Cho hàm trùng phương có đồ thị như hình vẽ dưới đây:
Tìm các giá trị của tham số m để phương trình có 4 nghiệm phân biệt?
Hình vẽ minh họa
Để phương trình có 4 nghiệm phân biệt thì
.
Mời các bạn học cùng thử sức với đề Đề thi giữa học kì 1 môn Toán lớp 12 nha!
Cho hàm trùng phương có đồ thị như hình vẽ dưới đây:
Tìm các giá trị của tham số m để phương trình có 4 nghiệm phân biệt?
Hình vẽ minh họa
Để phương trình có 4 nghiệm phân biệt thì
.
Cho hàm số có bảng xét dấu
như sau:
Hàm số đồng biến trong khoảng nào dưới đây?
Cho hàm số có bảng xét dấu
như sau:
Hàm số đồng biến trong khoảng nào dưới đây?
Cho hàm số có đồ thị như hình vẽ:
Hãy phương trình có bao nhiêu nghiệm thuộc khoảng
?
Ta có:
Từ đồ thị hàm số ta thấy đường thẳng cắt đồ thị tại hai điểm phân biệt, đường thẳng
cắt đồ thị tại 4 điểm phân biệt do đó phương trình
có hai nghiệm phân biệt và phương trình
có 4 nghiệm phân biệt
Vậy phương trình có tất cả 6 nghiệm thực phân biệt.
Gọi Đ là số các đỉnh, M là số các mặt, C là số các cạnh của một hình đa diện bất kỳ. Mệnh đề nào sau đây là đúng?
Xét hình đa diện là một hình bất kì, ví dụ lấy đa diện là hình tứ diện thì ta có số đỉnh, mặt và cạnh lần lượt là:
Đ=4; M=4; C=6
Cho hình chóp có đáy ABC là tam giác vuông tại B và
. Cạnh bên
và vuông góc với mặt phẳng đáy. Tính theo a thể tích V của khối chóp
.
Diện tích tam giác vuông
Chiều cao khối chóp là .
Vậy thể tích khối chóp
Trong các hàm số sau đây, hàm số nào không nghịch biến trên ?
Với
y’ > 0 khi x > 0 và y’ < 0 khi x < 0 nên hàm số không nghịch biến trên
Cho lăng trụ đứng có đáy
là tam giác vuông tại
và
. Cạnh
tạo với mặt đáy
góc
. Tính thể tích
của khối lăng trụ đã cho.
Vì là lăng trụ đứng nên
, suy ra hình chiếu vuông góc của
trên mặt đáy
là
.
Do đó .
Tam giác vuông , ta có
Diện tích tam giác là
Vậy .
Hình lăng trụ có thể có số cạnh nào sau đây?
Giả sử hình lăng trụ có đáy là – giác.
Khi đó, số cạnh của hình lăng trụ là .
Như vậy số cạnh của hình lăng trụ phải chia hết cho 3, xét các đáp án thì chỉ có 2022 chia hết cho 3 nên số cạnh của hình lăng trụ chỉ có thể là 2022.
Tìm giá trị lớn nhất của hàm số trên
?
Ta có:
Đồ thị hàm số có tất cả bao nhiêu tiệm cận đứng?
Tập xác định
Ta có:
Suy ra đường thẳng là hai đường tiệm cận đứng của đồ thị hàm số.
Gọi lần lượt là số trục đối xứng của khối tứ diện đều, khối chóp tứ giác đều và khối lập phương. Mệnh đề nào sau đây là đúng?
Khối tứ diện đều có 3 trục đối xứng (đi qua trung điểm của các cặp cạnh đối diện).
Khối chóp tứ giác đều có 1 trục đối xứng (đi qua đỉnh và tâm của mặt tứ giác).
Khối lập phương có 9 trục đối xứng
(Loại 1: đi qua tâm của các mặt đối diện ;
Loại 2: đi qua trung điểm các cặp cạnh đối diện).
Cho hàm số có hai điểm cực trị
. Tính độ dài đoạn thẳng
?
Ta có:
Nhận thấy phương trình có hai nghiệm phân biệt nên đồ thị hàm số có hai điểm cực trị là
Cho hàm số có đạo hàm
trên
. Tìm số điểm cực trị của hàm số
?
Ta có:
có hai nghiệm đơn nên hàm số
có hai điểm cực trị.
Đường cong trong hình vẽ dưới đây là đồ thị của hàm số nào dưới đây?
