_{2}}
ight) + P\left( \overline{A_{1}}A_{2} ight)

    = \frac{3}{10}.\frac{5}{7} +
\frac{7}{10}.\frac{2}{7} = \frac{29}{70}

    = P\left( A_{1} ight)P\left(
\overline{A_{2}} ight) + P\left( \overline{A_{1}} ight)P\left( A_{2}
ight)

  • Câu 11: Nhận biết

    Gieo hai con súc sắc cân đối và đồng chất. Tính xác suất để một trong hai con súc sắc xuất hiện mặt 5 chấm?

    Gọi hai súc sắc là M; N

    Gọi C là biến cố "Có đúng một trong hai con súc sắc xuất hiện mặt 5 chấm".

    Ta có C là hợp của hai biến cố xung khắc A\overline{B};\overline{A}B tức là C = A\overline{B} \cup \overline{A}B

    \Rightarrow P(C) = P\left( A\overline{B}
\cup \overline{A}B ight) = P\left( A\overline{B} ight) + P\left(
\overline{A}B ight)

    Ta có \left\{ \begin{matrix}
P\left( \overline{A} ight) = 1 - P(A) = \frac{5}{6} \\
P\left( \overline{B} ight) = 1 - P(B) = \frac{5}{6} \\
\end{matrix} ight.

    Vì A, B là hai biến cố độc lập với nhau

    Nên \overline{A} và B độc lập với nhau; \overline{B} và A độc lập với nhau

    \Rightarrow P(C) = P\left( A\overline{B}
ight) + P\left( \overline{A}B ight)

    = P(A)P\left( \overline{B} ight) +
P\left( \overline{A} ight).P(B) = \frac{1}{6}.\frac{5}{6} +
\frac{5}{6}.\frac{1}{6} = \frac{5}{18}

  • Câu 12: Nhận biết

    Chọn ngẫu nhiên 2 học sinh trong một nhóm học sinh gồm 6 nam và 4 nữ. Gọi X là biến cố “Hai học sinh được chọn đều là nam”. Khẳng định nào sau đây đúng?

    Sử dụng định nghĩa biến cố đối ta được:

    \overline{X} là biến cố “Hai học sinh được chọn đều là nữ”.

  • Câu 13: Thông hiểu

    Có bao nhiêu số tự nhiên có 3 chữ số lập từ các số 0, 2, 4, 6, 8 với điều kiện các chữ số đó không lặp lại:

    Số tự nhiên có ba chữ số khác nhau có dạng: \overline {abc} ,\left( {a e b e c} ight)

    Số cách chọn a là 4 cách (Do a khác 0)

    Số cách chọn b là 4 cách

    Số cách chọn c là 3 cách

    => Số các số tự nhiên có 3 chữ số lập từ các số 0, 2, 4, 6, 8 với điều kiện các chữ số đó không lặp lại là 4 . 4 . 3 = 48 số

  • Câu 14: Thông hiểu

    Một người học bắn cung tên bắn liên tục 4 mũi tên vào mục tiêu. Gọi M_{k} là biến cố cung thủ bắn trúng lần thứ k,k \in
\left\{ 1;2;3;4 ight\}. Hãy mô tả biến cố bắn trúng mục tiêu ít nhất một lần qua các biến cố M_{1};M_{2};M_{3};M_{4}.

    Gọi M là biến cố bắn trúng mục tiêu ít nhất 1 lần

    Khi đó \overline{M_{k}} là biến cố lần thứ k bắn không trúng mục tiêu.

    Khi đó ta có: M = M_{1} \cup M_{2} \cup
M_{3} \cup M_{4}

  • Câu 15: Vận dụng

    Gọi P là tập hợp các số tự nhiên có 5 chữ số khác nhau được tạo thành từ các phần tử của tập A = \left\{ 0;1;2;3;4;5;6
ight\}. Chọn ngẫu nhiên một số từ tập P. Tính số phần tử của biến cố H “chọn được số tự nhiên chia hết cho 15”.

