Đề thi giữa học kì 2 Toán 12 - Đề 2

Mời các bạn học cùng thử sức với Đề thi giữa HK2 môn Toán lớp 12 nha!

  • Thời gian làm: 90 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Xác định tọa độ trọng tâm G của tam giác ABC, biết rằng A(1;3;4),B(2; - 1;0),C(3;1;2)?

    Tọa độ trọng tâm G của tam giác được xác định như sau:

    \left\{ \begin{matrix}x_{G} = \dfrac{x_{A} + x_{B} + x_{C}}{3} = \dfrac{1 + 2 + 3}{3} = 2 \\y_{G} = \dfrac{y_{A} + y_{B} + y_{C}}{3} = \dfrac{3 - 1 + 1}{3} = 1 \\z_{G} = \dfrac{z_{A} + z_{B} + z_{C}}{3} = \dfrac{4 + 0 + 2}{3} = 2 \\\end{matrix} ight.\  \Rightarrow G(2;1;2)

  • Câu 2: Nhận biết

    Trong không gian Oxyz, tính khoảng cách từ điểm M(1;2; - 3) đến mặt phẳng (P):x + 2y - 2z - 2 =
0?

    Khoảng cách từ điểm M đến mặt phẳng (P):x + 2y - 2z - 2 = 0 là:

    d\left( M;(P) ight) = \frac{\left| 1 +
2.2 - 2( - 3) - 2 ight|}{\sqrt{1^{2} + 2^{2} + ( - 2)^{2}}} =
3

  • Câu 3: Thông hiểu

    Cho một hình trụ có bán kính đáy bằng R và có chiều cao bằng R\sqrt 3. Hai điểm A, B lần lượt nằm trên hai đường tròn đáy sao cho góc giữa AB và trục của hình trụ bằng 30^0. Khoảng cách giữa AB và trục của hình trụ bằng:

    Tính khoảng cách

    Từ hình vẽ kết hợp với giả thiết, ta có OA = O'B = R.

    Gọi AA’ là đường sinh của hình trụ thì O'A' = R,{m{ }}AA' = R\sqrt 3\widehat {BAA'} = {30^0}.

    OO'\parallel \left( {ABA'} ight) nên d\left[ {OO',\left( {AB} ight)} ight] = d\left[ {OO',\left( {ABA'} ight)} ight] = d\left[ {O',\left( {ABA'} ight)} ight].

    Gọi H là trung điểm A’B, suy ra \left. \begin{array}{l}O'H \bot A'B\\O'H \bot AA'\end{array} ight\} \Rightarrow O'H \bot \left( {ABA'} ight)

    nên O'H = \frac{{R\sqrt 3 }}{2}h.

    Tam giác ABA’ vuông tại A’ nên BA' = AA'\tan {30^0} = R

    Suy ra tam giác A’BO đều có cạnh bằng R nên O'H = \frac{{R\sqrt 3 }}{2}.h

  • Câu 4: Thông hiểu

    Trong không gian Oxyz, cho điểm A(2; - 1; - 3) và mặt phẳng (P):3x - 2y + 4z - 5 = 0. Mặt phẳng (Q) đi qua A và song song với mặt phẳng (P) có phương trình là:

    Do mặt phẳng (Q) song song với mặt phẳng (P) nên có vectơ pháp tuyến là \overrightarrow{n} = (3; -
2;4)

    Phương trình mặt phẳng (Q) là:

    3(x - 2) - 2(y - 1) + 4(z - 3) =
0

    \Leftrightarrow 3x - 2y + 4z + 4 =
0

  • Câu 5: Nhận biết

    Tích phân I = \int\limits_{ - 1}^1 {\left( {{x^3} + 3x + 2} ight)dx} có giá trị là:

     Tích phân I = \int\limits_{ - 1}^1 {\left( {{x^3} + 3x + 2} ight)dx} có giá trị là:

    I = \int\limits_{ - 1}^1 {\left( {{x^3} + 3x + 2} ight)dx}  = \left. {\left( {\frac{1}{4}{x^4} + \frac{3}{2}{x^2} + 2x} ight)} ight|_{ - 1}^1 = 4

    Ngoài ra ta có thể sử dụng máy tính cầm tay nhập trực tiếp biểu thức và tính ra kết quả.

  • Câu 6: Nhận biết

    Mặt phẳng đi qua trục hình trụ, cắt hình trụ theo thiết diện là hình vuông cạnh có cạnh bằng 2R. Diện tích toàn phần của khối trụ bằng:

    Do thiết diện đi qua trục hình trụ nên ta có h = 2R.

    Diện tích toàn phần là: {S_{tp}} = 2\pi R\left( {R + h} ight) = 6\pi {R^2} (đvdt).

  • Câu 7: Nhận biết

    Xác định giá trị của tham số a thỏa mãn \int_{0}^{a}{\left( 3x^{2} + 2
ight)dx} = a^{3} + 2?

    Ta có: \int_{0}^{a}{\left( 3x^{2} + 2
ight)dx} = \left. \ \left( x^{3} + 2x ight) ight|_{0}^{a} = a^{3}
+ 2a

    \Rightarrow \int_{0}^{a}{\left( 3x^{2} +
2 ight)dx} = a^{3} + 2 \Leftrightarrow a^{3} + 2a = a^{3} + 2
\Leftrightarrow a = 1

    Vậy đáp án a = 1.

