Đề thi học kì 1 Toán 11 Chân trời sáng tạo Đề 7

Mô tả thêm: Đề thi HK1 Toán 11 được biên soạn gồm câu hỏi dạng trắc nghiệm, đúng sai và tự luận ngắn với 4 mức độ giúp học sinh củng cố kiến thức và khả năng giải toán 11 Chân trời sáng tạo
  • Số câu hỏi: 22 câu
  • Số điểm tối đa: 22 điểm
Mua gói để Làm bài
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
  • Câu 1: Nhận biết

    Cho hai đường thẳng a; b cắt nhau và không đi qua điểm A. Xác định được nhiều nhất bao nhiêu mặt phẳng tạo bởi a, b và A?

    Có 3 mặt phẳng gồm (a,b),(A,a),(B,b).

  • Câu 2: Nhận biết

    Giá trị đại diện của nhóm \lbrack
58;60)

    Giá trị đại diện của mẫu là: \frac{58 +
60}{2} = 59.

  • Câu 3: Nhận biết

    Một nhóm 11 học sinh tham gia một kỳ thi. Số điểm thi của 11 học sinh đó được sắp xếp từ thấp đến cao như sau (thang điểm 10): 0;0;3;6;6;7;7;8;8;8;9. Tìm số trung bình của mẫu số liệu (tính chính xác đến hàng phần trăm).

    Số trung bình của mẫu số liệu là:

    \overline{x} = \frac{0.2 + 3.1 + 6.2 +
7.2 + 8.3 + 9}{11} = 5,64

  • Câu 4: Thông hiểu

    Giải phương trình \cot(3x - 1) = -
\sqrt{3}.

    Ta có

    \cot(3x - 1) = - \sqrt{3}

    \Leftrightarrow \cot(3x - 1) =
\cot\left( - \frac{\pi}{6} ight) = \cot\left( \frac{5\pi}{6}
ight)

    \Leftrightarrow 3x - 1 = \frac{5\pi}{6}
+ k\pi

    \Leftrightarrow x = \frac{1}{3} +
\frac{5\pi}{18} + k\frac{\pi}{3},k\mathbb{\in Z}

  • Câu 5: Thông hiểu

    Trong các dãy số sau, dãy số nào bị chặn trên?

    Ta có:

    \left( v_{n} ight):v_{n} = - n^{2} + 2
\leq 2.

    Vậy đây là dãy số bị chặn trên.

  • Câu 6: Thông hiểu

    Cho cấp số cộng \left( u_{n}
ight)có số hạng đầu u_{1} = -
5và công sai d = 3. Số 100 là số hạng thứ mấy của cấp số cộng?

    Ta có:

    u_{n} = u_{1} + (n - 1)d

    \Leftrightarrow 100 = - 5 + (n - 1)3
\Leftrightarrow n = 36

  • Câu 7: Thông hiểu

    Cho dãy số \left( u_{n} ight) biết \left\{ \begin{matrix}u_{1} = 3 \\u_{n + 1} = 3u_{n} \\\end{matrix},\forall n \in N^{*} ight.. Tìm số hạng tổng quát của dãy số \left( u_{n}ight).

    Ta có u_{1} = 3\frac{u_{n+1}}{u_{n}}=3

    Suy ra dãy số \left( u_{n}ight)là cấp số nhân với \left\{\begin{matrix}u_{1} = 3 \\q = 3 \\\end{matrix} ight.

    Do đó u_{n} = u_{1}.q^{n - 1} = 3.3^{n -1} = 3^{n}

  • Câu 8: Nhận biết

    Cho dãy số liệu thống kê: 21, 23, 24,25, 22, 20. Số trung bình cộng của dãy số liệu thống kê đã cho là

    Số trung bình là:

    \overline{x} =
\frac{21 + 23 + 24 + 25 + 22 + 20}{6} = 22,5

  • Câu 9: Nhận biết

    Cho tứ diện ABCD, G là trọng tâm tam giác ABD. Trên đoạn BC lấy điểm M sao cho MB
= 2MC. Khẳng định nào sau đây đúng?

    Hình vẽ minh họa

    MG//CD nên MG // ( ACD ).

  • Câu 10: Nhận biết

    Trong các khẳng định sau khẳng định nào sai?

