Cho 6 điểm phân biệt A, B, C, D, E, F. Đẳng thức nào sau đây đúng?
Ta có:.
Cho 6 điểm phân biệt A, B, C, D, E, F. Đẳng thức nào sau đây đúng?
Ta có:.
Trong các hàm số sau, hàm số nào là nghịch biến:
Ta có:
Hàm số có a = -2 < 0
=> Hàm số nghịch biến.
Cho hai vecto và
biết
và
. Tính
.
Ta có:
Cho tam giác ABC với trung tuyến AM và trọng tâm G. Khi đó
Ta có: G là trọng tâm tam giác ABC =>
Xác định tập hợp sau đây trên trục số: :
Xác định tập hợp trên trục số như sau:
Tập bằng tập nào sau đây?
Gọi S là tập nghiệm của bất phương trình . Trong các tập hợp sau, tập nào không là tập con của S?
Tam thức bậc hai có hai nghiệm phân biệt là:
Vì a = 1 > 0 nên khi
.
Tập không phải tập con của S là:
Cho có
Diện tích của tam giác là:
Ta có:
Cho Tìm tọa độ của vectơ
Ta có
Miền nghiệm của hệ bất phương trình chứa điểm nào trong các điểm sau đây?
Ta thay lần lượt tọa độ các điểm vào hệ bất phương trình.
Với . Bất phương trình thứ nhất sai nên không thỏa mãn.
Với . Đúng. Chọn đáp án này.
Bề lõm của parabol quay lên trên đối với đồ thị hàm số bậc hai nào sau đây?
Đồ thị hàm số bậc hai là một đường parabol có đỉnh là điểm
, có trục đối xứng là đường thẳng
. Parabol này quay bề lõm lên trên nếu
.
Hàm số có
=> Đồ thị hàm số có bề lõm quay lên.
Cho ngũ giác . Có bao nhiêu vectơ khác vectơ – không có điểm đầu và điểm cuối là đỉnh của ngũ giác đó?
,
,
,
,
.
Điểm thuộc miền nghiệm của hệ bất phương trình nào sau đây?
Thay tọa độ lần lượt vào từng phương trình của hệ
ta thấy thỏa mãn.
Cho
Tập hợp
bằng
Tập hợp gồm những phần tử thuộc
nhưng không thuộc
Giá trị là:
Ta có: .
Biết và
. Câu nào sau đây đúng?
Ta có: .
Suy ra và
ngược hướng.
Cặp nghiệm nào sau đây là nghiệm của bất phương trình bậc nhất hai ẩn: ?
=>
thay vào bất phương trình ta có:
=> Đáp án sai
=>
thay vào bất phương trình ta có:
=> Đáp án sai
=>
thay vào bất phương trình ta có:
=> Đáp án sai
=>
thay vào bất phương trình ta có:
=> Đáp án đúng
Vậy là nghiệm của bất phương trình bậc nhất hai ẩn:
Bất phương trình nào sau đây là bất phương trình bậc nhất hai ẩn?
Theo định nghĩa thì là bất phương trình bậc nhất hai ẩn. Các bất phương trình còn lại là bất phương trình bậc hai.
Một tam giác có ba cạnh là . Bán kính đường tròn ngoại tiếp tam giác đó là:
Ta có: .
Áp dụng hệ thức Hê - rông ta có:
.
Mặt khác
Cho tam giác thỏa mãn biểu thức
Khi đó tam giác là tam giác gì?
Ta có:
Đặt khi đó ta có:
Do đó
Vậy tam giác ABC là tam giác cân tại A.
Nghiệm của phương trình: là bao nhiêu?
Điều kiện: .
Thay vào phương trình ta được
hay
là nghiệm của phương trình.
Tìm tập xác định của hàm số
Điều kiện xác định của hàm số là:
=> Tập xác định của hàm số là:
Cho hai vecto . Xác định góc giữa hai vecto
và
khi
Ta có:
Cho tam giác đều có cạnh là 6. Tính
.
Hình vẽ minh họa
Gọi là trung điểm của
. Vì tam giác
đều có cạnh là 6, nên ta có
.
Xét tam giác vuông tại
, có
.
Suy ra
Mặt khác ta có:
.
Cho ba mệnh đề: “số
chia hết cho
và chia hết cho
”
Q: “ Số chia hết cho
”
R: “ Số là số nguyên tố ”
Hãy tìm mệnh đề sai trong các mệnh đề dưới đây:
đúng,
sai,
đúng.
đúng,
đúng nên
đúng,
đúng,
đúng nên
đúng,
đúng.
đúng,
đúng nên
đúng.
đúng,
đúng nên
đúng,
đúng,
sai nên
sai.
Chọn đáp án .
Tập nghiệm của phương trình ?
Ta có:
Vậy tập nghiệm phương trình là:
Tam giác vuông tại
. Độ dài vectơ
bằng:
Vẽ . Vẽ hình bình hành
Ta có:
Do đó .
Cho tam giác Có bao nhiêu vectơ khác vectơ - không có điểm đầu và điểm cuối là các đỉnh
Đó là các vectơ:
Cho hình vuông cạnh bằng
. Tính độ dài véctơ
.
Hình vẽ minh họa:
Bằng phép tịnh tiến, từ đồ thị hàm số y = − 2x2suy ra đồ thị hàm số y = − 2x2 − 6x + 3 như thế nào?
Xét
Do đó tịnh tiến đồ thị hàm số y = − 2x2 để được đồ thị hàm số y = − 2x2 − 6x + 3 ta làm như sau:
Tịnh tiến liên tiếp đồ thị hàm số y = − 2x2 đi sang bên trái đơn vị và lên trên đi
đơn vị.