![]() |
Dựa vào đồ thị hàm số ta thấy
=> Hệ số a > 0
=> Loại đáp án B và đáp án D
Mặt khác hàm số có ba điểm cực trị
=> Loại đáp án C
Tìm giá trị của tham số để giá trị nhỏ nhất của hàm số
trên đoạn
bằng
?
Ta có:
Vậy giá trị cần tìm là .
Trong các hình dưới đây hình nào không phải khối đa diện lồi?
Đường nối đoạn MN không thuộc khối hình 4 nên hình 4 không phải khối đa diện lồi.
Cho hàm số . Hàm số
có đồ thị như hình vẽ:
Gọi là tập hợp tất cả các giá trị nguyên dương của tham số
sao cho hàm số
đồng biến trên khoảng
. Hỏi tập hợp
có tất cả bao nhiêu phần tử?
Cho hàm số . Hàm số
có đồ thị như hình vẽ:
Gọi là tập hợp tất cả các giá trị nguyên dương của tham số
sao cho hàm số
đồng biến trên khoảng
. Hỏi tập hợp
có tất cả bao nhiêu phần tử?
Chọn hàm số tương ứng với bảng biến thiên sau?
Từ bảng biến thiên ta suy ra đồ thị hàm số bậc 4 trùng phương có hệ số nên hàm số cần tìm là
.
Cho hàm số . Xét tính đúng sai của các khẳng định sau:
a) Tập xác định của hàm số là . Sai||Đúng
b) Đạo hàm của hàm số là . Đúng||Sai
c) Giá trị lớn nhất của hàm số trên là 2. Sai||Đúng
d) Giá trị nhỏ nhất của hàm số trên là
. Đúng||Sai
Cho hàm số . Xét tính đúng sai của các khẳng định sau:
a) Tập xác định của hàm số là . Sai||Đúng
b) Đạo hàm của hàm số là . Đúng||Sai
c) Giá trị lớn nhất của hàm số trên là 2. Sai||Đúng
d) Giá trị nhỏ nhất của hàm số trên là
. Đúng||Sai
Tập xác định của hàm số là .
Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số.
Ta có:
Khi đó
Ta có:
Cho hàm số . Xác định giá trị nhỏ nhất của hàm số y = f(x) trên đoạn [2; 4].
Xét hàm số trên [2; 4] ta có:
Tính f(2) = 7; f(3) = 6; f(4) = 19/3
Vậy
Cho hàm số có bảng biến thiên như hình vẽ sau
Hàm số đồng biến trên khoảng nào dưới đây
Từ bảng biến thiên suy ra hàm số đồng biến trên khoảng .
Chọn khẳng định đúng trong các khẳng định sau:
Tâm tất cả các mặt của một hình tứ diện đều là các đỉnh của một hình tứ diện đều:
Cho các hình sau:
Mỗi hình trên gồm một số hữu hạn đa giác phẳng (kể cả các điểm trong của nó), số hình đa diện là:
Các hình đa diện là:
;
;
Đồ thị hàm số có bao nhiêu đường tiệm cận đứng?
Ta có:
suy ra
là đường tiệm cận đứng của đồ thị hàm số.
suy ra
là đường tiệm cận đứng của đồ thị hàm số.
Vậy đồ thị hàm số đã cho có 2 đường tiệm cận đứng.
Hàm số có đạo hàm và liên tục trên
. Hàm số
có đồ thị như hình vẽ:
Hàm số nghịch biến trên khoảng nào dưới đây?
Hàm số nghịch biến
với
Vậy hàm số nghịch biến trên khoảng
.
Để chuẩn bị cho hoạt động cắm trại, bạn An tìm hiểu các mẫu lều cắm trại có kích thước như trong hình vẽ.
Bạn An muốn biết thể tích chênh lệch của hai lều nên thực hiện tính
, trong đó
lần lượt là thể tích của mẫu lều cắm trại ở hình a, hình b. Giá trị của
bằng bao nhiêu decimét khối (làm tròn kết quả đến hàng đơn vị)?
Đáp án: 961 dm3
Để chuẩn bị cho hoạt động cắm trại, bạn An tìm hiểu các mẫu lều cắm trại có kích thước như trong hình vẽ.
Bạn An muốn biết thể tích chênh lệch của hai lều nên thực hiện tính
, trong đó
lần lượt là thể tích của mẫu lều cắm trại ở hình a, hình b. Giá trị của
bằng bao nhiêu decimét khối (làm tròn kết quả đến hàng đơn vị)?
