Giải bất phương trình
Ta có: .
Giải bất phương trình
Ta có: .
Cho hàm số bậc hai có đỉnh
và đi qua điểm
. Xác định giá trị biểu thức
?
Parabol có đỉnh
(*)
Parabol đi qua điểm suy ra
(**)
Từ (*) và (**) ta có hệ phương trình
Trên bàn có 5 quyển sách Toán khác nhau và 7 quyển sách Hóa khác nhau. Số cách chọn 2 quyển sách gồm đủ 2 loại Toán và Hóa bằng:
Áp dụng quy tắc nhân ta có số cách chọn một quyển Toán và một quyển Hóa là: 5 . 7 = 35 cách chọn.
Trong mặt phẳng tọa độ , cho tọa độ các điểm
. Gọi
sao cho
đạt giá trị nhỏ nhất. Tung độ của điểm D là:
Ta có:
Suy ra giá trị nhỏ nhất của biểu thức bằng
khi và chỉ khi
Suy ra
Vậy tung độ của điểm D thỏa mãn yêu cầu là .
Khoảng cách nhỏ nhất từ điểm đến một điểm bất kì thuộc đường thẳng
bằng:
Tìm tập xác định của hàm số ?
Điều kiện xác định:
.
Vậy tập xác định của hàm số là .
Biết phương trình có một nghiệm có dạng
, trong đó a, b, c là các số nguyên tố. Tính S = a + b + c.
Điều kiện:
Với điều kiện trên, phương trình tương đương
⇔ x2 − 3x + 1 = 0
hoặc
Theo yêu cầu đề bài ta chọn nghiệm .
Vậy a = 3, b = 5, c = 2 nên S = a + b + c = 10.
Có bao nhiêu cách chọn một học sinh từ nhóm gồm 15 học sinh nam và 20 học sinh nữ?
Số cách chọn một học sinh trong nhóm học sinh là: 15 + 20 = 35 cách.
Cho tam thức bậc hai . Tìm tất cả các giá trị thực của tham số m để bất phương trình
vô nghiệm?
Bất phương trình: vô nghiệm khi và chỉ khi
Xét
Với thì (*)
loại giá trị
.
Với thì bất phương trình (*)
bất phương trình vô nghiệm, nhận giá trị
.
Xét
Vậy thì bất phương trình (*) vô nghiệm.
Tìm giá trị của x để hai vectơ và
có giá vuông góc với nhau?
Vì hai vectơ và
có giá vuông góc với nhau nên ta có:
Vậy hai vectơ đã cho có giá vuông góc với nhau khi .
Cho tập hợp , lấy ngẫu nhiên 1 chữ số. Các kết quả thuận lợi cho C “biến cố lấy được chữ số lẻ” là:
Các kết quả thuận lợi cho biến cố lấy được chữ số lẻ là:
Cho parabol (P) có phương trình y = 3x2 − 2x + 4. Tìm trục đối xứng của parabol này.
+ Có a = 3; b = − 2; c = 4.
+ Trục đối xứng của parabol là .
Cho parabol như hình vẽ:
Có bao nhiêu giá trị nguyên của tham số với
để phương trình
có hai nghiệm
phân biệt?
Ta có:
Số nghiệm của phương trình (*) bằng số giao điểm của đồ thị hàm số và
Do đó phương trình (*) có có hai nghiệm phân biệt khi và chỉ khi .
Mặt khác suy ra có 980 giá trị nguyên của tham số m thỏa mãn yêu cầu bài toán.
Xác định điểm không thuộc đồ thị của hàm số ?
Ta thấy các điểm nằm trên đồ thị của hàm số là: ;
;
.
Vậy điểm không thuộc đồ thị hàm số đã cho là: .
Cho số tự nhiên n thỏa mãn . Giá trị của biểu thức
là
Ta có:
Thay n = 12 vào biểu thức ta được:
Cho ba đường thẳng ,
và
với m là tham số. Xác định giá trị của tham số m để ba đường thẳng
đồng quy?
Gọi . Khi đó tọa độ điểm A là nghiệm của hệ phương trình:
Để ba đường thẳng đồng quy thì hay
Vậy m = 2 thì ba đường thẳng đã cho đồng quy.