  • Câu 8: Vận dụng cao

    Trong không gian với hệ trục tọa độ Oxyz, cho điểm M(1;1;1). Mặt phẳng (P) qua M cắt chiều dương của các trục Ox,Oy,Oz lần lượt tại A;B;C thỏa mãn OA = 2OB. Tính giá trị nhỏ nhất của thể tích khối chóp OABC?

    Giả sử A(a;0;0),B(0;b;0),C(0;0;c) với a,b,c > 0.

    Khi đó mặt phẳng (P) có dạng: \frac{x}{a} + \frac{y}{b} + \frac{z}{c} =
1.

    Vì (P) đi qua M nên \frac{1}{a} +
\frac{1}{b} + \frac{1}{c} = 1

    OA = 2OB \Rightarrow a = 2b
\Rightarrow \frac{3}{2b} + \frac{1}{c} = 1

    Thể tích khối chóp OABC là: V = \frac{1}{6}abc =
\frac{1}{3}b^{2}c

    Ta có: 1 = \frac{3}{2b} + \frac{1}{c} =
\frac{3}{4b} + \frac{3}{4b} + \frac{1}{c} \geq
3\sqrt[3]{\frac{9}{16b^{2}c}}

    \Leftrightarrow
3\sqrt[3]{\frac{9}{16b^{2}c}} \leq \frac{1}{3} \Leftrightarrow
\frac{16b^{2}c}{9} \geq 27 \Leftrightarrow \frac{b^{2}c}{3} \geq
\frac{81}{16}

    \Rightarrow V_{OABC}\min =
\frac{81}{16} khi \dfrac{3}{4b} =\dfrac{1}{c} = \dfrac{1}{3} \Rightarrow \left\{ \begin{matrix}a = \dfrac{9}{2} \\b = \dfrac{9}{4} \\c = 3 \\\end{matrix} ight..

  • Câu 9: Nhận biết

    Cạnh bên của một hình nón bằng 2a. Thiết diện qua trục của nó là một tam giác cân có góc ở đỉnh bằng 120^0. Diện tích toàn phần của hình nón là:

     Diện tích toàn phần

    Gọi S là đỉnh, O là tâm của đáy, thiết diện qua trục là SAB.

    Theo giả thiết, ta có SA = 2a\widehat {ASO} = 60^\circ.

    Trong tam giác SAO vuông tại O, ta có

    OA = SA.\sin 60^\circ  = a\sqrt 3

    Vậy diện tích toàn phần:

    {S_{tp}} = \pi R\ell  + \pi {R^2} = \pi .OA.SA + \pi {\left( {OA} ight)^2} = \pi {a^2}\left( {3 + 2\sqrt 3 } ight) (đvdt).

  • Câu 10: Nhận biết

    Trong không gian Oxyz, cho hai vectơ \overrightarrow{a} =
(1;2;1);\overrightarrow{b} = ( - 1;3;0). Vectơ \overrightarrow{c} = 2\overrightarrow{a} +
\overrightarrow{b} có tọa độ là:

    Ta có: 2\overrightarrow{a} =
(2;4;2). Khi đó \overrightarrow{c}
= 2\overrightarrow{a} + \overrightarrow{b} = \left( 2 + ( - 1);4 + 3;2 +
0 ight) = (1;7;2)

    Vậy \overrightarrow{c} =
(1;7;2)

  • Câu 11: Nhận biết

    Trong không gian với hệ trục tọa độ Oxyz, khoảng cách từ A( - 2;1; - 6) đến mặt phẳng (Oxy)

    Khoảng cách từ điểm A đến mặt phẳng (Oxy):z = 0 là:

    d\left( A;(Oxy) ight) = \frac{| -
6|}{\sqrt{1}} = 6

  • Câu 12: Thông hiểu

    Trong không gian Oxyz, cho mặt phẳng (P):x - my + z - 1 = 0;(m \in
R), mặt phẳng (Q) chứa trục Ox và đi qua điểm A(1; - 3;1). Tìm tham số m để hai mặt phẳng (P)(Q) vuông góc với nhau?

    Ta có \left\{ \begin{matrix}
\overrightarrow{OA} = (1; - 3;1) \\
\overrightarrow{i} = (1;0;0) \\
\end{matrix} ight.

    Mặt phẳng (Q) chứa trục Ox và đi qua điểm A(1; - 3;1)⇒ (Q) có vectơ pháp tuyến \overrightarrow{n_{(Q)}} = \left\lbrack
\overrightarrow{OA};\overrightarrow{i} ightbrack =
(0;1;3)

    Mặt phẳng (P) có véc-tơ pháp tuyến \overrightarrow{n_{(P)}} = (1; - m;1)

    Để hai mặt phẳng (P)(Q) vuông góc với nhau thì

    \overrightarrow{n_{(P)}}.\overrightarrow{n_{(Q)}}
= 0 \Leftrightarrow 0.1 + 1.( - m) + 1.3 = 0 \Leftrightarrow m =
3

  • Câu 13: Vận dụng cao

    Cho hàm số y = f(x) có đạo hàm dương và liên tục trên \lbrack
0;1brack thỏa mãn f(0) =
15\int_{0}^{1}{\left\{
f'(x)\left\lbrack f(x) ightbrack^{2} + \frac{1}{25} ight\} dx}
\leq 2\int_{0}^{1}{\left\lbrack \sqrt{f'(x)}.f(x) ightbrack
dx}. Tích phân \int_{0}^{1}{\left\lbrack f(x)
ightbrack^{3}dx} là:

