Cho tam giác , biết
. Số đo góc
là:
Áp dụng hệ quả định lí cosin cho tam giác ABC ta có:
Cho tam giác , biết
. Số đo góc
là:
Áp dụng hệ quả định lí cosin cho tam giác ABC ta có:
Cho hàm số y = ax2 + bx + c có đồ thị như hình dưới đây. Khẳng định nào sau đây là đúng?
Nhìn vào đồ thị ta có:
Bề lõm hướng xuống ⇒ a < 0.
Hoành độ đỉnh .
Đồ thị hàm số cắt trục tung tại điểm có tung độ âm ⇒ c < 0.
Do đó: a < 0, b > 0, c < 0.
Trong các mệnh đề sau, mệnh đề nào có mệnh đề đảo ĐÚNG?
Nếu a chia hết cho 3 thì a chia hết cho 9 có mệnh đề đảo là Nếu a chia hết cho 9 thì a chia hết cho 3. Đây là mệnh đề đảo đúng.
Cho hai tập hợp . Tìm a để
có đúng một phần tử.
Để có đúng một phần tử khi và chỉ khi
. Khi đó
.
Vậy là giá trị cần tìm.
Cho biểu thức B xác định, rút gọn biểu thức
với
?
Ta có:
Do đó:
Vì nên
Tam giác đều ABC có đường cao AH. Khẳng định nào sau đây là đúng?
Hình ảnh minh họa
Do tam giác ABC là tam giác đều có AH là đường cao nên đồng thời là đường phân giác
=>
Do đó:
Ta có:
Cho hệ bất phương trình . Trong các điểm sau, điểm nào thuộc miền nghiệm của hệ bất phương trình?
Ta thay lần lượt tọa độ các điểm vào hệ bất phương trình.
Với . Bất phương trình thứ nhất và thứ ba sai nên không thỏa mãn.
Với . Bất phương trình thứ ba sai nên không thỏa mãn.
Với . Đúng.
Cho tam giác có
lần lượt là trung điểm
, điểm
thuộc cạnh
sao cho
. Đẳng thức nào sau đây đúng?
Gọi K là trung điểm BN.
Xét ta có
(1)
Xét ta có
(2)
Từ (1) và (2) suy ra .
Phương trình (m−1)x2 − 2x + m + 1 = 0 có hai nghiệm phân biệt khi
Yêu cầu bài toán
Vậy phương trình có hai nghiệm phân biệt
Gọi là tâm hình vuông
. Tính
.
Ta có .
Trong hệ tọa độ , cho hai điểm
Tìm tọa độ điểm
thuộc trục hoành sao cho
thẳng hàng.
Điểm Ta có
và
Để thẳng hàng
cùng phương với
Cho góc . Gọi
và
là hai điểm di động lần lượt trên
và
sao cho
. Độ dài lớn nhất của đoạn
bằng:
Theo định lí hàm sin, ta có:
Do đó, độ dài lớn nhất khi và chỉ khi
.
Khi đó .
Cho hệ bất phương trình có tập nghiệm
. Khẳng định nào sau đây là khẳng định đúng ?
Ta có: . Do đó không có điểm nào thỏa mãn hệ phương trình.
Hệ này vô nghiệm.
Cho ,
. Tính góc của
.
Ta có .
Các giá trị của tham số m để phương trình (1) có nghiệm là:
Đặt
⇒ t2 = x2 − x + 1 ⇒ (2x−1)2 = 4x2 − 4x + 1 = 4t2 − 3
Vì nên
Phương trình (1) trở thành 4t2 − 3 + m = t ⇔ − 4t2 + t + 3 = m.
Xét hàm số y = − 4t2 + t − 3 với
Ta có
Bảng biến thiên
Phương trình (1) có nghiệm ⇔ phương trình có nghiệm
⇔ đồ thị hàm số y = − 4t2 + t − 3 trên cắt đường thẳng
.
Vậy phương trình (1) có nghiệm khi và chỉ khi .
Điểm cuối của thuộc góc phần tư thứ ba của đường tròn lượng giác. Khẳng định nào sau đây là sai?
Điểm cuối của thuộc góc phần tư thứ hai
.
Bất phương trình nào sau đây là bất phương trình bậc hai một ẩn?
Bất phương trình bậc hai một ẩn là:
Trong mặt phẳng tọa độ , gọi
là trực tâm tam giác
có tọa độ các đỉnh
và
là trọng tâm tam giác
. Tính giá trị biểu thức
?
