Biến đổi thành tích biểu thức ta được
Ta có
Biến đổi thành tích biểu thức ta được
Ta có
Xác định số hạng tổng quát của dãy số dãy số với
.
Từ công thức
Xét đáp án với
(loại)
Xét đáp án ta thấy thỏa mãn
Xét đáp án với
(loại)
Xét đáp án với
(loại)
Cho dãy số xác định bởi
với
. Khi đó số hạng
của dãy
là
Ta có:
Khẳng định nào sau đây đúng?
Ta có:
Tìm số hạng thứ 11 của cấp số cộng có số hạng đầu bằng 3 và công sai d = −2?
Ta có:
Số vị trí biểu diễn các nghiệm của phương trình trên đường tròn lượng giác là?
1 || 1 vị trí || một || một vị trí || Một vị trí
Số vị trí biểu diễn các nghiệm của phương trình trên đường tròn lượng giác là?
1 || 1 vị trí || một || một vị trí || Một vị trí
Phương trình
Suy ra có duy nhất 1 vị trí biểu diễn nghiệm của phương trình trên đường tròn lượng giác.
Cho hình chóp . Trung điểm của các cạnh
lần lượt là
. Chọn khẳng định đúng.
Hình vẽ minh họa
Ta có:
mà
cắt
nên khẳng định
sai.
cắt
tại
nên khẳng định
sai.
cắt
tại trung điểm của
nên khẳng định
sai.
Cho hình chóp tứ giác . Gọi
lần lượt là trung điểm của
và
. Khẳng định nào sau đây đúng?
Hình vẽ minh họa
Xét có
lần lượt là trung điểm
=> là đường trung bình của
=> mà
Cho hình chóp đáy
là hình bình hành tâm
. Chọn khẳng định sai?
Hình vẽ minh họa
Ta có: nên đường thẳng
cắt mặt phẳng
tại điểm
.
Vậy khẳng định sai là “”
Cho hình chóp S.ABCD có đáy là hình thang với các cạnh đáy là AB, CD. Gọi I, J lần lượt là trung điểm của AD, BC và G là trọng tâm của tam giác SAB. Tìm điều kiện của AB và CD để thiết diện của (GIJ) với hình chóp S.ABCD là hình bình hành.
Hình vẽ minh họa
Ta có ABCD là hình thang và I, J là trung điểm của AD và BC nên IJ là đường trung bình của hình thang ABCD
=> IJ // AB // CD
=> Trong (SAB) qua G kẻ MN // AB (M ∈ SA, N ∈ SB)
=> (SAB) ∩ (IJG) = MN và MN // IJ // AB // CD
Dễ thấy thiết diện của (IJG) và hình chóp là hình thang MNJI.
G là trọng tâm của tam giác SAB và MN // AB nên theo định lí Ta - lét ta có:
(Với E là trung điểm của AB)
=>
Ta lại có: IJ là đường trung bình của hình thang ABCD nên:
Để hình thang MNIJ trở thành hình bình hành thì điều kiện cần là MN = IJ
Cho hàm số . Mệnh đề nào sau đây đúng?
Điều kiện xác định của hàm số là:
Suy ra tập xác định của hàm số là:
Nên hàm số không liên tục tại các điểm .
Tìm chu kì T của hàm số
Hàm số tuần hoàn với chu kì
Hàm số tuần hoàn với chu kì
Suy ra hàm số tuần hoàn với chu kì
Cho hình chóp có đáy
là hình bình hành. Đường thẳng nào dưới đây song song với giao tuyến của hai mặt phẳng
và
?
Hình vẽ minh họa:
Ta có:
,
đi qua
và
.
Vậy giao tuyến của hai mặt phẳng và
song song với đường thẳng
.
Giá trị của giới hạn bằng:
Ta có:
Kết quả giới hạn , với
là phân số tối giản
. Tổng
bằng bao nhiêu?
Đáp án: 3
Kết quả giới hạn , với
là phân số tối giản
. Tổng
bằng bao nhiêu?
Đáp án: 3
Ta có
.
Suy ra .
Có tất cả bao nhiêu giá trị nguyên của tham số m để phương trình có nghiệm?
Ta có .
Phương trình có nghiệm
Vậy có tất cả 3 giá trị nguyên của tham số m.
Có duy nhất một mặt phẳng đi qua
Phương án "Hai đường thẳng " sai vì nếu 2 đường thẳng đó trùng nhau thì có vô số mặt phẳng đi qua 2 đường thẳng đó.
Phương án "Một điểm và một đường thẳng" sai vì nếu điểm đó thuộc đường thẳng đã cho thì có vô số mặt phẳng đi qua điểm và đường thẳng đã cho.
Phương án "Ba điểm" sai vì nếu có 2 trong ba điểm đó trùng nhau hoặc cả 3 điểm đó trùng nhau thì có vô số mặt phẳng thỏa mãn.
Vậy hoàn thành mệnh đề như sau: "Có duy nhất một mặt phẳng đi qua hai đường thẳng cắt nhau."