    5\int_{0}^{1}\mspace{2mu}\left\lbrack
f^{'}(x)\lbrack f(x)brack^{2} + \frac{1}{25} ightbrack dx
\leqslant
2\int_{0}^{1}\mspace{2mu}\sqrt{f^{'}(x)}f(x)dx

    \Leftrightarrow5\int_{0}^{1}\mspace{2mu} f^{'}(x)\lbrack f(x)brack^{2}dx+ \frac{1}{5} \leqslant2\int_{0}^{1}\mspace{2mu}\sqrt{f^{'}(x)}f(x)dx

    Áp dụng BĐT Cauchy-Schwarz:

    \Rightarrow \left(\int_{0}^{1}\mspace{2mu}\mspace{2mu}\sqrt{f^{'}(x)}f(x)dxight)^{2} \leqslant \int_{0}^{1}\mspace{2mu}\mspace{2mu}dx\cdot \int_{0}^{1}\mspace{2mu}\mspace{2mu} f^{'}(x)\lbrack f(x)brack^{2}dx

    \Rightarrow 5\left(\int_{0}^{1}\mspace{2mu}\mspace{2mu}\sqrt{f^{'}(x)}f(x)dxight)^{2} + \frac{1}{5} \leqslant2\int_{0}^{2}\mspace{2mu}\mspace{2mu}\sqrt{f^{'}(x)}f(x)dx

    \Leftrightarrow 5\left(
\int_{0}^{1}\mspace{2mu}\mspace{2mu}\sqrt{f^{'}(x)}f(x)dx -
\frac{1}{5} ight)^{2} \leqslant 0 \Leftrightarrow
\int_{0}^{1}\mspace{2mu}\mspace{2mu}\sqrt{f^{'}(x)}f(x)dx =
\frac{1}{5}.

    Dấu "=" xảy ra khi chỉ khi \left\{\begin{matrix}\int_{0}^{1}\mspace{2mu}\mspace{2mu}\sqrt{f^{'}(x)}f(x)dx =\dfrac{1}{5} \Rightarrow k = \dfrac{1}{5} \\\sqrt{f^{'}(x)}f(x) = k \\\end{matrix} ight.

    \Rightarrow \int_{}^{}\
f^{'}(x)f^{2}(x)dx = \int_{}^{}\ \frac{1}{25}dx = \frac{1}{25}x +
C

    \Rightarrow \frac{\left\lbrack f(x)
ightbrack^{3}}{3} = \frac{1}{25}x + C \Leftrightarrow f(x) =
\sqrt[3]{\frac{3}{25}x + 3C}

    f(0) = 1 \Rightarrow 3C = 1 \Rightarrow
f(x) = \sqrt[3]{\frac{3}{25}x + 1}

    \Rightarrow \int_{0}^{1}{\left\lbrack
f(x) ightbrack^{3}dx} = \int_{0}^{1}{\left( \frac{3}{25}x + 1
ight)dx} = \frac{53}{50}

  • Câu 14: Nhận biết

    Hàm số f(x) có đạo hàm liên tục trên tập số thực và f'(x) = 2e^{2x} +
1;\forall x; f(0) = 2. Hàm số f(x) là:

    Ta có: \int_{}^{}{f'(x)dx} =
\int_{}^{}{\left( 2e^{2x} + 1 ight)dx} = e^{2x} + x + C

    \Rightarrow f(x) = e^{2x} + x +
C

    Theo bài ra ta có: f(0) = 2 \Rightarrow 1
+ C = 2 \Rightarrow C = 1

    Vậy f(x) = e^{2x} + x + 1.

  • Câu 15: Thông hiểu

    Biết rằng \int_{}^{}{\frac{4x + 11}{x^{2}
+ 5x + 6}dx} = a\ln|x + 2| + b\ln|x + 3| + C. Tính giá trị biểu thức T = a^{2} + ab + b^{2}?

    Ta có: \int_{}^{}{\frac{4x + 11}{x^{2} +
5x + 6}dx} = \frac{A}{x + 2} + \frac{B}{x + 3}

    = \frac{A(x + 2) + B(x + 3)}{(x + 2)(x +
3)} = \frac{(A + B)x + (3A + 2B)}{(x + 2)(x + 3)}

    \Rightarrow \left\{ \begin{matrix}
A + B = 4 \\
3A + 2B = 11 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
A = 3 \\
B = 1 \\
\end{matrix} ight.