    Ta có H là biến cố số tự nhiên được chọn chia hết cho 15.

    Số tự nhiên có 5 chữ số khác nhau và chia hết cho 15 được tạo thành từ tập A có dạng \overline{abcde}

    Ta có: \left\{ \begin{matrix}
15 = 3.5 \\
(3,5) = 1 \\
\end{matrix} ight. do đó \overline{abcde} \vdots 15 \Leftrightarrow \left\{
\begin{matrix}
\overline{abcde} \vdots 5 \\
\overline{abcde} \vdots 3 \\
\end{matrix} ight. suy ra (a +
b + c + d) \vdots 3 khi và chỉ khi

    TH1: e = 1 khi đó \overline{abcde} \vdots 3 \Rightarrow (a + b + c +
d) \vdots 3 khi và chỉ khi \left\lbrack \begin{matrix}
a;b;c;d \in \left\{ 1;2;3;6 ight\} \\
a;b;c;d \in \left\{ 1;2;4;5 ight\} \\
a;b;c;d \in \left\{ 1;3;5;6 ight\} \\
a;b;c;d \in \left\{ 2;3;5;6 ight\} \\
a;b;c;d \in \left\{ 3;4;5;6 ight\} \\
\end{matrix} ight.

    Vậy trong trường hợp này có 5.4! = 120 số tự nhiên

    TH2: e = 5 khi đó \overline{abcde} \vdots 3 \Rightarrow (a + b + c +
d + 5) \vdots 3

    \Rightarrow (a + b + c + d) \vdots
3 dư 1 khi và chỉ khi \left\lbrack
\begin{matrix}
a;b;c;d \in \left\{ 0;1;2;4 ight\} \\
a;b;c;d \in \left\{ 0;1;3;6 ight\} \\
a;b;c;d \in \left\{ 0;3;4;6 ight\} \\
a;b;c;d \in \left\{ 1;2;3;4 ight\} \\
a;b;c;d \in \left\{ 1;2;4;6 ight\} \\
\end{matrix} ight.

    Vậy trong trường hợp này có 3.3.3.2.1 + 2.4! = 102 số tự nhiên

    Do đó n(H) = 120 + 102 = 222

  • Câu 16: Vận dụng

    Lập số có 5 chữ số khác nhau \overline{a_{1}a_{2}a_{3}a_{4}a_{5}} từ các chữ số 1;2;3;4;5. Chọn ngẫu nhiên một số trong các số được tạo thành. Tính xác suất để số chọn được thỏa mãn a_{1} + a_{2} < a_{3} +a_{4}?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Lập số có 5 chữ số khác nhau \overline{a_{1}a_{2}a_{3}a_{4}a_{5}} từ các chữ số 1;2;3;4;5. Chọn ngẫu nhiên một số trong các số được tạo thành. Tính xác suất để số chọn được thỏa mãn a_{1} + a_{2} < a_{3} +a_{4}?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 17: Thông hiểu

    Có bao nhiêu số tự nhiên có chín chữ số mà các chữ số của nó viết theo thứ tự giảm dần:

     Vì số có chín chữ số viết theo thứ tự giảm dần nên chỉ có thể là chữ số 9 hoặc chữ số 8 đứng đầu.

    Trường hợp 1: Số 9 đứng đầu

    Từ các số 0; 1; 2; 3; 4; 5; 6; 7; 8 mỗi một lần ta bỏ đi một số ta sẽ lập được 1 số có 9 chữ số viết theo thứ tự giảm dần mà số 9 đứng đầu.

