Cho hình lập phương . Hãy phân tích vectơ
theo các vectơ
?
Hình vẽ minh họa
Theo quy tắc hình bình hành ta có:
Mời các bạn học cùng thử sức với Đề thi giữa HK2 môn Toán lớp 12 nha!
Cho hình lập phương . Hãy phân tích vectơ
theo các vectơ
?
Hình vẽ minh họa
Theo quy tắc hình bình hành ta có:
Trong không gian cho
. Viết phương trình mặt phẳng
?
Phương trình mặt phẳng là
Tính tích phân ?
Ta có:
.
Trong không gian , cho mặt phẳng
, mặt phẳng
chứa trục
và đi qua điểm
. Tìm tham số m để hai mặt phẳng
và
vuông góc với nhau?
Ta có
Mặt phẳng chứa trục
và đi qua điểm
⇒ (Q) có vectơ pháp tuyến
Mặt phẳng (P) có véc-tơ pháp tuyến
Để hai mặt phẳng và
vuông góc với nhau thì
Diện tích hình phẳng được gạch chéo trong hình bên bằng
Dựa và hình vẽ ta có diện tích hình phẳng được gạch chéo trong hình bên là:
Trong không gian với hệ trục tọa độ , cho điểm
. Mặt phẳng
qua
cắt chiều dương của các trục
lần lượt tại
thỏa mãn
. Tính giá trị nhỏ nhất của thể tích khối chóp
?
Giả sử với
.
Khi đó mặt phẳng có dạng:
.
Vì (P) đi qua M nên
Vì
Thể tích khối chóp là:
Ta có:
khi
.
Trong không gian với hệ trục tọa độ , khoảng cách từ
đến mặt phẳng
là
Khoảng cách từ điểm đến mặt phẳng
là:
Tìm nguyên hàm của hàm của hàm số
Một vật chuyển động chậm dần đều với vận tốc . Hỏi trong
trước khi dừng hẳn, vật di chuyển động được bao nhiêu mét?
Khi dừng hẳn
Khi đó trong 5s trước khi dừng hẳn vật di chuyển được:
.
Cho F(x) là một nguyên hàm của hàm số . Hàm số
có bao nhiêu điểm cực trị?
=> có 5 nghiệm đơn
=> Hàm số có 5 điểm cực trị
Cho hàm số liên tục trên
thỏa mãn
. Giá trị của biểu thức
bằng
Ta có:
Trong không gian , cho tam giác
với tọa độ các điểm
.
Xác định tính đúng sai của các khẳng định sau:
a) Tọa độ trọng tâm G của tam giác là . Đúng||Sai
b) . Sai||Đúng
c) Tam giác là tam giác cân. Đúng||Sai
d) Nếu là hình bình hành thì tọa độ điểm D là
. Sai||Đúng
Trong không gian , cho tam giác
với tọa độ các điểm
.
Xác định tính đúng sai của các khẳng định sau:
a) Tọa độ trọng tâm G của tam giác là . Đúng||Sai
b) . Sai||Đúng
c) Tam giác là tam giác cân. Đúng||Sai
d) Nếu là hình bình hành thì tọa độ điểm D là
. Sai||Đúng
a) Đúng.
Trọng tâm tam giác có tọa độ là:
b) Sai. Vì
c) Đúng. Do nên tam giác ABC cân tại A.
d) Sai. Gọi , vì ABCD là hình bình hành nên
Xét tính đúng sai của mỗi khẳng định. Trong không gian cho ba điểm
và hai vecto
a) Tích vô hướng của hai vecto bằng
Đúng||Sai
b) Trung điểm của đoạn có tọa độ là
. Sai||Đúng
c) Tọa độ của vecto là
. Sai||Đúng
d) Hình chiếu vuông góc của trọng tâm tam giác lên mặt phẳng
là
Đúng||Sai
Xét tính đúng sai của mỗi khẳng định. Trong không gian cho ba điểm
và hai vecto
a) Tích vô hướng của hai vecto bằng
Đúng||Sai
b) Trung điểm của đoạn có tọa độ là
. Sai||Đúng
c) Tọa độ của vecto là
. Sai||Đúng
d) Hình chiếu vuông góc của trọng tâm tam giác lên mặt phẳng
là
Đúng||Sai
a) đúng, b) sai, c) sai, d) đúng.
a) Ta có
b) Ta có trung điểm của đoạncó tọa độ là
c) Ta có
Suy ra
d) Ta có Suy ra hình chiếu vuông góc của trọng tâm tam giác
lên mặt phẳng
là
.
Cho hàm số liên tục trên đoạn
. Gọi
là hình phẳng giới hạn bởi đồ thị hàm số
, trục hoành và hai đường thẳng
. Thể tích khối tròn xoay tạo thành khi quay
quanh trục hoành được tính theo công thức:
Thể tích của khối tròn xoay cần tính là:
Trong không gian , tính khoảng cách từ điểm
đến mặt phẳng
?
