Cho tam giác ABC có b = 7; c = 5, . Đường cao
của tam giác ABC là:
Ta có:
Mặt khác:
(Vì
).
Mà:
.
Cho tam giác ABC có b = 7; c = 5, . Đường cao
của tam giác ABC là:
Ta có:
Mặt khác:
(Vì
).
Mà:
.
Cho bốn điểm phân biệt thỏa mãn
. Khẳng định nào sau đây sai?
Phải suy ra là hình bình hành (nếu
không thẳng hàng) hoặc bốn điểm
thẳng hàng.
Đáp án sai là là hình bình hành.
Xác định số phương trình luôn có nghiệm với mọi giá trị của tham số m trong các phương trình dưới đây?
Với thì
vô nghiệm.
Vì với mọi giá trị thực của m ta có: nên
Từ đó suy ra vậy phương trình
luôn có nghiệm.
Phương trình luôn có nghiệm với mọi giá trị thực của m.
Một cửa hàng bán hai loại mặt hàng và
. Biết rằng cứ bán một mặt hàng loại
cửa hàng lãi 5 nghìn đồng, bán một mặt hàng loại
cửa hàng lãi 7 nghìn đồng. Gọi
lần lượt là số mặt hàng loại
và mặt hàng loại
mà cửa hàng đó bán ra trong một tháng. Cặp số
nào sau đây biểu thị số mặt hàng bán ra mỗi loại của cửa hàng trong một tháng mà tổng số tiền lãi không ít hơn 30 triệu đồng?
Đặt x là số tiền lãi của mặt hàng A
y là số tiền lãi của mặt hàng B
Đổi 30 triệu = 30 000 nghìn đồng
Theo đề bài ta có:
TH1: Thay A (1000; 2000) vào phương trình
. Thay B(3000; 1000
vào phương trình
: Thay C
vào phương trình
TH4: Thay vào phương trình
Vậy đáp án là: C
Cho M là trung điểm AB, tìm biểu thức sai:
Ta có: M là trung điểm của AB
Vậy biểu thức sai là:
Bảng dưới đây thống kê lại tốc độ phát triển của 1 loại vi khuẩn (đơn vị: nghìn con).
Ta nên lấy giá trị nào là giá trị đại diện của bảng trên?
Sắp xếp lại số liệu theo thứ tự không giảm:
20 20 20 30 60 100 150 270 440 980
Do mẫu số liệu chứa các giá trị chênh lệch rất lớn nên không thể lấy số trung bình hoặc mốt làm giá trị đại diện.
Tứ phân vị không được coi là giá trị đại diện.
Do đó ta lấy trung vị làm giá trị đại diện. Ta có:.
Chọn đáp án: Trung vị, giá trị đại diện là 80.
Một tam giác có ba cạnh là Bán kính đường tròn ngoại tiếp là:
Ta có:
Suy ra:
.
Mà
.
Bà Sáu sở hữu một mảnh đất hình tam giác. Chiều dài của hàng rào là
, chiều dài của hàng rào
là
. Góc giữa hai hàng rào
và
là
(như hình vẽ).
Chiều dài hàng rào là bao nhiêu mét (làm tròn kết quả đến hàng phần mười)?
Áp dụng định li côsin ta
.
Suy ra .
Vậy chiều dài hàng rào là khoảng
.
Cho tam giác vuông tại
và có
. Tính
.
Ta có .
Cho hai vectơ và
đều khác vectơ
Tích vô hướng của
và
được xác định bằng công thức nào dưới đây?
Cho hai vectơ và
đều khác vectơ
Tích vô hướng của
và
là một số, kí hiệu là
được xác định bởi công thức sau:
.
Cho Khẳng định nào sau đây đúng?
Ta có: điểm cuối cung
thuộc góc phần tư thứ
Xác định các tứ phân vị của mẫu số liệu: ?
Sắp xếp mẫu dữ liệu theo thứ tự không giảm như sau:
Ta có: suy ra trung vị bằng trung bình cộng của dữ liệu nằm ở vị trí thứ 5 và thứ 6
Vậy đáp án đúng là: .
Chọn khẳng định đúng.
Khẳng định đúng là:
Khoảng biến thiên chỉ sử dụng thông tin của giá trị lớn nhất và bé nhất, bỏ qua thông tin các giá trị còn lại.
Đâu là kí hiệu của hai mệnh đề kéo theo?
Mệnh đề kéo theo được kí hiệu là:
Cho tam giác ABC đều cạnh 2a. Đẳng thức nào sau đây là đúng?
Theo bài ra ta có:
Tam giác ABC đều cạnh 2a => AB = BC = AC = 2a
=>
Tập hợp C = (2;+∞) \ [-3;8] bằng tập hợp nào sau đây?
Ta có: C = (2;+∞) \ [-3;8] = (8;+∞).
Tìm các giá trị của để
là đoạn có độ dài bằng 10. Biết
và
, với
là tham số.
Nếu thì
, suy ra loại.
Nếu thì
Để là một đoạn có độ dài bằng 10 khi và chỉ khi
Cho biết kết quả đo chiều cao của một số học sinh lớp 10E như sau: . Xác định khoảng biến thiên của mẫu số liệu?
Quan sát dãy số liệu ta thấy:
Giá trị lớn nhất là 169
Giá trị nhỏ nhất là 150
Vậy khoảng biến thiên của mẫu số liệu bằng 169 – 150 = 19.
Miền nghiệm của bất phương trình được xác định bởi miền nào (nửa mặt phẳng không bị gạch và không kể d) sau đây?