    Giả sử (\alpha) song song với (\beta). Một đường thẳng a song song với (\beta) có thể nằm trên (\alpha).

  • Câu 11: Nhận biết

    Nếu các dãy số \left( u_{n}
ight),\left( v_{n} ight) thỏa mãn \lim u_{n} = 4 và \lim v_{n} = 3 thì \lim\left( u_{n} + v_{n} ight) bằng:

    Ta có \lim\left( u_{n} + v_{n} ight) =
\lim u_{n} + \lim v_{n} = 7.

  • Câu 12: Nhận biết

    Cho c là hằng số, k là số nguyên dương khác không. Tìm khẳng định sai.

    Mệnh đề \lim_{x ightarrow -
\infty}x^{k} = - \infty sai khi k là số chẵn.

  • Câu 13: Thông hiểu

    Cho hai đồ thị hàm số y = \sin\left( x +
\frac{\pi}{4} ight)y = \sin
x, khi đó:

    a) Phương trình hoành độ giao điểm của hai đồ thị hàm số:\sin \left( {x + \frac{\pi }{4}} ight) = \sin x Đúng||Sai

    b) Hoành độ giao điểm của hai đồ thị là x
= \frac{3\pi}{8} + k\pi(k\mathbb{\in Z}) Đúng||Sai

    c) Khi x \in \lbrack
0;2\pibrack thì hai đồ thị hàm số cắt nhau tại ba điểm Sai||Đúng

    d) Khi x \in \lbrack
0;2\pibrack thì toạ độ giao điểm của hai đồ thị hàm số là: \left( \frac{5\pi}{8};sin\frac{5\pi}{8}
ight),\left( \frac{7\pi}{8};sin\frac{7\pi}{8} ight). Sai||Đúng

    Đáp án là:

    Cho hai đồ thị hàm số y = \sin\left( x +
\frac{\pi}{4} ight)y = \sin
x, khi đó:

    a) Phương trình hoành độ giao điểm của hai đồ thị hàm số:\sin \left( {x + \frac{\pi }{4}} ight) = \sin x Đúng||Sai

    b) Hoành độ giao điểm của hai đồ thị là x
= \frac{3\pi}{8} + k\pi(k\mathbb{\in Z}) Đúng||Sai

    c) Khi x \in \lbrack
0;2\pibrack thì hai đồ thị hàm số cắt nhau tại ba điểm Sai||Đúng

    d) Khi x \in \lbrack
0;2\pibrack thì toạ độ giao điểm của hai đồ thị hàm số là: \left( \frac{5\pi}{8};sin\frac{5\pi}{8}
ight),\left( \frac{7\pi}{8};sin\frac{7\pi}{8} ight). Sai||Đúng

    Phương trình hoành độ giao điểm của hai đồ thị hàm số:

    \sin\left( x + \frac{\pi}{4} ight) =\sin x

    \Leftrightarrow \left\lbrack\begin{matrix}x + \dfrac{\pi}{4} = x + k2\pi \\x + \dfrac{\pi}{4} = \pi - x + k2\pi \\\end{matrix}(k\mathbb{\in Z}) ight.

    \Leftrightarrow x = \frac{3\pi}{8} +
k\pi(k\mathbb{\in Z})

    x \in \lbrack 0;2\pibrack
\Rightarrow x \in \left\{ \frac{3\pi}{8};\frac{11\pi}{8}
ight\}.

    Với x = \frac{3\pi}{8} \Rightarrow y =
\sin\frac{3\pi}{8} \approx 0,92 với x = \frac{11\pi}{8} \Rightarrow y =
\sin\frac{11\pi}{8} \approx - 0,92.

    Vậy toạ độ giao điểm của hai đồ thị hàm số là: \left( \frac{3\pi}{8};sin\frac{3\pi}{8}
ight),\left( \frac{11\pi}{8};sin\frac{11\pi}{8} ight).