Cho tứ diện có
lần lượt là trọng tâm tam giác
và
. Chọn kết luận đúng?
Hình vẽ minh họa
Gọi M, N lần lượt là trung điểm của BD và BC
Suy ra MN là đường trung bình tam giác BCD => MN // CD (*)
Do I, J là trọng tâm tam giác ABC và ABD suy ra
Từ (*) và (**) suy ra TH
1
Từ độ cao 55,8m của tháp nghiêng Pisa nước Italia người ta thả một quả bóng cao su chạm xuống đất. Giả sử mỗi lần chạm đất quả bóng lại nảy lên độ cao bằng độ cao mà quả bóng đạt trước đó. Tổng độ dài hành trình của quả bóng được thả từ lúc ban đầu cho đến khi nó nằm yên trên mặt đất thuộc khoảng nào trong các khoảng sau đây?
Ta có:
Độ cao của quả bóng sau mỗi lần nảy lên là một cấp số nhân lùi vô hạn (un) với u1 = 55,8m,
Sau khi nảy lên, qua bóng rơi xuống một quãng đường đúng bằng chiều cao.
Từ đó tổng quãng đường mà quả bóng đã di chuyển là
Vậy tổng quãng đường quả bóng di chuyển nằm trong khoảng .
Dãy số nào sau đây là một cấp số cộng?
Dãy số ở đáp án A thỏa mãn điều kiện với
là cấp số cộng.
Chu kì của hàm số là
Hàm số tuần hoàn với chu kỳ
.
Dãy số nào sau đây không phải là cấp số nhân?
Xét đáp án có
=> Dãy số không phải là cấp số nhân.
Cung tròn có số đo là . Hãy chọn số đo độ của cung tròn đó trong các cung tròn sau đây:
Ta có:
Tính diện tích của đa giác tạo bởi các điểm trên đường tròn lượng giác biểu diễn các nghiệm của phương trình .
Hình vẽ minh họa
Điều kiện
Ta có:
Với ta được nghiệm
Kết hợp với điều kiện ở đầu bài và chọn 2 điểm có nghiệm trên đường tròn lượng giác lần lượt biểu diễn bởi điểm A và B.
Với ta được
Kết hợp với điều kiện ở đầu bài và chọn hai nghiệm biểu diễn lần lượt bởi điểm C và D.
Tính diện tích hình chữ nhật ABCD.
Giá trị của bằng:
Với số thực a>0 nhỏ tùy ý, ta chọn
Ta có:
Vậy A=2.
Cho hình chóp tứ giác , đáy
là tứ giác lồi. Gọi
. Xác định giao tuyến của hai mặt phẳng
và
?
Hình vẽ minh họa
Nhận thấy S và M lần lượt là hai điểm chung của hai mặt phẳng (SAB) và (SCD).
Do đó giao tuyến của hai mặt phẳng (SAB) và (SCD) là SM.
Tính giới hạn
Ta có:
Tìm tập xác định D của hàm số
Hàm số xác định khi và chỉ khi
Do k là số nguyên =>
Vậy tập xác định
Nghiệm của phương trình 2cos (2x) =-2
Ta có:
.
Khách hàng A gửi 60 triệu đồng vào ngân hàng với kì hạn 1 tháng với lãi suất của loại kì hạn này là . Ngân hàng đó quy định: “Khi kết thúc kỳ hạn gửi tiền mà người gửi không đến rút tiền thì toàn bộ số tiền (bao gồm cả vốn và lãi) sẽ được chuyển gửi tiếp với kỳ hạn như kỳ hạn mà người gửi đã gửi”. Hỏi nếu sau hai năm, kể từ ngày gửi người đó đến ngân hàng để rút tiền thì số tiền rút được (gồm cả vốn và lãi) là bao nhiêu?
Với số nguyên dương , kí hiệu
là số tiền người đó rút được (gồm cả vốn và lãi) sau
tháng kể từ ngày gửi. khi đó, theo giả thiết của bài toán ta có:
Ta có: là một cấp số nhân với số hạng đầu
với công bội
nên
Số tiền rút được sau 2 năm là:
(đồng)
Chọn kết quả đúng của giới hạn ?
Cho cho
. Tính giá trị của
?
Ta có:
Vì nên
Cho cấp số nhân có các số hạng đều dương và
Giá trị của
là:
Ta có
Theo giả thiết, ta có:
Và
.
Suy ra . Vậy
.
Cho và
là một số nguyên. Khi đó với mọi số nguyên dương
, có kết luận gì về
?
Ta có:
là một số nguyên
cũng là một số nguyên
Ta sẽ chứng minh là một số nguyên.
Ta có:
là một số nguyên
Giả sử là số nguyên với
. Ta sẽ chứng minh
cũng là số nguyên.
Ta có:
Theo giả thiết quy nạp ta có:
Vậy là một số nguyên.
Cho cấp số nhân (un) có . Tìm công bội q và số hạng đầu u1.
Ta có:
Có bao nhiêu giá trị nguyên của tham số m để hàm số liên tục trên
?