Vẽ đường thẳng -x + y = 2
Vì -x + y < 2 nên tọa độ điểm (0; 0) thỏa mãn là nghiệm của bất phương trình.
Vậy đáp án là:
Cho hệ bất phương trình . Trong các điểm sau, điểm nào thuộc miền nghiệm của hệ bất phương trình?
Ta thay lần lượt tọa độ các điểm vào hệ bất phương trình.
Với
. Bất phương trình thứ hai sai nên không thỏa mãn.
Với
. Đúng. Chọn đáp án này.
Cho hình chữ nhật ABCD có AB = 8, AD = 5. Tính .
Do ABCD là hình chữ nhật =>
Xét tam giác ABD vuông tại A ta có:
Ta lại có:
Cho hình vuông cạnh
. Tính
.
Ta có: . (hình vuông cạnh
thì đường chéo bằng
).
Tìm tất cả giá trị của tham số để hệ bất phương trình
có tập nghiệm được biểu diễn trên mặt phẳng tọa độ là một hình tam giác.
Họ đường thẳng luôn đi qua điểm
, hay nói cách khác các đường thẳng
xoay quanh A.
Mặt khác, ta có đúng với mọi m
=> Miền nghiệm của bất phương trình luôn chứa điểm
.
Do đó ta có 3 khả năng sau
Vậy .
Cho ,
và
. Khi đó,
là:
Ta có:
Suy ra
Người ta thường kí hiệu tập hợp số như thế nào?
Người ta thường kí hiệu các tập hợp số như sau:
Cặp số (1; – 1) là nghiệm của bất phương trình nào sau đây?
Thay cặp số (1; – 1) vào bất phương trình ta được:
thỏa mãn. Suy ra cặp số này là nghiệm của bất phương trình.
Cho hình bình hành ABCD tâm O. Khi đó bằng:
Ta có:
Trong hệ tọa độ cho tam giác
có
và trọng tâm
. Tìm tọa độ đỉnh
?
Gọi
Vì là trọng tâm tam giác
nên
Cho số gần đúng . Hãy viết số quy tròn của
?
Với . Số quy tròn của số
là:
.
Cho tam giác có
. Tính độ dài cạnh
.
Áp dụng định lí côsin:
.
Suy ra .
Số liệu xuất hiện nhiều nhất trong mẫu số liệu được gọi là:
Số liệu xuất hiện nhiều nhất trong mẫu số liệu được gọi là mốt.
Với giá trị nào của x thì mệnh đề chứa biến "" là đúng?
Thay vào 2 vế, ta được:
(đúng).
Cho ba điểm phân biệt. Điều kiện cần và đủ để ba điểm đó thẳng hàng là
Ta có tính chất: Điều kiện cần và đủ để ba điểm phân biệt thẳng hàng là
.
Trong hệ tọa độ cho bốn điểm
Khẳng định nào sau đây đúng?
Ta có ngược hướng.
Trong mặt phẳng tọa độ Oxy, cho . Đâu là tọa độ của điểm A?
Ta có: O(0; 0)
Cho tam giác có các góc thỏa mãn biểu thức
Giả sử . Tính số đo góc
?
Ta có:
Theo định lí cosin ta có:
Ta thấy
Mặt khác
Do đó: khi
Vậy tam giác ABC là tam giác vuông tại .
Cho hình bình hành có
là giao điểm của hai đường chéo. Đẳng thức nào sau đây sai?
Xét các đáp án:
Đáp án Ta có
Đáp án Ta có
(quy tắc hình bình hành).
Đáp án Ta có
.
Đáp án Do
Chọn đáp án này.
Cho hình bình hành , điểm
thoả mãn:
. Khi đó
là trung điểm của:
Ta có: .
Vậy là trung điểm của
.
Cho hai vecto và
biết
và
. Tính
.
Ta có:
Cho góc α, (0° ≤ α ≤ 180°). Trong các khẳng định sau, khẳng định nào sai?
Khẳng định sai là: " , (0° < α < 180° và α ≠ 90°)"
Sửa lại là " , (0° < α < 180° và α ≠ 90°)".
Câu nào là mệnh đề toán học?
Mệnh đề toán học là: "2 là số tự nhiên"
Liệt kê sĩ số của từng lớp trong khối 10 ta được bảng số liệu như sau:
Lớp |
10A |
10B |
10C |
10D |
10E |
Sĩ số |
40 |
43 |
45 |
41 |
46 |
Xác định giá trị gần nhất với độ lệch chuẩn của mẫu số liệu?
Ta có:
Số trung bình của mẫu số liệu là:
Phương sai của mẫu số liệu là:
Suy ra độ lệch chuẩn của mẫu số liệu là:
Vậy độ lệch chuẩn của mẫu số liệu là 2,28.
Số điểm của một vận động viên trong 5 hiệp được ghi lại như sau: 9 8 15 8 20. Tính tứ phân vị của mẫu số liệu trên.
Sắp xếp mẫu số liệu theo thứ tự không giảm: 8 8 9 15 20.
Số liệu chính giữa là 9 nên trung vị của mẫu số liệu trên là 9.
Trung vị của mẫu số liệu 8 8 là .
Trung vị của mẫu số liệu 15 20 là .
Vậy .
Cho tam giác có
. Diện tích
của tam giác
là:
Ta có: nên tam giác
vuông tại B.
Diện tích tam giác là: .
Số quy tròn của số đến hàng chục bằng:
Số quy tròn của số đến hàng chục bằng
.