Gọi . Vì I là trọng tâm tam giác ABC nên ta có hệ phương trình:
Ta có: là trực tâm tam giác ABC nên
Ta có hệ phương trình
Vậy biểu thức
Trong mặt phẳng tọa độ cho hai vectơ
và
. Tính cosin của góc giữa hai vectơ
và
Ta có: .
Một doanh nghiệp tư nhân A chuyên kinh doanh xe gắn máy các loại. Hiện nay doanh nghiệp đang tập trung chiến lược vào kinh doanh xe hon đa Future Fi với chi phí mua vào một chiếc là 27 và bán ra với giá là 31 triệu đồng. Với giá bán này thì số lượng xe mà khách hàng sẽ mua trong một năm là 600 chiếc. Nhằm mục tiêu đẩy mạnh hơn nữa lượng tiêu thụ dòng xe đang ăn khách này, doanh nghiệp dự định giảm giá bán và ước tính rằng nếu giảm 1 triệu đồng mỗi chiếc xe thì số lượng xe bán ra trong một năm là sẽ tăng thêm 200 chiếc. Vậy doanh nghiệp phải định giá bán mới là bao nhiêu để sau khi đã thực hiện giảm giá, lợi nhuận thu được sẽ là cao nhất.
Gọi x đồng là số tiền mà doanh nghiệp A dự định giảm giá; (0≤x≤4).
Khi đó:
Lợi nhuận thu được khi bán một chiếc xe là 31 − x − 27 = 4 − x .
Số xe mà doanh nghiệp sẽ bán được trong một năm là 600 + 200x .
Lợi nhuận mà doanh nghiệp thu được trong một năm là
f(x) = (4−x)(600+200x) = − 200x2 + 200x + 2400.
Xét hàm số f(x) = − 200x2 + 200x + 2400 trên đoạn [0; 4] có bảng biến thiên
Vậy .
Vậy giá mới của chiếc xe là 30, 5 triệu đồng thì lợi nhuận thu được là cao nhất.
Trong các mệnh đề sau đây, mệnh đề nào có là đúng?
+ Nếu chia hết cho
thì
và
cùng chia hết cho
Mệnh đề sai. Ví dụ:
chia hết cho
nhưng
và
không chia hết cho
+ Nếu 2 tam giác có diện tích bằng nhau thì bằng nhau Mệnh đề sai. Ví dụ, 1 tam giác vuông và 1 tam giác đều có diện tích bằng nhau nhưng chúng không bằng nhau.
+ Nếu chia hết cho
thì
chia hết cho
Mệnh đề đúng.
+ Nếu một số chia hết cho thì số đó tận cùng bằng
Mệnh đề sai. Ví dụ
chia hết cho
nhưng không tận cùng bằng
Chọn đáp án: Nếu chia hết cho
thì
chia hết cho
Trên đường thẳng lấy điểm
sao cho
. Điểm
được xác định đúng trong hình vẽ nào sau đây:
Ta có nên
và
và
ngược hướng.
Cho hình vuông . Khẳng định nào sau đây đúng?
là hình vuông
.
Tất cả các giá trị của tham số m để phương trình có nghiệm là:
ĐKXĐ: x > − 1
pt ⇔ 3mx + 1 + x + 1 = 2x + 5m + 3 ⇔ (3m−1)x = 5m + 1.
Phương trình đã cho có nghiệm .
Tính tổng tất cả các nghiệm của phương trình ?
Ta có:
Vậy tổng các nghiệm của phương trình bằng .
Cho biết là một phần tử của tập hợp
xét các mệnh đề sau:
(I)
(II) .
(III)
(IV)
Trong các mệnh đề sau, mệnh đề nào là đúng:
I đúng.
II sai vì không có khái niệm tập hợp này thuộc tập hợp kia.
III sai vì phần tử thì không thể là con của
tập hợp.
IV đúng.
Cho biết . Tính
.
Ta có:
.
Tam giác có
và
. Tính độ dài cạnh
.
Theo định lí hàm sin, ta có
.
Tam giác vuông ở
và có góc
. Hệ thức nào sau đây là sai?
Vì nên loại
.
Vì nên loại
.
Vì nên loại
.
Vì nên chọn
.
Cho hàm số . Tìm tọa độ điểm thuộc đồ thị của hàm số và có tung độ bằng − 2.
Gọi M0(x0;−2) là điểm thuộc đồ thị hàm số có tung độ bằng − 2.
Khi đó: .