    => Trường hợp 1 có 9 số được lập

    Trường hợp 2: Số 8 đứng đầu

    Vì từ 0 đến 8 có chín chữ số nên ta chỉ lập được 1 số có 9 chữ số viết theo thứ tự giảm đần

    Vậy cả 2 trường hợp có 9 + 1 = 10 số

  • Câu 18: Thông hiểu

    Hai người cùng đi câu cá. Xác suất để X câu được (ít nhất một con) cá là 0,1; xác suất để Y câu được cá là 0,15. Sau buổi đi câu hai người cùng góp cá lại. Xác suất để hai bạn X và Y không trở về tay không bằng:

    Xác suất để X không câu được cá là 1 - 0,1 = 0,9

    Xác suất để Y không câu được cá là 1 - 0,15 = 0,85

    Xác xuất X và Y trở về tay không (không có con cá nào) là

    P = P(A.B) = P(A).P(B) = 0,9 . 0,85 = 0,765

    => Xác suất X và Y ko trở về tay ko là: 1 - 0,765 = 0,235

  • Câu 19: Vận dụng

    Sơ đồ phân phối điện như hình vẽ:

    Điện được tải từ trạm điện P đến nơi tiêu thụ Q qua các trạm tải nhỏ A, B, C, D, V. Xác suất có sự cố kĩ thuật sau một thời gian hoạt động của các trạm tải nhỏ A, B, C là \frac{1}{5} và của các trạm D, V là \frac{1}{10}. Hãy tính xác suất để nơi tiêu thụ Q không bị mất điện (biết rằng các trạm tải nhỏ hoạt động độc lập với nhau).

    Gọi Q là biến cố nơi tiêu thụ Q không mất điện

    A, B, C, D, V là biến cố các trạm tải nhỏ A, B, C, D, V gặp sự cố kĩ thuật.

    Ta có:

    \overline{Q} = (A \cap B \cap C) \cup (D
\cap V)

    Suy ra P\left( \overline{Q} ight) =
P(ABC) + P(DV) - P(ABCDV)

    P\left( \overline{Q} ight) =
P(A).P(B).P(C) + P(D).P(V)

    - P(A).P(B).P(C).P(D).P(V)

    = 0,2.0,2.0,2 + 0,1.0,1 -
0,2.0,2.0,2.0,1.0,1 = 0,01792

    Vậy P\left( \overline{Q} ight) = 1 -
P(Q) = 0,98208

  • Câu 20: Vận dụng cao

    Lấy ngẫu nhiên 3 số từ tập T = \left\{ 1;2;3;4;6;8 ight\} . Xác định số phần tử của biến cố F lấy được ba số là số đo ba cạnh của một tam giác có góc tù? 4||8||10||5

    Đáp án là:

    Lấy ngẫu nhiên 3 số từ tập T = \left\{ 1;2;3;4;6;8 ight\} . Xác định số phần tử của biến cố F lấy được ba số là số đo ba cạnh của một tam giác có góc tù? 4||8||10||5

    Giả sử lấy được ba số là: (a;b;c) với a
< b < c do đó c \geq 4
\Rightarrow c \in \left\{ 4;6;8 ight\}

    Lại có a;b;c là ba cạnh của tam giác ABC, với BC = a;AC = b;AB = a có góc C tù.

    \Rightarrow \left\{ \begin{gathered}
  \cos C = \frac{{{a^2} + {b^2} - {c^2}}}{{2ab}} \hfill \\
  4 \leqslant c < a + b \hfill \\ 
\end{gathered}  ight. \Rightarrow \left\{ \begin{gathered}
  {a^2} + {b^2} < {c^2} \hfill \\
  4 \leqslant c < a + b \hfill \\ 
\end{gathered}  ight.

    \Rightarrow \sqrt{a^{2} + b^{2}} < c
< a + b với c \in \left\{ 4;6;8
ight\}

    Xét c = 4 thì bộ (a;b) = (2;3) thỏa mãn

    Xét c = 6 do \left\{ \begin{matrix}
a < b < c \\
6 = c < a + b < 2b \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
b = 4 \\
a = 3 \\
\end{matrix} ight.

    \Rightarrow (a;b) = 3;4 thỏa mãn

    Xét c = 8 do \left\{ \begin{matrix}
a < b < c \\
8 = c < a + b < 2b \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
b = 6 \\
\left\lbrack \begin{matrix}
a = 3 \\
a = 4 \\
\end{matrix} ight.\  \\
\end{matrix} ight.