    Khi đó \int_{}^{}{\frac{4x + 11}{x^{2} +
5x + 6}dx} = \int_{}^{}{\left( \frac{3}{x + 2} + \frac{1}{x + 3}
ight)dx}

    = 3ln|x + 2| + \ln|x + 3| +
C

    Suy ra a = 3;b = 1 \Rightarrow T =
13

  • Câu 16: Nhận biết

    Tìm họ nguyên hàm của hàm số y = f\left( x ight) = \frac{1}{{2x + 1}}

     \int {\frac{1}{{2x + 1}}dx}  = \frac{1}{2}\ln \left| {2x + 1} ight| + C

  • Câu 17: Thông hiểu

    Cắt một vật thể bởi hai mặt phẳng vuông góc với trục Ox tại x =
1x = 3. Một mặt phẳng tùy ý vuông góc với trục Ox tại điểm có hoành độ x (1 \leq x \leq 3) cắt vật thể đó theo thiết diện là một hình chữ nhật có độ dài hai cạnh là 3x3x^{2}
- 2. Tính thể tích của phần vật thể giới hạn bởi hai mặt phẳng trên

    Diện tích thiết diện là: S(x) = 3x.\left(
3x^{2} - 2 ight) = 9x^{3} - 6x

    \Rightarrow Thể tích vật thể là: V = \int_{1}^{3}{\left( 9x^{3} - 6x
ight)dx = 156}

  • Câu 18: Nhận biết

    Tìm họ nguyên hàm của hàm số f(x) = x -\sin2x?

    Ta có: \int_{}^{}{f(x)}dx = \int_{}^{}{(x- \sin2x)dx} = \frac{x^{2}}{2} + \frac{1}{2}\cos2x + C

  • Câu 19: Vận dụng

    Cho đường tròn \left( C ight):{x^2} + {y^2} = 8 và parabol \left( P ight):{y^2} = 2x. \left( P ight) cắt \left( C ight) thành hai phần. Tìm tỉ số diện tích của hai phần đó.

    Hoành độ giao điểm của (P) và (C) là: 2x = 8 - {x^2} \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = 2} \\   {x =  - 4\left( L ight)} \end{array}} ight.

    Xét giao điểm thuộc góc phần tư thứ nhất, với x = 2 \Rightarrow y = 2

    Gọi S2 là phần có diện tích nhỏ hơn, S1 là phần còn lại

    Ta có:

    \begin{matrix}  {S_2} = 2\int\limits_0^2 {\left[ {\sqrt {8 - {y^2}}  - \dfrac{{{y^2}}}{2}} ight]} dy \hfill \\   = 2\int\limits_0^2 {\sqrt {8 - {y^2}} } dy - \int\limits_0^2 {{y^2}} dy \hfill \\   = 2I - \left. {\dfrac{{{y^3}}}{3}} ight|_0^2 = 2I - \dfrac{8}{3} \hfill \\ \end{matrix}

    Đặt y = 2\sqrt 2 \sin t \Rightarrow dy = 2\sqrt 2 \cos tdt

    \begin{matrix}  I = \int_0^2 {\sqrt {8 - {y^2}} } dy = \int_0^{\frac{\pi }{4}} {\sqrt {8 - 8{{\sin }^2}t} } .2\sqrt 2 \cos tdt \hfill \\   = 8\int_0^{\frac{\pi }{4}} {\sqrt {1 - {{\sin }^2}t} } .\cos tdt = 8\int_0^{\frac{\pi }{4}} {{{\cos }^2}} tdt \hfill \\   = 4\int_0^{\frac{\pi }{4}} {(1 + \cos 2t)} dt = \left. {4\left[ {t + \frac{1}{2}\sin 2t} ight]} ight|_0^{\frac{\pi }{4}} = \pi  + 2 \hfill \\ \end{matrix}

    Khi đó {S_2} = 2\pi  + \frac{4}{3}

    Diện tích hình tròn {S_2} = \pi {\left( {2\sqrt 2 } ight)^2} = 8\pi

    \begin{matrix}  {S_1} = 8\pi  - \left( {2\pi  + \dfrac{4}{3}} ight) = 6\pi  - \dfrac{4}{3} \hfill \\   \Rightarrow \dfrac{{{S_1}}}{{{S_2}}} = \dfrac{{9\pi  - 2}}{{3\pi  + 2}} \hfill \\ \end{matrix}

  • Câu 20: Thông hiểu

    Một người có mảnh đất hình tròn có bán kính 5m. Người này tính trồng cây trên mảnh đất đó, biết mỗi mét vuông trồng cây thu hoạch được 100 nghìn đồng. Tuy nhiên, cần có khoảng trống để dựng chòi và đồ dùng nên người này căng sợi dây 6m vào hai đầu mút dây nằm trên đường tròn xung quanh mảnh đất. Hỏi người này sau khi thu hoạch thu được bao nhiêu tiền? (Tính theo đơn vị nghìn đồng và bỏ số thập phân).

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Một người có mảnh đất hình tròn có bán kính 5m. Người này tính trồng cây trên mảnh đất đó, biết mỗi mét vuông trồng cây thu hoạch được 100 nghìn đồng. Tuy nhiên, cần có khoảng trống để dựng chòi và đồ dùng nên người này căng sợi dây 6m vào hai đầu mút dây nằm trên đường tròn xung quanh mảnh đất. Hỏi người này sau khi thu hoạch thu được bao nhiêu tiền? (Tính theo đơn vị nghìn đồng và bỏ số thập phân).

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 21: Vận dụng

    Cho tứ giác ABCD có A\left( {0,1, - 1} ight);\,\,\,\,B\left( {1,1,2} ight);\,\,C\left( {1, - 1,0} ight);\,\,\,\left( {0,0,1} ight). Viết phương trình tổng quát của mặt phẳng (Q) song song với mặt phẳng (BCD) và chia tứ diện thành hai khối AMNF và MNFBCD có tỉ số thể tích bằng \frac{1}{27} .