    Kết luận:

    a) Đúng

    b) Đúng

    c) Sai

    d) Sai

  • Câu 14: Thông hiểu

    Cho {u_{n} = \dfrac{7^{n} + 2^{2n - 1}+ 3^{n + 1}}{7^{n + 1} + 5^{n - 1}}}. Biết \lim u_{n} = \frac{a}{b} (với a, b\in \mathbb{ Z };\frac{ a}{ b } tối giản). Khi đó:

    a) a + b = 8 Đúng||Sai

    b) a - b = - 7 Sai||Đúng

    c) Bộ ba số a;b;13 tạo thành một cấp số cộng có công sai d = 7 Đúng||Sai

    d) Bộ ba số a;b;49 tạo thành một cấp số nhân có công bội q = 7 Đúng||Sai

    Đáp án là:

    Cho {u_{n} = \dfrac{7^{n} + 2^{2n - 1}+ 3^{n + 1}}{7^{n + 1} + 5^{n - 1}}}. Biết \lim u_{n} = \frac{a}{b} (với a, b\in \mathbb{ Z };\frac{ a}{ b } tối giản). Khi đó:

    a) a + b = 8 Đúng||Sai

    b) a - b = - 7 Sai||Đúng

    c) Bộ ba số a;b;13 tạo thành một cấp số cộng có công sai d = 7 Đúng||Sai

    d) Bộ ba số a;b;49 tạo thành một cấp số nhân có công bội q = 7 Đúng||Sai

    Ta có

    \lim u_{n} = \lim\dfrac{7^{n} + 2^{2n -1} + 3^{n + 1}}{7^{n + 1} + 5^{n - 1}}

    = \lim\dfrac{1 + \dfrac{1}{2}\left(\dfrac{4}{7} ight)^{n} + 3\left( \dfrac{3}{7} ight)^{n}}{7 +\dfrac{1}{5}\left( \dfrac{5}{7} ight)^{n}} = \dfrac{1}{7}.

    Do đó suy ra a = 1,b = 7 \Rightarrow a +
b = 8.

    Kết luận:

    a) Đúng

    b) Sai

    c) Đ

    d) Đúng

  • Câu 15: Thông hiểu

    Cho giới hạn L = \lim\sqrt{3 +\frac{an^{2} - 1}{3 + n^{2}} - \frac{1}{2^{n}}}. Khi đó :

    a) L = 2 khi a = 1 Đúng||Sai

    b) L = 3 khi a = 3 Sai||Đúng

    c) L > 3 khi a > 6 Đúng||Sai

    d) Có 3 giá trị nguyên của a thuộc (0;20) sao cho \lim\sqrt{3 + \frac{an^{2} - 1}{3 + n^{2}} -\frac{1}{2^{n}}} là một số nguyên. Đúng||Sai

    Đáp án là:

    Cho giới hạn L = \lim\sqrt{3 +\frac{an^{2} - 1}{3 + n^{2}} - \frac{1}{2^{n}}}. Khi đó :

    a) L = 2 khi a = 1 Đúng||Sai

    b) L = 3 khi a = 3 Sai||Đúng

    c) L > 3 khi a > 6 Đúng||Sai

    d) Có 3 giá trị nguyên của a thuộc (0;20) sao cho \lim\sqrt{3 + \frac{an^{2} - 1}{3 + n^{2}} -\frac{1}{2^{n}}} là một số nguyên. Đúng||Sai

    Ta có \left\{ \begin{matrix}\lim\dfrac{an^{2} - 1}{3 + n^{2}} = \lim\dfrac{a -\dfrac{1}{n^{2}}}{\dfrac{3}{n^{2}} + 1} = a \\\lim\dfrac{1}{2^{n}} = \lim\left( \dfrac{1}{2} ight)^{n} = 0 \\\end{matrix} ight.

    \Rightarrow \lim\sqrt{3 + \frac{an^{2} -1}{3 + n^{2}} - \frac{1}{2^{n}}} = \sqrt{3 + a}

    Ta có \left\{ \begin{matrix}a \in (0;20),\ \ a\mathbb{\in Z} \\\sqrt{a + 3}\mathbb{\in Z} \\\end{matrix} ight.\ \overset{ightarrow}{}a \in \left\{ 1;6;13ight\}.