    \Rightarrow \left\lbrack \begin{matrix}
(a;b) = (3;6) \\
(a;b) = (4;6) \\
\end{matrix} ight. thỏa mãn

    Vậy số phần tử của biến cố F là n(F) =
4

  • Câu 21: Thông hiểu

    Học sinh A làm bài kiểm tra 15 phút môn Toán gồm 10 câu hỏi trắc nghiệm, mỗi câu hỏi gồm 4 phương án trả lời và chỉ có một phương án đúng. Nếu trả lời đúng 1 câu hỏi được 1 điểm, trả lời sai không có điểm. Biết A đã làm đúng 5 câu hỏi, vì thời gian hạn chế nên A đã khoanh trả lời ngẫu nhiên các câu hỏi còn lại. Tính xác suất để A đạt được ít nhất 8 điểm?

    Bạn A trả lời đúng 5 câu hỏi nên A đã đạt được 5 điểm

    Để được ít nhất 8 điểm thì A phải trả lời đúng ít nhất 3 câu trong 5 câu còn lại.

    TH1: 3 câu đúng, 2 câu sai P_{1} =
C_{5}^{3}.\left( \frac{1}{4} ight)^{3}.\left( \frac{3}{4}
ight)^{2}

    TH2: 4 câu đúng, 1 câu sai P_{2} =
C_{5}^{4}.\left( \frac{1}{4} ight)^{4}.\left( \frac{3}{4}
ight)^{1}

    TH3: 5 câu đúng P_{3} = C_{5}^{5}.\left(
\frac{1}{4} ight)^{5}

    Vậy xác suất cần tìm là: P = P_{1} +
P_{2} + P_{3} \approx 0,1035

  • Câu 22: Nhận biết

    Gieo hai con súc sắc cân đối và đồng chất. Tính xác suất để tổng số chấm trên mặt xuất hiện của hai con súc sắc nhỏ hơn hay bằng 7 mà trong đó có ít nhất một con súc sắc xuất hiện mặt 6 chấm.

    Ta có: \Omega = \left\{ (i;j)|1 \leq i;j
\leq 6 ight\} \Rightarrow n(\Omega) = 36

    Gọi C: “Tổng số chấm trên mặt xuất hiện của hai con súc sắc nhỏ hơn hay bằng 7 mà trong đó có ít nhất một con súc sắc xuất hiện mặt 6 chấm”

    Ta có: C = \left\{ (1;6),(6;1)
ight\}

    \Rightarrow n(C) = 2 \Rightarrow P(C) =
\frac{n(C)}{n(\Omega)} = \frac{2}{36} = \frac{1}{18}

  • Câu 23: Thông hiểu

    Cho A = \{1, 2, 3, 4, 5\}. Từ tập A có thể lập được bao nhiêu số tự nhiên có 3 chữ số đôi một khác nhau chia hết cho 5?

    Số tự nhiên có 3 chữ số đôi một khác nhau có dạng: \overline {abc} ;\left( {a e b e c} ight)

    Do số cần tìm chia hết cho 5 => c = 5

    Số cách chọn a là 4 cách

    Số cách chọn b là 3 cách

    => Số các số tự nhiên có 3 chữ số đôi một khác nhau chia hết cho 5 là: 1 . 4 . 3 = 12 số

  • Câu 24: Vận dụng

    Xác suất để thắng một trận game là \frac{2}{5} . Hỏi người chơi phải chơi ít nhất bao nhiêu trận để xác suất thắng ít nhất một trận trong loạt chơi lớn hơn \frac{19}{20} ?

    Đáp án: 6 trận

    Đáp án là:

    Xác suất để thắng một trận game là \frac{2}{5} . Hỏi người chơi phải chơi ít nhất bao nhiêu trận để xác suất thắng ít nhất một trận trong loạt chơi lớn hơn \frac{19}{20} ?

    Đáp án: 6 trận

    Gọi n là số trận người đó chơi.