Khoảng cách từ điểm đến mặt phẳng
là:
Cho hình trụ có hai đáy là hai hình tròn (O) và (O’), chiều cao và bán kính đáy R. Một hình nón có đỉnh là O’ và đáy là hình tròn (O;R). Tỉ số diện tích xung quanh của hình trụ và hình nón bằng:
Diện tích xung quanh của hình trụ:
(đvdt).
Kẻ đường sinh O’M của hình nón, suy ra
.
Diện tích xung quanh của hình nón: (đvdt).
Vậy .
Hàm số là nguyên hàm của
. Hỏi hàm số
có bao nhiêu điểm cực trị?
TXĐ:
Ta có:
Phương trình có 1 nghiệm đơn
và một nghiệm kép
nên hàm số
có 1 điểm cực trị.
Cho hàm số có đạo hàm dương và liên tục trên
thỏa mãn
và
. Tích phân
là:
Áp dụng BĐT Cauchy-Schwarz:
Dấu "=" xảy ra khi chỉ khi
Tìm nguyên hàm của hàm số
Ta có:
Cho hàm số liên tục trên đoạn
. Gọi
là hình phẳng giới hạn bởi đồ thị
, trục hoành, hai đường thẳng
(như hình vẽ bên).
Giả sử là diện tích của hình phẳng
. Chọn công thức đúng?
Dựa vào đồ thị hình vẽ ta thấy:
+ Đồ thị cắt trục hoành tại điểm
+ Trên đoạn , đồ thị ở phía dưới trục hoành nên
+ Trên đoạn , đồ thị ở phía trên trục hoành nên
Do đó:
Cho hàm số có đạo hàm
liên tục trên
;
. Tính giá trị
?
Ta có:
Tìm họ các nguyên hàm của hàm số ?
Ta có:
Cho với
là các số hữu tỉ. Giá trị của biểu thức
bằng:
Ta có:
Suy ra
Cho hình lập phương . Tính
.
Hình vẽ minh họa
Ta có:
Một hình nón có đường cao bằng 9 cm nội tiếp trong một hình cầu bán kính bằng 5 cm. Tỉ số giữa thể tích khối nón và khối cầu là:
Hình vẽ kết hợp với giả thiết, ta có
Suy ra và
Thể tích khối nón (đvtt).
Thể tích khối cầu (đvtt).
Suy ra
Trong không gian , điểm đối xứng của điểm
qua trục
có tọa độ là
Gọi là điểm đối xứng của
qua trục
.
Hình chiếu vuông góc của lên trục
là
Khi đó là trung điểm của
. Do đó tọa độ của
là
Biết rằng hàm số có
và đồ thị hàm số
cắt trục tung tại điểm có tung độ bằng
. Hàm số
là:
Theo lí thuyết
Ta có:
Khi đó có dạng
Theo đề ta có:
Vậy hàm số là .
Hàm số có một nguyên hàm là
. Tìm nguyên hàm của hàm số
?
Ta có:
Tính diện tích của hình phẳng giới hạn bởi đồ thị hàm số
trục hoành và hai đường thẳng
.
Diện tích hình phẳng được tính như sau:
.
Tìm nguyên hàm của hàm số .
Ta có
Cho hàm số có đạo hàm với mọi
và
. Giá trị của
bằng:
Ta có:
Trong không gian , cho điểm
và mặt phẳng
. Mặt phẳng
đi qua
và song song với mặt phẳng
có phương trình là:
Do mặt phẳng (Q) song song với mặt phẳng (P) nên có vectơ pháp tuyến là
Phương trình mặt phẳng (Q) là:
Một vật chuyển động với vận tốc . Tính quãng đường vật đó đi được trong
giây đầu (làm tròn kết quả đến chữ số thập phân thứ hai).?
Quãng đường vật đó đi được trong 4 giây đầu là:
.
Một tấm nhôm hình chữ nhật có hai kích thước là a và 2a (a là độ dài có sẵn). Người ta cuốn tấm nhôm đó thành một hình trụ. Nếu hình trụ được tạo thành có chu vi đáy bằng 2a thì thể tích của nó bằng:
Gọi bán kính đáy là R.
Hình trụ có chu vi đáy bằng 2a nên ta có .
Suy ra hình trụ này có đường cao .
Vậy thể tích khối trụ (đvtt).
Cho hàm số là một nguyên hàm của
, biết rằng
. Khi đó giá trị
là:
Ta có:
Mà . Vậy với
thì
Vậy .
Cho ba vectơ . Điều kiện nào sau đây không kết luận được ba vectơ đó đồng phẳng?
Hai vectơ còn lại có thể không cùng phương nên ba vectơ có thể không đồng phẳng.
Cho là một nguyên hàm của hàm số
trên khoảng
thỏa mãn
. Giá trị của biểu thức
bằng:
Ta có:
Suy ra mà
.Hay
Ta có:
Cho F(x) là một nguyên hàm của hàm số thỏa mãn
. Tìm F(x)
Mặt khác
=>
Biết rằng . Xác định
?
Ta có:
Do đó:
Hàm số có đạo hàm liên tục trên tập số thực và
;
. Hàm số
là:
Ta có:
Theo bài ra ta có:
Vậy .