    Kết luận:

    a) Đúng

    b) Sai

    c) Đúng

    d) Đúng

  • Câu 16: Vận dụng

    Cho hình chóp S.ABCD có đáy là hình bình hành. Điểm M thuộc cạnh SA, điểm EF lần lượt là trung điểm của ABBC. Khi đó:

    a) EF//AC Đúng||Sai

    b) Giao tuyến của hai mặt phẳng (SAB)(SCD) là đường thẳng qua S và song song với AC. Sai||Đúng

    c) Giao tuyến của hai mặt phẳng (MBC)(SAD) đường thẳng qua M và song song với BC. Đúng||Sai

    d) Giao tuyến của hai mặt phẳng (MEF)(SAC) là đường thẳng qua Mvà song song với AC. Đúng||Sai

    Đáp án là:

    Cho hình chóp S.ABCD có đáy là hình bình hành. Điểm M thuộc cạnh SA, điểm EF lần lượt là trung điểm của ABBC. Khi đó:

    a) EF//AC Đúng||Sai

    b) Giao tuyến của hai mặt phẳng (SAB)(SCD) là đường thẳng qua S và song song với AC. Sai||Đúng

    c) Giao tuyến của hai mặt phẳng (MBC)(SAD) đường thẳng qua M và song song với BC. Đúng||Sai

    d) Giao tuyến của hai mặt phẳng (MEF)(SAC) là đường thẳng qua Mvà song song với AC. Đúng||Sai

    b) Xác định giao tuyến của hai mặt phẳng (SAB)(SCD) :

    Ta có: \left\{ \begin{matrix}
S \in (SAB) \cap (SCD) \\
AB \subset (SAB);CD \subset (SCD). \\
AB//CD \\
\end{matrix} ight.

    Suy ra Sx = (SAB) \cap (SCD), với Sx là đường thẳng qua SSx//AB//CD.

    Hình vẽ minh họa

    c) Xác định giao tuyến của hai mặt phẳng (MBC)(SAD):

    Ta có: \left\{ \begin{matrix}
M \in SA,SA \subset (SAD) \\
M \in (MBC) \\
\end{matrix} \Rightarrow M \in (MBC) \cap (SAD) ight..

    Khi đó: \left\{ \begin{matrix}
M \in (MBC) \cap (SAD) \\
BC \subset (MBC);AD \subset (SAD).\  \\
BC//AD \\
\end{matrix} ight.

    Suy ra My = (MBC) \cap (SAD),My là đường thẳng qua MMy//BC//AD.

    d) Xác định giao tuyến của hai mặt phẳng (MEF)(SAC) :

    Ta có :\left\{ \begin{matrix}
M \in SA,SA \subset (SAC) \\
M \in (MEF) \\
\end{matrix} \Rightarrow M \in (MEF) \cap (SAC) ight..

    Xét tam giác ABC, ta có EF là đường trung bình \Rightarrow EF//AC.

    Khi đó: \left\{ \begin{matrix}
M \in (MEF) \cap (SAC) \\
EF \subset (MEF);AC \subset (SAC).\  \\
EF//AC \\
\end{matrix} ight.

    Suy ra Mt=( M EF )\cap( SAC ), Mt là đường thẳng qua MMt//EF//AC.

    Kết luận:

    a) Đúng

    b) Sai

    c) Đúng

    d) Đúng

  • Câu 17: Vận dụng

    Sau khi phát hiện một bệnh dịch, các chuyên gia y tế ước tính số người nhiễm bệnh kể từ ngày xuất hiện bệnh nhân đầu tiên biến đổi theo một hàm số thời gian (tính theo ngày) là g(t) = 45t^{2} - t^{3} (người). Tốc độ trung bình gia tăng người bệnh giữa hai thời điểm t_{1}, t_{2}V_{tb} = \frac{g\left( t_{2} ight) - g\left(
t_{1} ight)}{t_{2} - t_{1}}. Tính \lim_{t ightarrow 10}\frac{g(t) - g(10)}{t -
10} và cho biết ý nghĩa của kết quả tìm được.

    Đáp án: 600

    Đáp án là:

    Sau khi phát hiện một bệnh dịch, các chuyên gia y tế ước tính số người nhiễm bệnh kể từ ngày xuất hiện bệnh nhân đầu tiên biến đổi theo một hàm số thời gian (tính theo ngày) là g(t) = 45t^{2} - t^{3} (người). Tốc độ trung bình gia tăng người bệnh giữa hai thời điểm t_{1}, t_{2}V_{tb} = \frac{g\left( t_{2} ight) - g\left(
t_{1} ight)}{t_{2} - t_{1}}. Tính \lim_{t ightarrow 10}\frac{g(t) - g(10)}{t -
10} và cho biết ý nghĩa của kết quả tìm được.