    A là biến cố người đó thắng ít nhất 1 trận

    Suy ra \overline{A} là biến cố người đó không thắng trận nào.

    \overline{A} =
\overline{A_{1}}.\overline{A_{2}}.\overline{A_{3}}...\overline{A_{n}} trong đó \overline{A_{i}} là biến cố người đó thắng trận thứ i và P\left(
\overline{A_{i}} ight) = 0,6;i = \overline{1,n}

    \Rightarrow \left\{ \begin{matrix}
P\left( \overline{A} ight) = P\left( \overline{A_{1}} ight).P\left(
\overline{A_{2}} ight).P\left( \overline{A_{3}} ight)...P\left(
\overline{A_{n}} ight) = 0,6^{n} \\
P(A) = 1 - P\left( \overline{A} ight) = 1 - 0,6^{n} \\
\end{matrix} ight.

    Ta có bất phương trình

    1 - 0,6^{n} > 0,95

    \Leftrightarrow 0,6^{n} <
0,05

    \Leftrightarrow n >\log_{0,6}0,05

    Vậy giá trị nhỏ nhất của n bằng 6.

  • Câu 25: Thông hiểu

    Ông và bà An cùng có 6 đứa con đang lên máy bay theo một hàng dọc. Có bao nhiêu cách xếp hàng khác nhau nếu ông An hay bà An đứng ở đầu hoặc cuối hàng:

    Ta có:

    Ông An hay bà An đứng ở dầu hoặc cuối hàng

    => Có hai cách sắp xếp

    Tiếp theo xếp 6 đứa con đang lên máy bay theo một hàng dọc

    => Có 6! cách sắp xếp

    => Có tất cả 2 . 6! = 1440 cách 

  • Câu 26: Nhận biết

    Một công ti cần tuyển hai nhân viên. Có 6 người nộp đơn, trong đó có 4 nữ và 2 nam. Giả sử rằng khả năng trúng tuyển của 6 người là như nhau. Tính xác suất để 2 người trúng tuyển đều là nữ?

    Số cách chọn 2 trong 6 người có C_{6}^{2}
= 15 cách

    Vậy số phần tử không gian mẫu là 15.

    Số cách chọn 2 nữ trong 4 nữ là C_{4}^{2}
= 6 do đó xác suất của biến cố này là \frac{6}{15} = \frac{2}{5}.

  • Câu 27: Nhận biết

    Gieo hai con súc sắc cân đối và đồng chất. Tính xác suất để tổng số chấm trên mặt xuất hiện của hai con súc sắc nhỏ hơn hay bằng 5.

    Ta có: \Omega = \left\{ (i;j)|1 \leq i;j
\leq 6 ight\} \Rightarrow n(\Omega) = 36

    Gọi A: “Tổng số chấm trên mặt xuất hiện của hai con súc sắc nhỏ hơn hay bằng 5”

    Ta có: A = \left\{
(1;1),(1;2),(2;1),(1;3),(3;1),(1;4),(4;1),(2;2),(2;3),(3;2)
ight\}

    \Rightarrow n(A) = 10 \Rightarrow P(A) =
\frac{n(A)}{n(\Omega)} = \frac{10}{36} = \frac{5}{18}

  • Câu 28: Thông hiểu

    Trong một thùng giấy có chứa 8 bóng đèn màu đỏ, 12 bóng đèn màu xanh. Lấy ngẫu nhiên 2 bóng đèn trong thùng. Tính xác suất để lấy được 2 bóng đèn cùng màu?

    Ta có:

    n(\Omega) = C_{20}^{2} = 190

    Gọi A là biến cố lấy được hai bóng đèn cùng màu.