Đáp án: 961 dm3
Cả hai lều đều có dạng khối lăng trụ đứng ngũ giác.
Xét khối lăng trụ ở hình a. Chia mặt đáy thành hai phần bao gồm: hình chữ nhật có chiều rộng , chiều dài
; tam giác cân có cạnh đáy dài
, chiều cao
như hình dưới đây.
Diện tích mặt đáy của lăng trụ đó là:
Vậy thể tích của khối lăng trụ ngũ giác đó là:
.
Xét khối lăng trụ ở hình . Chia mặt đáy thành hai phần bao gồm: hình thang cân có đáy lớn đài
, đáy nhỏ dài
, chiều cao
tam giác cân có cạnh đáy dài
, chiều cao
như hình vẽ .
Diện tích mặt đáy của lăng trụ đó là:
Vậy thể tích của khối lăng trụ ngũ giác đó là:
Do đó .
Cho hàm số có bảng biến thiên:
Số đường tiệm cận ngang của đồ thị hàm số là:
Ta có: nên đồ thị hàm số đã cho có 2 đường tiệm cận ngang
.
Cho hàm số có bảng biến thiên như sau:
Mệnh đề nào sau đây đúng?
Dựa vào bảng biến thiên ta suy ra mệnh đề đúng là: “Điểm cực tiểu của đồ thị hàm số là ”.
Cho x, y, z là ba số thực thuộc đoạn [1; 9] và . Giá trị nhỏ nhất của biểu thức
bằng:
Ta có:
(đúng do
)
Dấu bằng xảy ra khi và chỉ khi a = b hoặc ab = 1
Áp dụng bất đẳng thức trên ta có:
Đặt . Xét hàm số
trên đoạn [1; 3]
Do
Ta có bảng biến thiên
Suy ra khi và chỉ khi
Khối lăng trụ ngũ giác có bao nhiêu cạnh?
Khối lăng trụ ngũ giác có số cạnh của một mặt đáy là 5 cạnh, số cạnh bên là 5 cạnh
Số cạnh của khối lăng trụ ngũ giác là: 2.5 + 5 =15 cạnh.
Cho hình chóp có đáy
là tam giác vuông tại A và có
,
. Mặt bên
là tam giác đều và nằm trong mặt phẳng vuông góc với mặt phẳng
. Tính theo
thể tích
của khối chóp
.
Gọi là trung điểm của
, suy ra
.
Do theo giao tuyến
nên
.
Tam giác là đều cạnh
nên
.
Tam giác vuông , có
.
Diện tích tam giác vuông .
Vậy .
Một hình đa diện có các mặt là những tam giác. Gọi M là tổng số mặt và C là tổng số cạnh của đa diện đó. Mệnh đề nào sau đây đúng.
Vì mỗi mặt là những tam giác nên có tổng số cạnh là 3M. Mỗi cạnh là cạnh chung của đúng hai mặt nên ta có hệ thức 3M = 2C.
Đồ thị hàm số có bao nhiêu đường tiệm cận?
Ta có:
suy ra
là tiệm cận đứng của đồ thị hàm số.
suy ra đồ thị hàm số có tiệm cận ngang là
.
Vậy đồ thị hàm số có hai đường tiệm cận.
Trong các mệnh đề sau, mệnh đề nào sai?
Trong 5 loại khối đa diện đều không tồn tại khối chóp có đáy là tứ giác!
Cho hàm số . Mệnh đề nào sau đây đúng?
Tập xác định của hàm số là:
Ta có:
Vậy hàm số đồng biến trên khoảng (5; +∞)
Tâm tất cả các mặt của một hình lập phương là các đỉnh của hình nào trong các hình sau đây?
Tâm tất cả các mặt của một hình lập phương là các đỉnh của hình bát diện:
Hằng ngày mực nước của hồ thủy điện ở miền Trung lên và xuống theo lượng nước mưa, và các suối nước đổ về hồ. Từ lúc 8h sáng, độ sâu của mực nước trong hồ tính theo mét và lên xuống theo thời gian t (giờ) trong ngày cho bởi công thức . Biết rằng phải thông báo cho các hộ dân di dời trước khi xả nước theo quy định trước 5 tiếng. Hỏi cần thông báo cho hộ dân di dời trước khi xả nước lúc mấy giờ. Biết rằng mực nước trong hồ phải lên cao nhất mới xả nước.