    Đáp án: 600

    Ta có: \lim_{t ightarrow 10}\frac{g(t)
- g(10)}{t - 10} = \lim_{t ightarrow 10}\frac{45t^{2} - t^{3} - 45
\cdot 10^{2} + 10^{3}}{t - 10}

    \begin{matrix}= \lim_{t ightarrow 10}\dfrac{45(t - 10)(t + 10) - (t - 10)\left( t^{2}+ 10t + 100 ight)}{t - 10}  \\\end{matrix}

    = \lim_{t ightarrow 10}\left( - t^{2} + 35t + 350 ight) = 600

    Từ kết quả trên, ta thấy tốc độ gia tăng người bệnh ngay tại thời điểm t = 10 (ngày) là 600 người/ngày.

  • Câu 18: Vận dụng cao

    Cho các số thực a,\ b,\ c thỏa mãn 4a + b > 8 + 2ba + b + c < - 1. Khi đó số nghiệm thực phân biệt của phương trình x^{3} + ax^{2} +
bx + c = 0 bằng

    Đáp án: 3

    Đáp án là:

    Cho các số thực a,\ b,\ c thỏa mãn 4a + b > 8 + 2ba + b + c < - 1. Khi đó số nghiệm thực phân biệt của phương trình x^{3} + ax^{2} +
bx + c = 0 bằng

    Đáp án: 3

    Xét hàm số f(x) = x^{3} + ax^{2} + bx +
c

    Theo giả thiết 4a + c > 2b + 8
\Leftrightarrow - 8 + 4a - 2b + c > 0 \Rightarrow f( - 2) >
0;

    a + b + c < - 1 \Leftrightarrow 1 + a
+ b + c < 0 \Rightarrow f(1) < 0

    Ta có f(x) là hàm đa thức nên liên tục trên \mathbb{R}

    \left\{ \begin{matrix}\lim_{x ightarrow - \infty}f(x) = \lim_{x ightarrow - \infty}\left(x^{3} + ax^{2} + bx + c ight) = - \infty \\f( - 2) > 0 \\\end{matrix} ight.

    Suy ra phương trình f(x) = 0 có ít nhất một nghiệm trên ( - \infty; -
2) (1)

    f( - 2)f(1) < 0 nên phương trình có ít nhất một nghiệm trên khoảng ( -
2;1) (2)

    \left\{ \begin{gathered}
 \mathop {\lim }\limits_{x \to  + \infty } f\left( x ight) = \mathop {\lim }\limits_{x \to  + \infty } \left( {{x^3} + a{x^2} + bx + c} ight) =  + \infty  \hfill \\
  f\left( 1 ight) < 0 \hfill \\ 
\end{gathered}  ight.

    Suy ra phương trình có ít nhất một nghiệm trên khoảng (1; + \infty) (3)

    Từ (1); (2)(3) ta có phương trình f(x) = 0có ít nhất 3 nghiệm.

    Mặt khác f(x) = 0 là phương trình bậc ba nên có tối đa 3 nghiệm

    Vậy phương trình f(x) = 0 có đúng 3 nghiệm.

  • Câu 19: Vận dụng

    Cho hình chóp S.ABCD có đáy là hình bình hành. Gọi M, N lần lượt là các điểm thuộc cạnhSB và đoạn AC sao cho \frac{BM}{MS} = x\frac{NC}{NA} = y, (0 < x,\ \ y eq 1). Tìm tỷ số \frac{x}{y} để MN//(SAD).

    Đáp án: 1

    Đáp án là:

    Cho hình chóp S.ABCD có đáy là hình bình hành. Gọi M, N lần lượt là các điểm thuộc cạnhSB và đoạn AC sao cho \frac{BM}{MS} = x\frac{NC}{NA} = y, (0 < x,\ \ y eq 1). Tìm tỷ số \frac{x}{y} để MN//(SAD).

    Đáp án: 1

    Hình vẽ minh họa

    Trong mặt phẳng (ABCD) giả sử BNAD cắt nhau tại điểm K.