    Tỷ số thể tích hai khối AMNE và ABCD: {\left( {\frac{{AM}}{{AB}}} ight)^3} = \frac{1}{{27}}

    \Rightarrow \frac{{AM}}{{AB}} = \frac{1}{3} \Rightarrow M chia cạnh BA theo tỷ số -2

    \Rightarrow E\left\{ \begin{array}{l}x=\dfrac{{1 + 2.0}}{3} = \dfrac{1}{3}\\y = \dfrac{{1 + 2.1}}{3} = 1\\z = \dfrac{{2 + 2\left( { - 1} ight)}}{3} = 0\end{array} ight.;\,\,

    \overrightarrow {BC}  =  - 2\left( {0,1,1} ight);\,\,\overrightarrow {BD}  =  - \left( {1,1,1} ight)

    Vecto pháp tuyến của \left( Q ight):\overrightarrow n  = \left( {0,1, - 1} ight)

    \begin{array}{l} \Rightarrow M \in \left( Q ight) \Rightarrow \left( Q ight):\left( {x - \frac{1}{3}} ight)0 + \left( {y - 1} ight)1 + \left( {z - 0} ight)\left( { - 1} ight) = 0\\ \Rightarrow \left( P ight):y - z - 1 = 0\end{array}

  • Câu 22: Thông hiểu

    Cho hình lập phương ABCD.A_{1}B_{1}C_{1}D_{1}. Tính \overrightarrow{AC_{1}}.\overrightarrow{BD}.

    Hình vẽ minh họa

    Ta có: \overrightarrow{AC_{1}}.\overrightarrow{BD} =
\left( \overrightarrow{AA_{1}} + \overrightarrow{AC} ight)\left(
\overrightarrow{AD} - \overrightarrow{AB} ight)

    =
\overrightarrow{AC}.\overrightarrow{AD} -
\overrightarrow{AC}.\overrightarrow{AB} =
\overrightarrow{AC}.\overrightarrow{BD} = 0

    \Rightarrow
\overrightarrow{AC_{1}}.\overrightarrow{BD} = 0

  • Câu 23: Thông hiểu

    Diện tích hình phẳng giới hạn bởi các đường y = \frac{\sqrt{1 + \ln x}}{x};y = 0;x = 1;x =
eS = a\sqrt{2} + b. Tính giá trị a^{2} + b^{2}?

    Diện tích hình phẳng cần tìm là:

    S = \int_{1}^{e}{\left| \frac{\sqrt{1 +
\ln x}}{x} ight|dx} = \int_{1}^{e}{\frac{\sqrt{1 + \ln
x}}{x}dx}

    Đặt \sqrt{1 + \ln x} = t \Rightarrow 1 +
\ln x = t^{2} \Rightarrow \frac{dx}{x} = 2tdt

    Đổi cận \left\{ \begin{matrix}
x = 1 \Rightarrow t = 1 \\
x = e \Rightarrow t = \sqrt{2} \\
\end{matrix} ight.. Khi đó:

    S = \int_{1}^{\sqrt{2}}{2t^{2}dt} =
\frac{4}{3}.\sqrt{2} - \frac{2}{3} hay a = \frac{4}{3};b = \frac{2}{3}

    \Rightarrow a^{2} + b^{2} =
\frac{20}{9}

  • Câu 24: Thông hiểu

    Cho F(x) là một nguyên hàm của hàm số f\left( x ight) = {e^x} + 2x thỏa mãn F\left( 0 ight) = \frac{3}{2}. Tìm F(x).

     F\left( x ight) = \int {f\left( x ight)dx = \int {\left( {{e^x} + 2x} ight)dx = {e^x} + {x^2} + C} }

    Theo bài ra ta có:

    F\left( 0 ight) = \frac{3}{2} \Rightarrow {e^x} + {x^2} + C = \frac{3}{2} \Rightarrow C = \frac{1}{2}

    => F\left( x ight) = {e^x} + {x^2} + \frac{1}{2}

  • Câu 25: Vận dụng cao

    Cho F(x) là một nguyên hàm của hàm số f\left( x ight) = {e^{{x^2}}}\left( {{x^3} - 4x} ight). Hàm số F\left( {{x^2} + x} ight) có bao nhiêu điểm cực trị?

     \begin{matrix}  \left[ {F\left( {{x^2} + x} ight)} ight]\prime    \hfill \\   = \left( {2x + 1} ight)f\left( {{x^2} + x} ight) \hfill \\   = \left( {2x + 1} ight){e^{{{\left[ {\left( {{x^2} + x} ight)} ight]}^2}}}.\left[ {{{\left( {{x^2} + x} ight)}^3} - 4\left( {{x^2} + x} ight)} ight] \hfill \\   = {e^{{{\left[ {\left( {{x^2} + x} ight)} ight]}^2}}}\left( {2x + 1} ight).\left( {{x^2} + x} ight)\left( {{x^2} + x + 2} ight)\left( {{x^2} + x - 2} ight) \hfill \\   = {e^{{{\left[ {\left( {{x^2} + x} ight)} ight]}^2}}}\left( {2x + 1} ight).x\left( {x + 1} ight)\left( {{x^2} + x + 2} ight)\left( {x + 2} ight)\left( {x - 1} ight) \hfill \\ \end{matrix}

    => \left[ {F\left( {{x^2} + x} ight)} ight]' = 0 có 5 nghiệm đơn

    => Hàm số F\left( {{x^2} + x} ight) có 5 điểm cực trị

  • Câu 26: Vận dụng

    Một hình nón có đường cao bằng 9 cm nội tiếp trong một hình cầu bán kính bằng 5 cm. Tỉ số giữa thể tích khối nón và khối cầu là:

    Tỉ số giữa thể tích

    Hình vẽ kết hợp với giả thiết, ta có SH = 9cm, OS=OA=5cm

    Suy ra OH = 4{m{cm}}AH = \sqrt {O{A^2} - O{H^2}}  = 3{m{cm}}{m{.}}

    Thể tích khối nón {V_n} = \frac{1}{3}\pi A{H^2}.SH = 27\pi(đvtt).