Đáp án: 15
Hằng ngày mực nước của hồ thủy điện ở miền Trung lên và xuống theo lượng nước mưa, và các suối nước đổ về hồ. Từ lúc 8h sáng, độ sâu của mực nước trong hồ tính theo mét và lên xuống theo thời gian t (giờ) trong ngày cho bởi công thức . Biết rằng phải thông báo cho các hộ dân di dời trước khi xả nước theo quy định trước 5 tiếng. Hỏi cần thông báo cho hộ dân di dời trước khi xả nước lúc mấy giờ. Biết rằng mực nước trong hồ phải lên cao nhất mới xả nước.
Đáp án: 15
Ta có:
Bảng biến thiên:
Mực nước lên cao nhất thì phải mất giờ.
Hay mực nước lên cao nhất là lúc 20 giờ.
Vậy phải thông báo cho dân di dời vào giờ chiều cùng ngày.
Để đồ thị hàm số có ba điểm cực trị tạo thành một tam giác có diện tích bằng
. Tìm giá trị tham số
thỏa mãn yêu cầu bài toán?
Để đồ thị hàm số có ba điểm cực trị tạo thành một tam giác có diện tích bằng
. Tìm giá trị tham số
thỏa mãn yêu cầu bài toán?
Tìm giá trị tham số để đồ thị hàm số
có ba điểm cực trị
sao cho trục
chia tam giác
thành một tam giác và một hình thang biết rằng tỉ lệ diện tích tam giác nhỏ được chia ra và diện tích hình thang bằng
?
Ta có:
Hàm số có ba điểm cực trị khi và chỉ khi có ba nghiệm phân biệt
Khi đồ thị hàm số có ba điểm cực trị là
,
,
Ta có: , B và C đối xứng với nhau qua
suy ra tam giác
cân tại
Hình vẽ minh họa
Trục hoành chia tam giác thành một tam giác và một hình thang
Kết hợp với điều kiện ta được
Khi đó gọi D; E lần lượt là giao điểm của Ox và các cạnh AB; AC. Gọi K là giao điểm của BC và Oy
Ta có:
Mà
Vì
.
Số đường tiệm cận của đồ thị hàm số là:
Tập xác định
nên
không phải tiệm cận đứng.
suy ra
là một tiệm cận ngang
suy ra
là một tiệm cận ngang
Vậy số đường tiệm cận của đồ thị hàm số là 2.
Cho hàm số f(x) có đạo hàm . Gọi P là giá trị cực đại của hàm số đã cho. Chọn khẳng định đúng.
Ta có:
Ta có bảng biến thiên như sau:
Dựa vào bảng biến thiên ta có giá trị cực đại của hàm số là P = f(-3)
Gọi lần lượt là giá trị cực đại và giá trị cực tiểu của hàm số
. Chọn biểu thức đúng?
Ta có:
Vậy
Cho các hình sau:
Mỗi hình trên gồm một số hữu hạn đa giác phẳng (kể cả các điểm trong của nó), hình không phải đa diện là:
Áp dụng định nghĩa hình đa diện, ta có:
“Hình đa diện (còn gọi tắt là đa diện) là hình được tạo bởi một số hữu hạn các đa giác, gọi là các mặt của hình đa diện, thỏa mãn các tính chất sau:
TC1: Hai mặt phân biệt chỉ có thể hoặc không giao nhau hoặc có một đỉnh chung, hoặc có một cạnh chung.
TC2: Mỗi cạnh thuộc một mặt là cạnh cung của đúng hai mặt.
TC3: Cho hai mặt S và S’, luôn tồn tại một dãy các mặt sao cho S0 trùng với S, Sn trùng với S’ và bất kì hai mặt
nào
cũng đều có một cạnh chung.
Các đỉnh, cạnh của mặt theo thứ tự được gọi là các đỉnh, cạnh của hình đa diện.”
Tổng giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên
bằng:
Ta có:
Vậy tổng giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên đoạn bằng
.
Cho khối chóp có đáy
là hình vuông cạnh
,
vuông góc với đáy và khoảng cách từ
đến mặt phẳng
bằng
. Tính thể tích
của khối chóp đã cho.
Gọi là hình chiếu của
trên
Ta có
Suy ra
Tam giác vuông tại
, có
Vậy .