Đề thi học kì 1 Toán 11 Kết nối tri thức Đề 1

Mô tả thêm: Đề thi cuối kì 1 Toán 11 được biên soạn gồm 45 câu hỏi trắc nghiệm thuộc 5 chuyên đề trọng tâm giúp bạn học có thêm tài liệu ôn thi, củng cố nội dung kiến thức Toán 11 sách Kết nối tri thức.
  • Thời gian làm: 90 phút
  • Số câu hỏi: 45 câu
  • Số điểm tối đa: 45 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Cho cấp số nhân \left( u_{n}
ight) có tổng n số hạng đầu tiên là S_{n} = 5^{n} - 1 với n = 1,2,.... Tìm số hạng đầu u_{1} và công bội q của cấp số nhân đó?

    Ta có:

    \left\{ \begin{matrix}
u_{1} = S_{1} = 5 - 1 = 4 \\
u_{1} + u_{2} = S_{2} = 5^{2} - 1 = 24 \\
\end{matrix} ight.

    \Rightarrow \left\{ \begin{matrix}
u_{1} = 4 \\
u_{2} = 24 - u_{1} = 20 \\
\end{matrix} ight.

    \Rightarrow u_{1} = 4, q = \frac{u_{2}}{u_{1}} = 5.

  • Câu 2: Thông hiểu

    Dưới đây là bảng biểu diễn điểm của 140 sinh viên của trường đại học. Tìm trung vị.

    Khoảng điểm

    Số sinh viên

    (9,5; 19,5)

    7

    [19,5; 29,5)

    15

    [29,5; 39,5)

    18

    [39,5; 49,5)

    25

    [49,5; 59,5)

    30

    [59,5; 69,5)

    20

    [69,5; 79,5)

    16

    [79,5; 39,5)

    7

    [89,5; 39,5)

    2

    Ta có:

    Khoảng điểm

    Số sinh viên

    Tần số tích lũy

    (9,5; 19,5)

    7

    7

    [19,5; 29,5)

    15

    22

    [29,5; 39,5)

    18

    40

    [39,5; 49,5)

    25

    65

    [49,5; 59,5)

    30

    95

    [59,5; 69,5)

    20

    115

    [69,5; 79,5)

    16

    131

    [79,5; 39,5)

    7

    138

    [89,5; 39,5)

    2

    140

     

    N = 140

     

    Ta có: \frac{N}{2} = \frac{140}{2} =70

    => Trung vị nằm trong nhóm [49,5; 59,5) (vì 70 nằm giữa hai tần số tích lũy là 65 và 95)

    \Rightarrow l = 49,5;\frac{N}{2} = 70;m= 65;f = 30,c = 10

    \Rightarrow M_{e} = l + \dfrac{\left(\dfrac{N}{2} - m ight)}{f}.c= 49,5 + \frac{70 - 65}{30}.10 =51,17

  • Câu 3: Thông hiểu

    Cho hình chóp tam giác S.ABC. Gọi điểm I là trung điểm của AB, lấy điểm M di động trên đoạn AI. Mặt phẳng (\alpha) qua M song song với (SIC). Xác định hình tạo bởi các giao tuyến của mặt phẳng (\alpha) với các mặt của tứ diện.

    Hình vẽ minh họa

    Trong mặt phẳng (SAB), qua M kẻ đường thẳng song song với SI cắt SA tại P.

    Trong mặt phẳng (ABC), qua M kẻ đường thẳng song song với IC cắt AC tại N.

    Thiết diện là tam giác MNP.

    Ta có: \frac{MP}{SI} = \frac{MN}{CI}
\Rightarrow MP = MN

    Vậy hình tạo bởi các giao tuyến của mặt phẳng (\alpha) với tứ diện là tam giác MNP cân tại M.

  • Câu 4: Nhận biết

    Chị A lập bảng doanh thu bán hải sản của cửa hàng trong 20 ngày (đơn vị: triệu đồng) như sau:

    Doanh thu

    [5; 7)

    [7; 9)

    [9; 11)

    [11; 13)

    [13; 15)

    Số ngày

    2

    7

    7

    3

    1

    Xác định nhóm chứa tứ phân vị thứ nhất của mẫu số liệu.

    Ta có:

    Doanh thu

    [5; 7)

    [7; 9)

    [9; 11)

    [11; 13)

    [13; 15)

     

    Số ngày

    2

    7

    7

    3

    1

    N = 20

    Tần số tích lũy

    2

    9

    16

    19

    20

     

    Cỡ mẫu N = 20 \Rightarrow \frac{N}{4} =5

    => Nhóm chứa tứ phân vị thứ nhất là [7; 9)

    (Vì 5 nằm giữa hai tần số tích lũy 2 và 9)

  • Câu 5: Nhận biết

    Tìm giới hạn C =
\lim_{x ightarrow + \infty}\left( \frac{3 - x}{2x + 3}
ight)

    Ta có: C = \lim_{x ightarrow +\infty}\left( \dfrac{3 - x}{2x + 3} ight) = \lim_{x ightarrow +\infty}\dfrac{\dfrac{3}{x} - 1}{2 + \dfrac{3}{x}} = -\dfrac{1}{2}

  • Câu 6: Thông hiểu

    Cho hình chóp S.ABCD có đáy là hình thang có cạnh đáy là AB,CD. Gọi M,N lần lượt là trung điểm của AD;BC, điểm P
\in SA;(P eq S;P eq A). Xác định giao tuyến của hai mặt phẳng (SAB);(MNP).