    Thể tích khối cầu {V_c} = \frac{4}{3}\pi .S{O^3} = \frac{{500\pi }}{3}  (đvtt).

    Suy ra \frac{{{V_n}}}{{{V_c}}} = \frac{{81}}{{500}}

  • Câu 27: Vận dụng

    Xét tính đúng sai của mỗi khẳng định. Trong không gian Oxyz, cho ba điểm A( - 3;0;1),B(2; - 4;6),C(1;2; - 7) và hai vecto \overrightarrow{u} = (3;0; -
1),\overrightarrow{v} = (3;5; - 7).

    a) Tích vô hướng của hai vecto \overrightarrow{u},\overrightarrow{v}bằng 15. Đúng||Sai

    b) Trung điểm của đoạn AC có tọa độ là (1;1; - 4). Sai||Đúng

    c) Tọa độ của vecto \overrightarrow{AB} +
\overrightarrow{u} - \overrightarrow{v}(5; - 9; - 3). Sai||Đúng

    d) Hình chiếu vuông góc của trọng tâm tam giác ABC lên mặt phẳng (Oxz) O. Đúng||Sai

    Đáp án là:

    Xét tính đúng sai của mỗi khẳng định. Trong không gian Oxyz, cho ba điểm A( - 3;0;1),B(2; - 4;6),C(1;2; - 7) và hai vecto \overrightarrow{u} = (3;0; -
1),\overrightarrow{v} = (3;5; - 7).

    a) Tích vô hướng của hai vecto \overrightarrow{u},\overrightarrow{v}bằng 15. Đúng||Sai

    b) Trung điểm của đoạn AC có tọa độ là (1;1; - 4). Sai||Đúng

    c) Tọa độ của vecto \overrightarrow{AB} +
\overrightarrow{u} - \overrightarrow{v}(5; - 9; - 3). Sai||Đúng

    d) Hình chiếu vuông góc của trọng tâm tam giác ABC lên mặt phẳng (Oxz) O. Đúng||Sai

    a) đúng, b) sai, c) sai, d) đúng.

    a) Ta có \overrightarrow{u}.\overrightarrow{v} = 3.3 + 0.5
+ ( - 1).( - 7) = 15.

    b) Ta có trung điểm của đoạnACcó tọa độ là \left( \frac{( - 3) +
1}{2};\frac{0 + 2}{2};\frac{1 + ( - 7)}{2} ight) = ( - 1;1; -
3).

    c) Ta có

    \begin{matrix}
\overrightarrow{AB} = (5; - 4;5). \\
\overrightarrow{u} = (3;0; - 1), \\
\overrightarrow{v} = (3;5; - 7). \\
\end{matrix}

    Suy ra \overrightarrow{AB} +
\overrightarrow{u} - \overrightarrow{v} = (5; - 9;11).

    d) Ta có G\left( 0;\frac{- 2}{3};0
ight) Suy ra hình chiếu vuông góc của trọng tâm tam giác ABC lên mặt phẳng (Oxz)O(0;0;0).

  • Câu 28: Nhận biết

    Tính diện tích hình phẳng được giới hạn bởi đồ thị hàm số y =  - {x^2} + 2x - 2, trục hoành và các đường thẳng x = 0;x = 3

    Diện tích S của hình phẳng trên là: S = \int\limits_0^3 {\left| { - {x^2} + 2x - 2} ight|dx}

    Ta có: - {x^2} + 2x - 2 \leqslant 0;\forall x \in \left[ {0;3} ight]

    => S = \int\limits_0^3 {\left| { - {x^2} + 2x - 2} ight|dx}  = \int\limits_0^3 {\left( {{x^2} - 2x + 2} ight)dx = \left. {\left( {\frac{{{x^3}}}{3} - {x^2} + 2x} ight)} ight|_0^3 = 6\left( {dvdt} ight)}

  • Câu 29: Nhận biết

    Cho F(x) là một nguyên hàm của hàm số f(x). Khi đó hiệu số F(0) - F(1) bằng:

    Theo định nghĩa tích phân ta có:

    \int_{0}^{1}{f(x)dx} = F(1) -
F(0) suy ra F(0) - F(1) = -
\int_{0}^{1}{f(x)dx}.

  • Câu 30: Thông hiểu

    Tính diện tích hình phẳng giới hạn bởi hai đồ thị y = x^{2} - 2x - 2y = \frac{x - 4}{2 - x}?

    Phương trình hoành độ giao điểm x^{2} -
2x - 2 = \frac{x - 4}{2 - x}

    \Leftrightarrow \left\{ \begin{matrix}
x eq 2 \\
\left( x^{2} - 2x - 2 ight)(2 - x) = x - 4 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
x eq 2 \\
x\left( x^{2} - 4x + 3 ight) = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = 1 \\
x = 3 \\
\end{matrix} ight.