Cho tam giác đều cạnh
. Gọi
là trung điểm
. Khẳng định nào sau đây đúng?
Tam giác đều cạnh
nên độ dài đường trung tuyến bằng
.
Chọn
Tìm m để f(x) = x2 − 2(2m−3)x + 4m − 3 > 0, ∀x ∈ ℝ?
f(x) = x2 − 2(2m−3)x + 4m − 3 > 0, ∀x ∈ ℝ⇔Δ < 0 ⇔ 4m2 − 16m + 12 < 0 ⇔ 1 < m < 3.
Cho định lí “Nếu thì
”. Giả thiết của định lí này là gì?
Khi mệnh đề là định lí, ta nói:
là giả thiết,
là kết luận của định lí
Từ đó ta suy ra: Giả thiết của định lí là
Vectơ có điểm đầu là , điểm cuối là
được kí hiệu là
Vectơ có điểm đầu là , điểm cuối là
được kí hiệu là
Trong mặt phẳng tọa độ , cho hai vecto
và
với
. Tìm giá trị của tham số m để
?
Ta có:
Vậy m = 2 thì hai vecto đã cho vuông góc với nhau.
Cho mệnh đề chứa biến chia hết cho 4” với
là số nguyên. Xét xem các mệnh đề
và
đúng hay sai?
Thay và
vào
ta được các số
và
không chia hết cho
. Vậy
đúng và
sai.
Cho bất phương trình (1). Chọn khẳng định đúng trong các khẳng định sau:
Bất phương trình bậc nhất hai ẩn luôn có vô số nghiệm.
Cho hàm số y = − x2 + 4x + 1. Khẳng định nào sau đây sai?
Hàm số y = ax2 + bx + c với a < 0 nghịch biến trên khoảng , đồng biến trên khoảng
.
Áp dụng: Ta có Do đó hàm số nghịch biến trên khoảng (2;+∞) và đồng biến trên khoảng (−∞;2). Do đó Hàm số nghịch biến trên khoảng (4;+∞) và đồng biến trên khoảng (−∞;4) sai. Chọn đáp án này.
Đáp án Trên khoảng (−∞;−1) hàm số đồng biến đúng vì hàm số đồng biến trên khoảng (−∞;2) thì đồng biến trên khoảng con (−∞;−1).
Đáp án Trên khoảng (3;+∞) hàm số nghịch biến đúng vì hàm số nghịch biến trên khoảng (2;+∞) thì nghịch biến trên khoảng con (3;+∞).
Cho tập hợp và
, với
là tham số. Tìm
để
có đúng hai tập con và
?
có đúng hai tập con và
khi và chỉ khi phương trình
(1) có đúng một nghiệm dương.
Trường hợp 1. , phương trình (1) trở thành
Do đó không thỏa đề bài.
Trường hợp 2. , khi đó phương trình (1) có đúng một nghiệm dương khi và chỉ khi
Vậy là giá trị duy nhất thỏa mãn yêu cầu đề bài.
Cho hai điểm và
phân biệt. Điều kiện để
là trung điểm
là:
Điều kiện để là trung điểm
là:
Cho tam giác ABC và điểm M thỏa mãn . Xác định vị trí điểm M.
Điểm là trọng tâm tam giác
khi và chỉ khi
.
Có bao nhiêu giá trị nguyên của tham số sao cho hàm số
có hai nghiệm phân biệt thuộc khoảng
?
Ta có:
Từ yêu cầu bài toán
Suy ra
Vậy có 8 giá trị nguyên của tham số m thỏa mãn yêu cầu bài toán.
Cho tam giác có
. Số đo của
là:
Áp dụng hệ quả của định lí cosin ta có:
Trong mặt phẳng tọa độ , tọa độ vecto
là:
Ta có: .
Cặp số nào sau đây là nghiệm của bất phương trình ?
Xét đáp án (0; 3) ta có: x = 0; y = 3 thay vào bất phương trình ta được:
Vậy (0;3) không là cặp nghiệm của bất phương trình
Xét đáp án (6; 1) ta có: x = 6; y = 1 thay vào bất phương trình ta được:
Vậy (6; 1) là cặp nghiệm của bất phương trình.
Xét đáp án (2; 4) ta có: x = 2; y = 4 thay vào bất phương trình ta được:
Vậy (2; 4) không là cặp nghiệm của bất phương trình.
Xét đáp án (3; 2) ta có: x = 3; y = 2 thay vào bất phương trình ta được:
Vậy (3; 2) không là cặp nghiệm của bất phương trình.