Ta có:
Hàm số liên tục trên các khoảng
. Khi đó hàm số đã cho liên tục trên
khi và chỉ khi nó liên tục tại
, tức là ta cần có:
Ta lại có:
Khi đó không thỏa mãn với mọi
Vậy không tồn tại giá trị nào của tham số m thỏa mãn điều kiện đề bài.
Hình chữ nhật ABCD có hai đỉnh A, B thuộc trục Ox, hai đỉnh C, D thuộc đồ thị hàm số y = cos x (như hình vẽ). Biết rằng . Diện tích hình chữ nhật ABCD bằng bao nhiêu?
Gọi
Do ABCD là hình chữ nhật nên AB // CD
=>
=>
Diện tích hình chữ nhật ABCD bằng
Cho hàm số . Khẳng định nào dưới đây sai?
Ta có:
=> Không tồn tại giới hạn khi x dần đến 3.
Vậy chỉ có khẳng định sai.
Tính giới hạn
Khi ta có:
Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?
a) Dãy số xác định bởi công thức
là một dãy số tăng. Đúng||Sai
b) Một cấp số cộng có công sai bằng 7 suy ra . Sai||Đúng
c) Dãy số cấp số cộng khi
. Sai||Đúng
d) Một cấp số nhân có 6 số hạng với công bội và tổng số các số hạng lần lượt bằng và
. Khi đó số hạng cuối cùng của cấp số nhân đó là
. Đúng||Sai
Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?
a) Dãy số xác định bởi công thức
là một dãy số tăng. Đúng||Sai
b) Một cấp số cộng có công sai bằng 7 suy ra . Sai||Đúng
c) Dãy số cấp số cộng khi
. Sai||Đúng
d) Một cấp số nhân có 6 số hạng với công bội và tổng số các số hạng lần lượt bằng và
. Khi đó số hạng cuối cùng của cấp số nhân đó là
. Đúng||Sai
a) Ta có:
Suy ra:
b) Do công sai dương nên cấp số cộng là một dãy tăng nên
c) Ta có: là một cấp số cộng
Suy ra
d) Ta có:
Cho hai hình bình hành ABCD và ABEF có tâm lần lượt là O, O’ và không cùng nằm trong một mặt phẳng. Gọi M là trung điểm của AB.
(I) (ADF) // (BCE)
(II) (MOO’) // (ADF)
(III) (MOO’) // (BCE)
(IV) (AEC) // (BDF)
Khẳng định nào sau đây là đúng
Ta có: BC // AD; BE // AF (ABCD và ABEF là hình bình hành)
=> BC // (ADF); BE // (ADF)
Mà BC ∩∩ BE = B
=. (ADF) // (BEC).
O và O’ lần lượt là tâm của hình bình hành ABCD và ABEF nên O và O’ là trung điểm của BF và BD
Xét tam giác ABF có MO’ là đường trung bình nên MO’ // AF
MO’ // (ADF) (1)
Tương tự MO là đường trung bình của tam giác ABD nên MO // AD
MO // (ADF) (2)
Từ (1) và (2) suy ra (MOO’) // (ADF)
Chứng minh tương tự ta cũng có (MOO’) // (BCE).
Hai mặt phẳng (AEC) và (BDF) có:
AC ∩ DB = O ; AE ∩ BF = O’
Suy ra (AEC) ∩ (BDF) = OO’.
Vậy khẳng định (I); (II); (III) đúng.
Tính giới hạn
Ta có:
Cho hình chóp có đáy
là hình vuông cạnh bằng
là điểm trên cạnh
sao cho
Một mặt phẳng
đi qua
, song song với
và
cắt hình chóp theo một tứ giác. Gọi
là diện tích tứ giác thiết diện và
, với
là phân số tối giản,
. Tính giá trị của biểu thức
?
Đáp án: 110
Cho hình chóp có đáy
là hình vuông cạnh bằng
là điểm trên cạnh
sao cho
Một mặt phẳng
đi qua
, song song với
và
cắt hình chóp theo một tứ giác. Gọi
là diện tích tứ giác thiết diện và
, với
là phân số tối giản,
. Tính giá trị của biểu thức
?
Đáp án: 110
Hình vẽ minh họa
Ta kẻ ,
,
.
Vì mặt phẳng đi qua
, song song với
và
nên
đều thuộc
và thiết diện của hình chóp cắt bởi mặt phẳng
là tứ giác
.
Khi đó //
Tương tự, ta có được .
Suy ra và
là hình vuông.
Suy ra
Khi đó
Vậy
Chọn mệnh đề sai trong các mệnh đề sau:
Nếu hình chiếu song song của hai đường thẳng là một đường thẳng thì hai đường thẳng đó phải nằm trong một mặt phẳng song song hoặc chứa phương chiếu.
Mặt khác hai đường thẳng chéo nhau không cùng nằm trong bất kì mặt phẳng nào.
Do đó mệnh đề sai là: “Hình chiếu song song của hai đường thẳng chéo nhau có thể trùng nhau.”.