Biết phương trình có hai nghiệm x1, x2(x1<x2) . Khẳng định nào sau đây là đúng?
Đặt t = x2 − 3x + 3, ta có: .
Do đó điều kiện cho ẩn phụ t là .
Khi đó phương trình trở thành:
⇔
⇔
⇔ t = 1(thỏa mãn) ⇒ x2 − 3x + 3 = 1⇔
.
Đếm số tập con gồm phần tử được lấy ra từ tập
?
Mỗi tập con tập gồm phần tử được lấy ra từ tập
có
phần tử là một tổ hợp chập
của
phần tử.
Vậy số tập con gồm phần tử của
là
tập con.
Trong mặt phẳng tọa độ , cho ba điểm
. Biết rằng
, khi đó tọa độ điểm
là:
Giả sử tọa độ điểm
Ta có:
Vì nên
Viết phương trình đường thẳng đi qua giao điểm hai đường thẳng
và cosin góc giữa
với đường thẳng
một góc bằng
?
Gọi A là giao điểm hai đường thẳng , khi đó tọa độ điểm A là nghiệm của hệ phương trình:
Phương trình đường thẳng có dạng
Vì
Mặt khác
Với
Với
Vậy phương trình đường thẳng là: .
Phương trình tham số của đường thẳng đi qua hai điểm
và
là:
Phương trình tham số của đường thẳng AB đi qua điểm và nhận
làm vectơ chỉ phương.
Vậy phương trình cần tìm là: .
Tập nghiệm của phương trình ?
Ta có:
Vậy tập nghiệm phương trình là:
Điểm nào dưới đây thuộc đường thẳng ?
Thay tọa độ các điểm vào đường thẳng ta thấy điểm thuộc đường thẳng đã cho là
.
Gọi là góc tạo bởi hai đường thẳng
và
. Khi đó độ lớn của
bằng:
Ta có:
Vậy góc tạo bởi hai đường thẳng bằng .
Cho tập hợp . Có bao nhiêu số tự nhiên gồm ba chữ số được lập từ B sao cho chữ số đằng sau luôn lớn hơn chữ số đẳng trước nó?
Gọi số tự nhiên có ba chữ số cần tìm có dạng
TH1: có
số thỏa mãn.
TH2: có
số thỏa mãn.
TH3: có
số thỏa mãn.
TH4: có
số thỏa mãn.
Vậy số các số được tạo thành là: số.
Quan sát đồ thị hàm số sau:
Cho biết hàm số nào tương ứng với đồ thị hàm số đã cho?
Ta có:
Đồ thị cắt trục Oy tại nên ta loại đáp án
và
.
Dễ thấy đồ thị có đỉnh là
Xét hàm số có đỉnh là
.
Vậy hàm số tương ứng với đồ thị là: .
Tìm giá trị tham số m để đường thẳng song song với đường thẳng
?
Để hai đường thẳng đã cho song song với nhau thì
Vậy m = -1 thì hai đường thẳng song song với nhau.
Với giá trị nào của m thì bất phương trình x2 − x + m ≤ 0 vô nghiệm?
Bất phương trình x2 − x + m ≤ 0 vô nghiệm khi và chỉ khi bất phương trình .
Đâu là đường thẳng không có điểm chung với đường thẳng ?
Kí hiệu
(i) Xét đáp án: không cùng phương nên loại.
(ii) Xét đáp án: không cùng phương nên loại.
(iii) Xét đáp án: không cùng phương nên loại.
(iv) Xét đáp án:
(Chọn)
Cho phương trình với
. Mệnh đề nào sau đây là mệnh đề sai?
Mệnh đề sai là: “Điểm thuộc đường thẳng
khi và chỉ khi
.”
Cho đường thẳng có vectơ pháp tuyến là
và đường thẳng
có vectơ pháp tuyến là
. Gọi
là góc tạo bởi hai đường thẳng
. Kết luận nào sau đây đúng?
Góc tạo bởi hai đường thẳng đã cho được xác định bởi công thức .
