Cho hai vectơ và
khác
. Xác định góc
giữa hai vectơ
và
khi
nên
.
Cho hai vectơ và
khác
. Xác định góc
giữa hai vectơ
và
khi
nên
.
Nếu tam giác có
thì:
Nếu tam giác ABC có thì
là góc nhọn
Cho biết là một phần tử của tập hợp
xét các mệnh đề sau:
(I)
(II) .
(III)
(IV)
Trong các mệnh đề sau, mệnh đề nào là đúng:
I đúng.
II sai vì không có khái niệm tập hợp này thuộc tập hợp kia.
III sai vì phần tử thì không thể là con của
tập hợp.
IV đúng.
Cho có
Diện tích của tam giác là:
Ta có:
Cho hình chữ nhật ABCD có , AD = 1. Tính góc giữa hai vectơ
và
Ta có:
ABCD là hình chữ nhật
Ta có:
Xét tam giác ODC ta có:
Tam thức bậc hai f(x) = − x2 + 5x − 6 nhận giá trị dương khi và chỉ khi
Dựa vào bảng xét dấu, ta chọn đáp án x ∈ (2;3).
Cho hình bình hành có
là trung điểm của
Khẳng định nào sau đây đúng?
Xét các đáp án ta thấy bài toán yêu cần phân tích vectơ theo hai vectơ
và
Vì là hình bình hành nên
Vì
là trung điểm
nên
suy ra
Cho biết . Tính
.
Ta có:
.
Câu nào là mệnh đề toán học?
Mệnh đề toán học là: "2 là số tự nhiên"
Cho tam giác ABC và điểm M thỏa mãn . Xác định vị trí điểm M.
Điểm là trọng tâm tam giác
khi và chỉ khi
.
Cho tam giác , chọn công thức đúng trong các đáp án sau:
Ta có:
Tính độ dài đoạn thẳng biết tọa độ
?
Ta có:
Một cửa hàng bán hai loại mặt hàng và
. Biết rằng cứ bán một mặt hàng loại
cửa hàng lãi 5 nghìn đồng, bán một mặt hàng loại
cửa hàng lãi 7 nghìn đồng. Gọi
lần lượt là số mặt hàng loại
và mặt hàng loại
mà cửa hàng đó bán ra trong một tháng. Cặp số
nào sau đây biểu thị số mặt hàng bán ra mỗi loại của cửa hàng trong một tháng mà tổng số tiền lãi không ít hơn 30 triệu đồng?
Đặt x là số tiền lãi của mặt hàng A
y là số tiền lãi của mặt hàng B
Đổi 30 triệu = 30 000 nghìn đồng
Theo đề bài ta có:
TH1: Thay A (1000; 2000) vào phương trình
. Thay B(3000; 1000
vào phương trình
: Thay C
vào phương trình
TH4: Thay vào phương trình
Vậy đáp án là: C
Trong hệ tọa độ , cho tọa độ bốn điểm
,
. Chọn khẳng định đúng?
Ta có: . Vậy
là hình bình hành.
Số nghiệm của phương trình là
ĐK x ≥ 3.
.
Vậy phương trình có một nghiệm.
Cho tam giác có
và
. Biết rằng:
Chọn khẳng định đúng?
Ta có:
Mà
Vậy tam giác ABC là tam giác vuông tại A.
Đồ thị hàm số y = x2 − 6|x| + 5:
Ta có:
Đồ thị (C)của hàm số y = x2 − 6|x| + 5 gồm hai phần
Phần đồ thị (C1): là phần đồ thị của hàm số y1 = x2 − 6x + 5 nằm bên phải trục tung
Phần đồ thị (C2): là phần đồ thị của hàm số y2 = x2 + 6x + 5 có được bằng cách lấy đối xứng phần đồ thị (C1) qua trục tung
Ta có đồ thị (C) như hình vẽ
Vậy đồ thị (C) có trục đối xứng có phương trình x = 0.
Miền nghiệm của bất phương trình chứa điểm có tọa độ:
Ta có:
Vì là mệnh đề đúng nên miền nghiệm của bất phương trình trên chứa điểm có tọa độ
.
Tính tổng bình phương các nghiệm của phương trình: là:
ĐK x ∈ [ − 2; 5] Đặt ,t ≥ 0.
Phương trình trở thành
⇒ x12 + x22 = 11.
Cho tam giác ABC nội tiếp đường tròn bán kính R, ,
. Tính số đo của
biết
là góc tù.
Theo bài ra ta có: là góc tù =>
là góc nhọn.
Xét tam giác ABC áp dụng định lí sin ta có:
Mặt khác
Cho hình bình hành . Đẳng thức nào sau đây đúng?
Do là hình bình hành nên
Suy ra
Xác định A ∩ B trong trường hợp sau:
Tập hợp là tập hợp cặp số (x; y) thỏa mãn hệ phương trình:
Vậy
Cho 2 mệnh đề: “Quyển vở này của Nam” và “Quyển vở này có 118 trang”.
Cho biết 2 mệnh đề trên đều đúng, tìm mệnh đề sai trong các mệnh đề sau:
Đặt “Quyển vở này của Nam”,
“Quyển vở này có 118 trang”
Theo đề bài, đúng,
đúng nên
sai,
sai.
Mệnh đề chỉ sai khi
đúng
sai.
Chọn đáp án Quyển vở này của Nam nên nó không có 118 trang.
Cho thoả mãn hệ
Tìm giá trị lớn nhất
của biểu thức
Trong mặt phẳng tọa độ vẽ các đường thẳng
Khi đó miền nghiệm của hệ bất phương trình là phần mặt phẳng tô màu như hình vẽ.