    A1 là biến cố lấy được hai bóng đèn màu đỏ. \Rightarrow n\left( A_{1} ight) =
C_{8}^{2}

    A2 là biến cố lấy được hai bóng đèn màu xanh \Rightarrow n\left( A_{1} ight) =
C_{12}^{2}

    Do A1, A2 là hai biến cố xung khắc nên theo quy tắc cộng xác suất ta có:

    P(A) = P\left( A_{1} ight) + P\left(
A_{2} ight) = \frac{C_{8}^{2}}{C_{20}^{2}} +
\frac{C_{12}^{2}}{C_{20}^{2}} = \frac{47}{95}

  • Câu 29: Thông hiểu

    Chọn ngẫu nhiên ba số từ tập các số tự nhiên sau: \left\{ 1;2;3;4;5;...;11
ight\}. Tính xác suất để Lấy được ba số đều là số chẵn và tổng của chúng nhỏ hơn 19?

    Không gian mẫu là số cách chọn ngẫu nhiên ba số tự nhiên từ 11 số tự nhiên sau: \left\{ 1;2;3;4;5;...;11
ight\}

    Do đó số phần tử của không gian mẫu là: |\Omega| = C_{11}^{3} = 165

    Gọi C là biến cố “ba số đều là số chẵn và tổng của chúng nhỏ hơn 19”.

    Bộ ba số thỏa yêu cầu gồm: (2,4,6); (2,4,8), (2,4,10); (2,6,8); (2,6,10); (4,6,8).

    Suy ra ta có n(C) = 6

    Vậy xác suất cần tìm là: P(C) =
\frac{6}{165} = \frac{2}{55}

  • Câu 30: Vận dụng cao

    Cho tập hợp A =
\left\{ 1;2;3;4;5;6;7;8 ight\}. Lập từ A số tự nhiên có 8 chữ số đôi một khác nhau. Chọn ngẫu nhiên một số từ A. Tính xác suất để chọn được số chia hết cho 1111?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho tập hợp A =
\left\{ 1;2;3;4;5;6;7;8 ight\}. Lập từ A số tự nhiên có 8 chữ số đôi một khác nhau. Chọn ngẫu nhiên một số từ A. Tính xác suất để chọn được số chia hết cho 1111?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 31: Vận dụng

    Cho dãy số 0, 1, 2, 3, 4, 5, 6 có thể lập được bao nhiêu số có chẵn, mỗi số có 5 chữ số trong đó có đúng hai số lẻ, 2 số lẻ đó đứng cạnh nhau.

    Gọi số tự nhiên có hai chữ số lẻ khác nhau từ các số 0, 1, 2, 3, 4, 5, 6 là m

    Số cách chọn được m là: A_3^2

    Số chẵn có 5 chữ số mà hai số lẻ đứng kề nhau phải chứa M và ba trong bốn chữ số 0; 2; 4; 6

    Gọi \overline {abcd} ;\left( {a,b,c,d \in \left\{ {m,0;2;4;6} ight\}} ight) là số thỏa mãn yêu cầu bài toán

    Trường hợp 1:  Nếu a = m ta có:

    Số cách chọn a là 1 cách

    Số cách chọn b, c, d là A_4^3 cách

    Trướng hợp 2: Nếu a khác m thì ta có:

    Số cách chọn a là 3 cách

    Nếu b = m thì có 1 cách chọn b và A_3^2 cách chọn c, d

    Nếu c = m thì có 1 cách chọn c và A_3^2 cach chọn b, d

    => Số các số được tạo thành là: A_3^2.\left[ {A_4^3 + 3\left( {1.A_3^2 + 1.A_3^2} ight)} ight] = 360

  • Câu 32: Thông hiểu

    Cho A = \{1, 2, 3, 4, 5, 6, 7\}. Từ tập A có thể lập được bao nhiêu số chẵn có 5 chữ số đôi một khác nhau?

    Số tự nhiên có 5 chữ số có dạng: \overline {abcde}

    Số cần tìm là số chẵn => e ∈ {2; 4; 6}

    => Có 3 cách chọn e

    Số cách chọn a, b, c, d là: A_6^4 = 360

    => Có thể lập được số các số chẵn có 5 chữ số đôi một khác nhau là: 3 . 360 = 1080 số

  • Câu 33: Thông hiểu

    Từ các số 0, 1, 2, 7, 8, 9 tạo được bao nhiêu số chẵn có 5 chữ số khác nhau?