    Diện tích hình giới hạn là

    S = \int_{0}^{1}{\left| x^{2} - 2x - 2 -
\frac{x - 4}{2 - x} ight|dx} + \int_{1}^{3}{\left| x^{2} - 2x - 2 -
\frac{x - 4}{2 - x} ight|dx}

    = \int_{0}^{1}{\left| x^{2} - 2x - 1 -
\frac{2}{2 - x} ight|dx} + \int_{1}^{3}{\left| x^{2} - 2x - 1 -
\frac{2}{x - 2} ight|dx}

    = \left| \left. \ \left( \frac{x^{3}}{3}- x^{2} - x - 2\ln|x - 2| ight) ight|_{0}^{1} ight| + \left| \left.\ \left( \frac{x^{3}}{3} - x^{2} - x - 2\ln|x - 2| ight)ight|_{1}^{3} ight|

    = \frac{5}{3} - 2\ln2 + \frac{4}{3} = 3 -\ln4

  • Câu 31: Thông hiểu

    Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = x^{3} - x và đồ thị hàm số y = x - x^{2}?

    Phương trình hoành độ giao điểm x^{3} - x
= x - x^{2} \Leftrightarrow \left\lbrack \begin{matrix}
x = 1 \\
x = 0 \\
x = 2 \\
\end{matrix} ight.

    Khi đó ta có:

    S = \int_{- 2}^{1}{\left| x^{3} + x^{2}
- 2x ight|dx}

    = \int_{- 2}^{0}{\left| x^{3} + x^{2} -
2x ight|dx} + \int_{0}^{1}{\left| x^{3} + x^{2} - 2x
ight|dx}

    = \left| \int_{- 2}^{0}{\left( x^{3} +
x^{2} - 2x ight)dx} ight| + \left| \int_{0}^{1}{\left( x^{3} + x^{2}
- 2x ight)dx} ight|

    = \left| \left. \ \left( \frac{x^{4}}{4}
+ \frac{x^{3}}{3} - x^{2} ight) ight|_{- 2}^{0} ight| + \left|
\left. \ \left( \frac{x^{4}}{4} + \frac{x^{3}}{3} - x^{2} ight)
ight|_{0}^{1} ight|

    = \frac{8}{3} + \frac{5}{12} =
\frac{37}{12}

  • Câu 32: Thông hiểu

    Gọi F(x) là một nguyên hàm của hàm số f(x) = 2^{x}, thỏa mãn F(0) = \frac{1}{\ln2}. Tính giá trị biểu thức T = F(0) + F(1) + ... + F(2018) +
F(2019)?

    Ta có: \int_{}^{}{f(x)dx} =\int_{}^{}{2^{x}dx} = \frac{2^{x}}{\ln2} + C

    F(x) là một nguyên hàm của hàm số f(x) = 2^{x}, ta có: F(x) = \frac{2^{x}}{\ln2} + CF(0) = \frac{1}{\ln2}

    \Rightarrow C = 0 \Rightarrow F(x) =\frac{2^{x}}{\ln2}

    T = F(0) + F(1) + ... + F(2018) +
F(2019)

    T = \frac{1}{\ln2}\left( 1 + 2 + 2^{2} +.... + 2^{2018} + 2^{2019} ight)

    T = \frac{1}{\ln2}.\frac{2^{2020} - 1}{2- 1} = \frac{2^{2020} - 1}{ln2}

  • Câu 33: Thông hiểu

    Gọi (H) là hình phẳng giới hạn bởi các đường y^{2} = 4xy = x (với 0
\leq x \leq 4) được minh họa bằng hình vẽ bên (phần tô đậm):

    Cho (H) quay quanh trục Ox, thể tích khối tròn xoay tạo thành bằng bao nhiêu?

    Ta có: y^{2} = 4x \Rightarrow y =
2\sqrt{x};(y \geq 0)

    Thể tích khối tròn xoay cần tính là

    V = \pi\int_{0}^{4}{\left( 2\sqrt{x}
ight)^{2}dx} - \pi\int_{0}^{4}{x^{2}dx}

    = \left. \ 2\pi x^{2} ight|_{0}^{4} -
\frac{\pi}{3}.\left. \ x^{3} ight|_{0}^{4} =
\frac{32\pi}{3}

  • Câu 34: Nhận biết

    Họ nguyên hàm của hàm số f(x) =
\frac{1}{x} + \sin x là:

    Ta có: \int_{}^{}{f(x)dx} =
\int_{}^{}{\left( \frac{1}{x} + \sin x ight)dx} = \ln|x| - \cos x +
C.

  • Câu 35: Thông hiểu

    Tìm một nguyên hàm của hàm số f\left( x ight) = \frac{{\ln x}}{x}.\sqrt {{{\ln }^2}x + 1}?

    Ta có: F(x) = \int_{}^{}{\frac{\ln x}{x}\sqrt{\ln^{2}x + 1}dx}

    Đặt \sqrt{ln^{2}x + 1} \Rightarrow t^{2}= \ln^{2}x + 1 \Rightarrow tdt = \frac{\ln x}{x}dx

    Khi đó F(x) = \int_{}^{}{t^{2}dt} =\frac{t^{3}}{3} + C = \frac{\sqrt{\left( \ln^{2}x + 1 ight)^{3}}}{3} +C.