    Dễ thấy SK = (BMN) \cap
(SAD).

    Do đó : MN//(SAD) \Leftrightarrow MN//SK \Leftrightarrow \frac{BM}{MS} =
\frac{BN}{NK} (1)

    Mặt khác tam giác NCB đồng dạng với tam giác NAK \Rightarrow \frac{BN}{NK} = \frac{CN}{NA} (2).

    Từ (1) và (2) \Rightarrow \frac{BM}{MS} =
\frac{NC}{NA} \Leftrightarrow x =
y.

    Vậy MN//(SAD) \Leftrightarrow x = y. Khi đó \frac{x}{y} = 1

  • Câu 20: Vận dụng cao

    Cho hình hộp ABCD.A'B'C'D'. Trên các cạnh AA', BB', CC' lần lượt lấy ba điểm M, N, P sao cho \frac{A'M}{AA'} =
\frac{1}{3}, \frac{B'N}{BB'} = \frac{2}{3}, \frac{C'P}{CC'} =
\frac{1}{2}. Biết mặt phẳng (MNP) cắt cạnh DD' tại Q. Tính tỉ số \frac{D'Q}{DD'}.

    Đáp án: 1/6 (Kết quả ghi dưới dạng phân số tối giản a/b).

    Đáp án là:

    Cho hình hộp ABCD.A'B'C'D'. Trên các cạnh AA', BB', CC' lần lượt lấy ba điểm M, N, P sao cho \frac{A'M}{AA'} =
\frac{1}{3}, \frac{B'N}{BB'} = \frac{2}{3}, \frac{C'P}{CC'} =
\frac{1}{2}. Biết mặt phẳng (MNP) cắt cạnh DD' tại Q. Tính tỉ số \frac{D'Q}{DD'}.

    Đáp án: 1/6 (Kết quả ghi dưới dạng phân số tối giản a/b).

    Hình vẽ minh họa

    Ta có \left\{ \begin{matrix}
(BB'C'C)\ //\ (AA'D'D) \\
(MNP) \cap (BB'C'C) = NP \\
(MNP) \cap (AA'D'D) = MQ \\
\end{matrix} ight.\  \Rightarrow NP\ //\ MQ.

    Tương tự: \left\{ \begin{matrix}
(AA'B'B)\ //\ (CC'D'D) \\
(MNP) \cap (AA'B'B) = MN \\
(MNP) \cap (CC'D'D) = PQ \\
\end{matrix} ight.\  \Rightarrow MN\ //\ PQ

    Suy ra mặt phẳng (MNP) cắt hình hộp theo thiết diện là hình bình hành MNPQ.

    Mặt khác \left\{ \begin{matrix}
BN = \frac{1}{3}BB' = \frac{1}{3}AA' \\
AM = \frac{2}{3}AA' \\
\end{matrix} ight.\  \Rightarrow \frac{BN}{AM} =
\frac{1}{2}.

    Trong mặt phẳng (ABB'A'), gọi E là giao điểm của hai đường thẳng MNAB thì BN là đường trung bình của tam giác AME \Rightarrow N là trung điểm của đoạn thẳng ME.

    Trong mặt phẳng (MNPQ), gọi F là giao điểm của EPMQ thì NP là đường trung bình của tam giác MEF (vì NP\
//\ MQN là trung điểm EM) \Rightarrow NP = \frac{1}{2}MF

    Mà tứ giác MNPQ là hình bình hành nên NP = MQ \Rightarrow Q là trung điểm MF hay \frac{FQ}{FM} = \frac{1}{2}

    Lại có D'Q\ //\ A'M \Rightarrow
\frac{D'Q}{A'M} = \frac{FQ}{FM} = \frac{1}{2}

    \Leftrightarrow\dfrac{D'Q}{\dfrac{1}{3}AA'} = \dfrac{1}{2} \Leftrightarrow\dfrac{D'Q}{DD'} = \frac{1}{2}.\dfrac{1}{3} =\dfrac{1}{6}

  • Câu 21: Vận dụng cao

    Tại một nhà máy, người ta đo được rằng 80\% lượng nước sau khi sử dụng được xử lí và tái sử dụng. Với 100\ m^{3} ban đầu được sử dụng lần đầu tại nhà máy, khi quá trình xử lí và tái sử dụng lặp lại mãi mãi, nhà máy sử dụng được tổng lượng nước là bao nhiêu?