    Số tự nhiên có 5 chữ số khác nhau được tạo thành từ dãy số có dạng:

    \overline {abcde} ;\left( {a e b e c e d e e} ight)

    Trường hợp 1: e = 0

    Số cách chọn a là 5 cách

    Số cách chọn b là 4 cách

    Số cách chọn c là 3 cách

    Số cách chọn d là 2 cách

    => Số các số được tạo thành là: 5 . 4 . 3 . 2 = 120 số

    Trường hợp 2: e ≠ 0

    => e = {2; 8}

    => Số cách chọn e là 2 cách

    Số cách chọn a là 4 cách

    Số cách chọn b là 4 cách

    Số cách chọn c là 3 cách

    Số cách chọn d là 2 cách

    => Số các số được tạo thành là: 2 .4. 4. 3 . 2 = 192 số

    => Từ dãy số tạo được số các số chẵn có 5 chữ số khác nhau là 120 + 192 = 312 số

  • Câu 34: Vận dụng

    Gieo 3 lần đồng thời một con xúc xắc và một đồng xu. Ta có P là biến cố trong ba lượt gieo có ít nhất một lần kết quả con xúc xắc xuất hiện mặt 1 chấm và đồng xu xuất hiện mặt sấp. Tính số phần tử của biến cố đối của biến cố P?

    Xét phép thử gieo ba lần một con xúc xắc và một đồng xu với không gian mẫu \Omega có số phần tử là n(\Omega) = (6.2)^{3} = 1728

    Xét biến cố P trong ba lượt gieo có ít nhất một lần kết quả con xúc xắc xuất hiện mặt 1 chấm và đồng xu xuất hiện mặt sấp.

    TH1: trong cả ba lần gieo đều được kết quả: con súc sắc xuất hiện mặt 1 chấm và đồng xu xuất hiện mặt sấp. Có 1 khả năng xảy ra.

    TH2: trong ba lần gieo có đúng 2 lần gieo con súc sắc xuất hiện mặt 1 chấm và đồng tiền xu xuất hiện mặt sấp. Có C_{3}^{2}.1.1.(12 - 1) = 33 khả năng.

    TH3: trong ba lần gieo có đúng 1 lần gieo con súc sắc xuất hiện mặt 1 chấm và đồng tiền xu xuất hiện mặt sấp. Có C_{3}^{1}.1.(12 - 1)(12 - 1) = 3.11.11 =
363 khả năng.

    \Rightarrow n(P) = 1 + 33 + 363 =
397

    \Rightarrow n\left( \overline{P} ight)
= 1728 - 397 = 1331

  • Câu 35: Thông hiểu

    Một hộp chứa 3 viên bi đen khác nhau, 4 viên bi đỏ khác nhau và 5 viên bi xanh khác nhau. Gọi A là biến cố “Sắp xếp các viên bi thành một dãy sao cho các viên bi cùng màu nằm cạnh nhau”. Các kết quả thuận lợi của biến cố A là:

    Ta có:

    Số cách sắp xếp 3 viên bi đen thành một dãy bằng 3!

    Số cách sắp xếp 3 viên bi đỏ thành một dãy bằng 4!

    Số cách sắp xếp 3 viên bi xanh thành một dãy bằng 5!

    Số cách sắp xếp 3 viên bi nhóm thành một dãy bằng 3!

    Vậy số phần tử của tập hợp A là: n(A) =
3!.4!.5!.3! = 103680

  • Câu 36: Nhận biết

    Hai xạ thủ cùng bắn mỗi người một viên đạn vào bia một cách độc lập với nhau. Xác suất bắn trúng bia của hai xạ thủ lần lượt là \frac{1}{2}\frac{1}{3}. Tính xác suất để có ít nhất một xạ thủ không bắn trúng bia?

    Gọi A là biến cố có ít nhất một xạ thủ không bắn trúng bia

    Khi đó \overline{A} là biến cố cả hai xạ thủ đều bắn trúng bia.