Một doanh nghiệp tư nhân A chuyên kinh doanh xe gắn máy các loại. Hiện nay doanh nghiệp đang tập trung chiến lược vào kinh doanh xe hon đa Future Fi với chi phí mua vào một chiếc là 27 và bán ra với giá là 31 triệu đồng. Với giá bán này thì số lượng xe mà khách hàng sẽ mua trong một năm là 600 chiếc. Nhằm mục tiêu đẩy mạnh hơn nữa lượng tiêu thụ dòng xe đang ăn khách này, doanh nghiệp dự định giảm giá bán và ước tính rằng nếu giảm 1 triệu đồng mỗi chiếc xe thì số lượng xe bán ra trong một năm là sẽ tăng thêm 200 chiếc. Vậy doanh nghiệp phải định giá bán mới là bao nhiêu để sau khi đã thực hiện giảm giá, lợi nhuận thu được sẽ là cao nhất.
Gọi x đồng là số tiền mà doanh nghiệp A dự định giảm giá; (0≤x≤4).
Khi đó:
Lợi nhuận thu được khi bán một chiếc xe là 31 − x − 27 = 4 − x .
Số xe mà doanh nghiệp sẽ bán được trong một năm là 600 + 200x .
Lợi nhuận mà doanh nghiệp thu được trong một năm là
f(x) = (4−x)(600+200x) = − 200x2 + 200x + 2400.
Xét hàm số f(x) = − 200x2 + 200x + 2400 trên đoạn [0; 4] có bảng biến thiên
Vậy .
Vậy giá mới của chiếc xe là 30, 5 triệu đồng thì lợi nhuận thu được là cao nhất.
Cho hai đường thẳng gồm
điểm phân biệt và
gồm
điểm phân biệt. Biết rằng
. Số tam giác có ba đỉnh được tạo thành từ các điểm trên hai đường thẳng đã cho?
Một tam giác được hình thành bởi ba điểm không thẳng hàng.
TH1: 1 đỉnh thuộc đường thẳng (d) và 2 đỉnh thuộc đường thẳng (d’)
Số tam giác được tạo thành là: (tam giác)
TH2: 2 đỉnh thuộc đường thẳng (d) và 1 đỉnh thuộc đường thẳng (d’)
Số tam giác được tạo thành là: (tam giác)
Vậy số tam giác được tạo thành là .
Nhận xét nào đúng về vị trí tương đối của hai đường thẳng và
?
Ta có:
Vectơ pháp tuyến của đường thẳng là:
Vectơ pháp tuyến của đường thẳng là:
Suy ra và
không cùng phương và
Suy ra hai đường thẳng cắt nhau và không vuông góc.
Số giá trị nguyên của x để tam thức f(x) = 2x2 − 7x − 9 nhận giá trị âm là
Dựa vào bảng xét dấu, .
Mà x ∈ ℤ⇒ x ∈ {0;1;2;3;4} (5 giá trị).
Tập nghiệm của bất phương trình là:
Tam thức có hai nghiệm phân biệt
a = 2 > 0 nên f(x) dương với mọi x thuộc hai nửa khoảng
Vậy tập nghiệm của bất phương trình là:
Số nghiệm của phương trình là bao nhiêu?
Điều kiện: .
.
Đặt ,
.
.
Vậy phương trình đã cho có hai nghiệm.
Hàm số y = 2x2 + 4x − 1
Hàm số y = ax2 + bx + c với a > 0 đồng biến trên khoảng , nghịch biến trên khoảng
.
Áp dụng: Ta có . Do đó hàm số nghịch biến trên khoảng (−∞;−1) và đồng biến trên khoảng (−1;+∞).
Tập xác định của hàm số là
Hàm số xác định khi .
Vậy tập xác định của hàm số là D = (1; 3].
Một đường thẳng có vectơ chỉ phương là . Vectơ nào sau đây là vectơ pháp tuyến của
?
Ta có:
Đường thẳng có vectơ chỉ phương
thì sẽ có một vectơ pháp tuyến là:
Áp dụng vào bài toán ta được:
Vectơ pháp tuyến của là:
.