    Đáp án: 500

    Đáp án là:

    Tại một nhà máy, người ta đo được rằng 80\% lượng nước sau khi sử dụng được xử lí và tái sử dụng. Với 100\ m^{3} ban đầu được sử dụng lần đầu tại nhà máy, khi quá trình xử lí và tái sử dụng lặp lại mãi mãi, nhà máy sử dụng được tổng lượng nước là bao nhiêu?

    Đáp án: 500

    Ta có:

    100 + 100.0,8 + 100.0,8)^{2} +
100.(0,8)^{3} + \ldots

    = 100.\frac{1}{1 - 0,8} = 500\left( \
m^{3} ight).

  • Câu 22: Vận dụng

    Huyết áp là áp lực cần thiết tác động lên thành của động mạch để đưa máu từ tim đến nuôi dưỡng các mô trong cơ thể. Huyết áp được tạo ra do lực co bóp của cơ tim và sức cản của thành động mạch. Mỗi lần tim đập, huyết áp của chúng ta tăng rồi giảm giữa các nhịp. Huyết áp tối đa và huyết áp tối thiểu gọi là huyết áp tâm thu và tâm trương, tương ứng. Chỉ số huyết áp của chúng ta được viết là tâm thu/tâm trương. Chỉ số huyết áp 120/80 là bình thường. Giả sử một người nào đó có nhịp tim là 70lần trên phút và huyết áp của người đó được mô hình hoá bởi hàm số P(t) = 100 + 20\sin\left( \frac{7\pi}{3}tight)ở đó P(t)là huyết áp tính theo đơn vị mmHg( milimét thuỷ ngân) và thời gian ttính theo giây. Trong khoảng từ 0 đến 1 giây, hãy xác định số lần huyết áp là 120 mmHg?

    Đáp án: 1

    Đáp án là:

    Huyết áp là áp lực cần thiết tác động lên thành của động mạch để đưa máu từ tim đến nuôi dưỡng các mô trong cơ thể. Huyết áp được tạo ra do lực co bóp của cơ tim và sức cản của thành động mạch. Mỗi lần tim đập, huyết áp của chúng ta tăng rồi giảm giữa các nhịp. Huyết áp tối đa và huyết áp tối thiểu gọi là huyết áp tâm thu và tâm trương, tương ứng. Chỉ số huyết áp của chúng ta được viết là tâm thu/tâm trương. Chỉ số huyết áp 120/80 là bình thường. Giả sử một người nào đó có nhịp tim là 70lần trên phút và huyết áp của người đó được mô hình hoá bởi hàm số P(t) = 100 + 20\sin\left( \frac{7\pi}{3}tight)ở đó P(t)là huyết áp tính theo đơn vị mmHg( milimét thuỷ ngân) và thời gian ttính theo giây. Trong khoảng từ 0 đến 1 giây, hãy xác định số lần huyết áp là 120 mmHg?

    Đáp án: 1

    Huyết áp là 120 mmHgkhi

    P(t) = 120 \Leftrightarrow 100 +20sin\left( \frac{7\pi}{3}t ight) = 120

    \Leftrightarrow \sin\left(
\frac{7\pi}{3}t ight) = 1

    \Leftrightarrow \frac{7\pi}{3}t =\frac{\pi}{2} + k2\pi

    \Leftrightarrow t = \frac{3}{14} +
\frac{6k}{7}\left( k\mathbb{\in Z} ight)

    Xét 0 < t < 1

    \Leftrightarrow 0 < \frac{3}{14} +
\frac{6k}{7} < 1\Leftrightarrow  - \frac{1}{4} < k < \frac{{11}}{{12}} \Leftrightarrow k = 0

     k\mathbb{\in Z}.

    Vậy trong khoảng từ 0 đến 1 giây, có 1 lần huyết áp là 120 mmHg.

Chúc mừng Bạn đã hoàn thành bài!

Đề thi học kì 1 Toán 11 Chân trời sáng tạo Đề 7 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 2 lượt xem
Sắp xếp theo