    P\left( \overline{A} ight) =
\frac{1}{2}.\frac{1}{3} = \frac{1}{6} \Rightarrow P(A) = 1 - \frac{1}{6}
= \frac{5}{6}

  • Câu 37: Vận dụng

    Nếu một đa giác đều có 44 đường chéo, thì số cạnh của đa giác là:

    Gọi số cạnh của đa giác đều là n (cạnh)

    => Đa giác đó có n đỉnh tương ứng

    Cứ nối 2 đỉnh của đa giác được một đoạn thẳng (là cạnh hoặc đường chéo)

    Số đoạn thẳng được tạo thành khi nối hai điểm bất kì của đa giác là: C_{n}^2 đoạn thẳng

    Mà đa giác đều có 44 đường chéo nên ta có phương trình

    44 + n = C_n^2 \Rightarrow n = 11

    Vậy đa giác đều có 11 cạnh

  • Câu 38: Vận dụng

    Tuấn làm một bài kiểm tra trắc nghiệm gồm 10 câu hỏi, mỗi câu gồm 4 phương án và chỉ có 1 phương án đúng. Mỗi câu trả lời đúng được 5 điểm và mỗi câu trả lời sai bị trừ 2 điểm. Tuấn chọn ngẫu nghiên đáp án cho 10 câu hỏi. Xác suất để Tú thi được không quá 1 điểm?

    Xác suất trả lời đúng trong một câu là: \frac{1}{4}

    Xác suất trả lời sai trong một câu là: \frac{3}{4}

    Gọi x là số câu Tuấn trả lời đúng.

    Theo đều bài ra ta có Tuấn thi được không quá 1 điểm suy ra

    5x - 2(10 - x) \leq 1 \Leftrightarrow 7x
\leq 21 \Leftrightarrow x \leq 3

    Do đó Tuấn cần trả lời đúng không quá 3 câu

    TH1: Học sinh trả lời đúng 3 câu: P_{1} =
C_{10}^{3}.\left( \frac{1}{4} ight)^{3}.\left( \frac{3}{4}
ight)^{7}

    TH2: Học sinh trả lời đúng 2 câu: P_{2} =
C_{10}^{2}.\left( \frac{1}{4} ight)^{2}.\left( \frac{3}{4}
ight)^{8}

    TH3: Học sinh trả lời đúng 1 câu: P_{3} =
C_{10}^{1}.\left( \frac{1}{4} ight)^{1}.\left( \frac{3}{4}
ight)^{9}

    TH4: Học sinh trả lời không đúng câu nào: P_{4} = \left( \frac{3}{4}
ight)^{10}

    Vậy xác suất cần tìm là P(A) = P_{1} +
P_{2} + P_{3} + P_{4} \approx 0,7759

  • Câu 39: Nhận biết

    Từ các số 1, 3, 5 có thể lập được bao nhiêu số tự nhiên khác nhau có ít hơn 4 chữ số

    Số các số có 1 chữ số là: 3

    Số các số có 2 chữ số là: 32 = 9

    Số các số có 3 chữ số là: 33 = 27

    => Số các số tự nhiên khác nhau có ít hơn 4 chữ số được tạo thành là: 3 + 9 + 27 = 39

  • Câu 40: Thông hiểu

    Gieo một đồng tiền liên tiếp 3 lần. Tính xác suất của biến cố A “có đúng 2 lần xuất hiện mặt sấp”?

    Gieo một đồng tiền liên tiếp 3 lần

    => Số phần tử không gian mẫu là: n(Ω) = 2 . 2 . 2 = 8

    Ta có:

    \begin{matrix}  A = \left\{ {\left( {S;S;N} ight),\left( {S;N;S} ight),\left( {N;S;S} ight)} ight\} \hfill \\   \Rightarrow n\left( A ight) = 3 \hfill \\   \Rightarrow P\left( A ight) = \dfrac{3}{8} \hfill \\ \end{matrix}

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 9 Chân trời sáng tạo Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 4 lượt xem
Sắp xếp theo