Nghiệm của phương trình là:
Điều kiện: .
Ta có: .
Loại . Do đó
.
Giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x4 − 4x3 − x2 + 10x − 3 trên đoạn [ − 1; 4] là
Ta có y = x4 − 4x3 − x2 + 10x − 3 = x4 − 4x3 + 4x2 − 5x2 + 10x − 5 + 2
= (x2−2x)2 − 5(x−1)2 + 2 = [(x−1)2−1]2 − 5(x−1)2 + 2.
Đặt t = (x−1)2, x ∈ [ − 1; 4] ⇒ t ∈ [0; 9].
.
Cách 1: Ta có .
Cách 2: Vẽ BBT
Vậy , ymax = 21.
Miền nghiệm của bất phương trình: là nửa mặt phẳng chứa điểm:
Ta có .
Vì là mệnh đề đúng nên miền nghiệm của bất phương trình trên chứa điểm có tọa độ
.
Trong mặt phẳng tọa độ cho tam giác
có
và
. Tính số đo góc
của tam giác đã cho.
Ta có: và
.
.
Tam giác có
. Độ dài cạnh AC là khoảng:
Ta có:
Áp dụng định lí sin cho tam giác ABC ta có:
Xác định parabol (P) : y = ax2 + bx + 2, biết rằng (P) đi qua hai điểm M(1;5) và N(−2;8).
Vì (P) đi qua hai điểm M(1;5) và N(−2;8) nên ta có hệ
. Vậy (P) : y = 2x2 + x + 2.
Các giá trị m để tam thức đổi dấu 2 lần là:
Để đổi dấu 2 lần thì
.
Ta có:
hoặc
.
Cho biết . Tính
.
Ta có:
.
Bác Hùng tính trồng rau và hoa trên một lô đất rộng 10ha. Nếu trồng rau cần 20 công và thu 10 triệu đồng trên diện tích mỗi ha, nếu trồng hoa cần 30 công và thu 12 triệu đồng trên diện tích mỗi ha. Biết rằng rau do các thành viên trong gia đình chăm sóc và số công không vượt quá 80, còn hoa gia đình thuê nhân công với giá 100.000 đồng cho mỗi công. Hỏi cần trồng mỗi loại cây trên với diện tích là bao nhiêu để thu được lợi nhuận cao nhất.
Diện tích trồng hoa là: 6 (ha)
Diện tích trông rau là: 4 (ha)
Bác Hùng tính trồng rau và hoa trên một lô đất rộng 10ha. Nếu trồng rau cần 20 công và thu 10 triệu đồng trên diện tích mỗi ha, nếu trồng hoa cần 30 công và thu 12 triệu đồng trên diện tích mỗi ha. Biết rằng rau do các thành viên trong gia đình chăm sóc và số công không vượt quá 80, còn hoa gia đình thuê nhân công với giá 100.000 đồng cho mỗi công. Hỏi cần trồng mỗi loại cây trên với diện tích là bao nhiêu để thu được lợi nhuận cao nhất.
Diện tích trồng hoa là: 6 (ha)
Diện tích trông rau là: 4 (ha)
Gọi diện tích trồng rau và hoa gia đình cần trồng lần lượt là: (ha)
Điều kiện:
Số tiền cần bỏ ra để thuê người trồng hoa là (trồng).
Lợi nhuận thu được là
(đồng).
Vì số công trồng rau không vượt quá nên
Ta có hệ bất phương trình sau:
Ta cần tìm giá trị lớn nhất của trên miền nghiệm của hệ
.
Miền nghiệm của hệ là tứ giác
(kể cả biên).
Hình vẽ minh họa
Hàm số sẽ đạt giá trị lớn nhất khi
là toạ độ của một trong các đỉnh
.
=> lớn nhất khi
Như vậy cần 4 ha trồng rau và 6 ha trồng để thu về lợi nhuận lớn nhất
Cho mệnh đề P: “∆ABC cân tại A ⇔ AB = AC”. Chọn khẳng định đúng nhất trong các khẳng định sau?
Vì AB = AC nên suy ra ∆ABC cân tại A.
Vì ∆ABC cân tại A nên suy ra AB = AC.
Do đó đáp án đúng là “∆ABC cân tại A” là điều kiện cần và đủ để “AB = AC”.
Cho đường tròn và hai tiếp tuyến song song với nhau tiếp xúc với
tại hai điểm
và
Mệnh đề nào sau đây đúng?
Do hai tiếp tuyến song song và là hai tiếp điểm nên
là đường kính.
Do đó là trung điểm của
.
Suy ra .
Cho 2 vectơ đơn vị và
thỏa
. Hãy xác định
.
Ta có: và
.
Suy ra .
Cho tam giác có
là trung điểm của
là trung điểm của
Khẳng định nào sau đây đúng?
Vì là trung điểm
nên
Mặt khác
là trung điểm
nên
Suy ra
Các giá trị m làm cho biểu thức luôn dương là
Biểu thức luôn dương
Trong hệ tọa độ cho hình bình hành
, điểm
thuộc trục hoành. Khẳng định nào sau đây đúng?
Từ giả thiết suy ra cạnh thuộc trục hoành
cạnh
song song với trục hoành nên
. Do đó loại đáp án
có tung độ khác
và đáp án hai điểm
có tung độ khác nhau.
Nếu có hoành độ bằng
: mâu thuẩn với giả thiết
là hình bình hành. Loại đáp án
có hoành độ bằng
Dùng phương pháp loại trừ, ta chọn
Cách 2. Gọi là tâm của hình bình hành
. Suy ra
là trung điểm
là trung điểm
Từ đó suy ra