Xét các đỉnh của miền khép kín tạo bởi hệ là
Ta có
Cho hai tập hợp . Tìm a để
có đúng một phần tử.
Để có đúng một phần tử khi và chỉ khi
. Khi đó
.
Vậy là giá trị cần tìm.
Cho hình thang vuông có
. Tính độ dài vectơ
, biết
.
Hình vẽ minh họa
Dựng hình bình hành ADBM ta có:
Do nên
tại H,
Tứ giác ADBH là hình vuông nên , ta cũng tính được
.
Dựng hình bình hành DMNC ta có: .
Gọi K là hình chiếu vuông góc của N lên DC. Ta chứng minh được HMNK là hình vuông.
Ta có:
Cho đoạn thẳng và
là một điểm trên đoạn
sao cho
. Trong các khẳng định sau, khẳng định nào sai?
Hình vẽ minh họa
Ta thấy và
cùng hướng nên
là sai.
Điểm nào sau đây thuộc miền nghiệm của hệ bất phương trình
Thay tọa độ vào hệ ta được:
ta thấy cả 3 bất phương trình đều thỏa mãn. Do đó điểm này thuộc miền nghiệm của hệ.
Cho ba điểm phân biệt Mệnh đề nào sau đây đúng?
Đáp án chỉ đúng khi ba điểm
thẳng hàng và
nằm giữa
.
Đáp án đúng theo quy tắc ba điểm. Chọn đáp án này.
Tìm m để phương trình có hai nghiệm phân biệt là:
Phương trình .
Phương trình đã cho có hai nghiệm ⇔ (*)có hai nghiệm phân biệt lớn hơn hoặc bằng đồ thị hàm số y = 3x2 + (4−m)x − 1 trên
cắt trục hoành tại hai điểm phân biệt.
Xét hàm số y = 3x2 + (4−m)x − 1 trên . Ta có
+ TH1: Nếu thì hàm số đồng biến trên
nên m ≤ 1 không thỏa mãn yêu cầu bài toán.
+ TH2: Nếu :
Ta có bảng biến thiên
Đồ thị hàm số y = 3x2 + (4−m)x − 1 trên cắt trục hoành tại hai điểm phân biệt
Vì − m2 + 8m − 28 = − (m−4)2 − 12 < 0, ∀m nên
(thỏa mãn m > 1).
Vậy là giá trị cần tìm.
Cho
Tập hợp
bằng
Tập hợp gồm những phần tử thuộc
nhưng không thuộc
Cho hàm số y = f(x) xác định trên ℝ và đồ thị của nó được biểu diễn bởi hình bên. Khẳng định nào sau đây là sai?
Trên khoảng (2;+∞) đồ thị hàm số đi lên từ trái sang phải
Hàm số đồng biến trên khoảng (2;+∞).
Chọn đáp án Hàm số nghịch biến trên khoảng (2;+∞).
Cho tam giác đều có đường cao
. Tính
.
Lấy sao cho
.
Ta có: .
Cặp số không là nghiệm của bất phương trình nào sau đây?
Xét đáp án
Thay ta được:
Vậy cặp số không là nghiệm của bất phương trình.
Xét đáp án
Thay ta được:
Vậy cặp số là nghiệm của bất phương trình.
Xét đáp án
Thay ta được:
Vậy cặp số là nghiệm của bất phương trình.
Xét đáp án
Thay ta được:
Vậy cặp số là nghiệm của bất phương trình.
Cho tam giác . Tập hợp các điểm
thỏa mãn
là:
Vì , mà
cố định nên suy ra tập hợp
là đường thẳng đi qua
và vuông góc với
.
Tập nghiệm của bất phương trình là:
Ta có:
Hàm số nào sau đây có đỉnh ?
Hàm số có các hệ số a = 1, b = ‒2, c = 1 nên có tọa độ đỉnh
Cho tam thức bậc hai f(x) = x2 − 5x + 6 và a là số thực lớn hơn 3. Tìm khẳng định đúng trong các khẳng định sau.
Dựa vào bảng xét dấu thì f(x) > 0 khi x < 2 ∨ x > 3 mà a > 3 nên f(a) > 0.
Cho và
Khi đó:
Ta có:
Ta có:
Cho hàm số: . Tìm x để
Ta có:
Vậy x = 3 hoặc x = 0
Tìm parabol (P) : y = ax2 + 3x − 2, biết rằng parabol có trục đối xứng x = − 3.
Vì (P) có trục đối xứng x = − 3 nên .
Vậy .
Cho tam giác và điểm
thỏa mãn điều kiện
. Mệnh đề nào sau đây sai?
Ta có
là hình bình hành
Do đó sai.
Gọi lần lượt là trung điểm của các cạnh
của tam giác đều
. Hỏi cặp vectơ nào sau đây cùng hướng?
Cặp và
là cặp vectơ cùng hướng.
Cho hai điểm A(6; –1) và B(x; 9). Giá trị của x để khoảng cách giữa A và B bằng là:
Ta có:
Cho tam giác ABC đều cạnh . Đường thẳng
qua
và song song với
, lấy điểm
. Tính giá trị nhỏ nhất của
khi
di động trên
.
Hình vẽ minh họa
Kẻ hình bình hành ACBD. Gọi I là trung điểm BD, khi đó, ta có
Ta có:
Dấu “=” xảy ra khi và chỉ khi M trùng với điểm H là hình chiếu vuông góc của điểm I trên đường thẳng .