  • Câu 36: Thông hiểu

    Cho hàm số F(x) = \left( ax^{2} + bx - c
ight).e^{2x} là một nguyên hàm của hàm số f(x) = \left( 2018x^{2} - 3x + 1
ight)e^{2x} trên khoảng ( -
\infty; + \infty). Giá trị biểu thức a + 2b + 4c bằng:

    Ta có: F'(x) = (2ax + b)e^{2x} +
2\left( ax^{2} + bx - c ight)e^{2x}

    = \left\lbrack 2ax^{2} + (2b + 2a)x + b
- 2c ightbrack e^{2x}

    Theo bài ra ta có:

    \Rightarrow \left\lbrack 2ax^{2} + (2b +
2a)x + b - 2c ightbrack e^{2x} = \left( 2018x^{2} - 3x + 1
ight)e^{2x}

    \Rightarrow \left\{ \begin{matrix}2a = 2018 \\2(a + b) = - 3 \\b - 2c = 1 \\\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}a = 1009 \\b = \dfrac{- 2021}{2} \\c = \dfrac{- 2023}{4} \\\end{matrix} ight.\  \Rightarrow a + 2b + 4c = - 3035

  • Câu 37: Thông hiểu

    Trong không gian Oxyz, cho tam giác ABC với tọa độ các điểm A(1;0; - 2),B( - 2;3;4),C(4; - 6;1).

    Xác định tính đúng sai của các khẳng định sau:

    a) Tọa độ trọng tâm G của tam giác là (1; - 1;1). Đúng||Sai

    b) \overrightarrow{AB} = (3; -
3;6),\overrightarrow{AC} = ( - 3;6; - 3). Sai||Đúng

    c) Tam giác ABC là tam giác cân. Đúng||Sai

    d) Nếu ABDC là hình bình hành thì tọa độ điểm D là (7; - 9; - 5). Sai||Đúng

    Đáp án là:

    Trong không gian Oxyz, cho tam giác ABC với tọa độ các điểm A(1;0; - 2),B( - 2;3;4),C(4; - 6;1).

    Xác định tính đúng sai của các khẳng định sau:

    a) Tọa độ trọng tâm G của tam giác là (1; - 1;1). Đúng||Sai

    b) \overrightarrow{AB} = (3; -
3;6),\overrightarrow{AC} = ( - 3;6; - 3). Sai||Đúng

    c) Tam giác ABC là tam giác cân. Đúng||Sai

    d) Nếu ABDC là hình bình hành thì tọa độ điểm D là (7; - 9; - 5). Sai||Đúng

    a) Đúng.

    Trọng tâm tam giác có tọa độ là:

    \left\{ \begin{matrix}x_{G} = \dfrac{x_{A} + x_{B} + x_{C}}{3} = 1 \\y_{G} = \dfrac{y_{A} + y_{B} + y_{C}}{3} = - 1 \\z_{G} = \dfrac{z_{A} + z_{B} + z_{C}}{3} = 1 \\\end{matrix} ight.\  \Rightarrow G(1; - 1;1)

    b) Sai. Vì \overrightarrow{AB} = ( -
3;3;6),\overrightarrow{AC} = (3; - 6;3)

    c) Đúng. Do AB = AC = 3\sqrt{6} nên tam giác ABC cân tại A.

    d) Sai. Gọi D(x;y;z), vì ABCD là hình bình hành nên

    \overrightarrow{AB} =
\overrightarrow{CD} \Leftrightarrow ( - 3;3;6) = (x - 4;y + 6;z -
1)

    \Leftrightarrow (x;y;z) = (1; -
3;7)

  • Câu 38: Nhận biết

    Một vật chuyển động với vận tốc v(t) =
\frac{6}{5} + \frac{t^{2} + 4}{t + 3}(m/s). Tính quãng đường vật đó đi được trong 4 giây đầu (làm tròn kết quả đến chữ số thập phân thứ hai).?

    Quãng đường vật đó đi được trong 4 giây đầu là:

    S = \int_{0}^{4}{v(t)dt} = \int_{0}^{4}{\left(
\frac{6}{5} + \frac{t^{2} + 4}{t + 3} ight)dt} \approx
11,81(m).

  • Câu 39: Nhận biết

    Tìm nguyên hàm của hàm số f\left( x ight) = {\left( {2x + 1} ight)^{2019}} bằng:

     \int {\left[ {{{\left( {2x + 1} ight)}^{2019}}} ight]dx}  = \frac{1}{2}\int {\left[ {{{\left( {2x + 1} ight)}^{2019}}} ight]d\left( {2x + 1} ight)}

    = \frac{1}{2}\frac{{{{\left( {2x + 1} ight)}^{2020}}}}{{2020}} + C = \frac{{{{\left( {2x + 1} ight)}^{2020}}}}{{4040}} + C

  • Câu 40: Nhận biết

    Trong không gian Oxyz cho A(2;0;0),B(0; - 2;0),C(0;0; - 1). Viết phương trình mặt phẳng (ABC)?

    Phương trình mặt phẳng (ABC)\frac{x}{2} + \frac{y}{- 2} + \frac{z}{-
1} = 1

Chúc mừng Bạn đã hoàn thành bài!

Đề thi giữa học kì 2 Toán 12 - Đề 2 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 5 lượt xem
Sắp xếp theo