    Hình vẽ minh họa

    Ta có: \left\{ \begin{matrix}
P = (SAB) \cap (MNP) \\
MN \subset (MNP) \\
AB \subset (SAB) \\
MN//AB \\
\end{matrix} ight.

    \Rightarrow (SAB) \cap (MNP) =
PQ với Px//AB//MN,Q \in
SB.

    Vậy giao tuyến của hai mặt phẳng (SAB);(MNP) là đường thẳng qua P và song song với AB.

  • Câu 7: Nhận biết

    Tìm tập xác định của hàm số y = \frac{2x-1}{{\sin x - \cos x}}

    Hàm số xác định khi

    \begin{matrix}   \Leftrightarrow \sin x - \cos x e 0 \hfill \\   \Leftrightarrow \tan x e 1 \hfill \\   \Leftrightarrow x e \dfrac{\pi }{4} + k\pi ;\left( {k \in \mathbb{Z}} ight) \hfill \\ \end{matrix}

    Vậy tập xác định {\text{D}} = \mathbb{R}\backslash \left\{ {\frac{\pi }{4} + k\pi ,k \in \mathbb{Z}} ight\}

  • Câu 8: Nhận biết

    Cho mẫu số liệu ghép nhóm về thời gian đi làm muộn tháng 10/2023 của các nhân viên trong công ty X như sau:

    Thời gian (phút)

    Số nhân viên

    [0; 5)

    25

    [5; 10)

    14

    [10; 15)

    21

    [15; 20)

    13

    [20; 25)

    8

    [25; 30)

    6

    Mẫu số liệu được chia thành bao nhiêu nhóm?

    Mẫu số liệu được chia thành 7 nhóm.

  • Câu 9: Vận dụng

    Cho hàm số f(x)
= x^{3} - 3x - 1. Số nghiệm của phương trình f(x) = 0 trên tập số thực là:

    Hàm số f(x) = x^{3} - 3x - 1 là hàm đa thức có tập xác định \mathbb{R}

    => Hàm số liên tục trên \mathbb{R}

    => Hàm số liên tục trên các khoảng ( -
2; - 1),( - 1;0),(0;2)

    Ta có:

    \left\{ \begin{matrix}
f( - 2) = - 3 < 0 \\
f( - 1) = 1 > 0 \\
\end{matrix} ight.\  \Rightarrow f( - 2).f( - 1) < 0 vậy phương trình có ít nhất một nghiệm trên ( -
2; - 1)

    \left\{ \begin{matrix}
f( - 1) = 1 > 0 \\
f(0) = - 1 < 0 \\
\end{matrix} ight.\  \Rightarrow f( - 1).f(0) < 0 vậy phương trình có ít nhất một nghiệm trên ( -
1;0)

    \left\{ \begin{matrix}
f(0) = - 1 < 0 \\
f(2) = 1 > 0 \\
\end{matrix} ight.\  \Rightarrow f(0).f(2) < 0 vậy phương trình có ít nhất một nghiệm trên (0;2)

    Vậy phương trình đã cho có ít nhất ba nghiệm thuộc khoảng ( - 2;2). Tuy nhiên phương trình f(x) = 0 là phương trình bậc ba có nhiều nhất ba nghiệm

    Vậy phương trình f(x) = 0 có đúng ba nghiệm.

  • Câu 10: Nhận biết

    Cho hàm số f(x)
= \frac{x^{2} + 1}{x^{2} + 5x + 6}. Khi đó hàm số đã cho liên tục trên khoảng nào?

    Hàm số có nghĩa khi x^{2} + 5x + 6 eq 0
\Rightarrow x eq - 3;x eq - 2

    Vậy hàm số f(x) = \frac{x^{2} + 1}{x^{2}
+ 5x + 6} liên tục trên các khoảng ( - \infty; - 3),( - 3; - 2);( - 2; +
\infty)

  • Câu 11: Thông hiểu

    Cho hình chóp S.ABCD, đáy ABCD là hình bình hành. Giao tuyến của hai mặt phẳng (SAD) và (SBC) là đường thẳng song song với đường thẳng nào sau đây?

    Hình vẽ minh họa

    Ta có: \left\{ \begin{matrix}
S \in (SAD) \cap (SBC) \\
AD//BC \\
AD \subset (SAD) \\
BC \subset (SBC) \\
\end{matrix} ight.

    \Rightarrow (SAD) \cap (SBC) =
d, d đi qua S và d // AD // BC.

  • Câu 12: Thông hiểu

    Nghiệm của phương trình \sin \left( {\frac{{2x}}{3} + \frac{\pi }{3}} ight) = 0

     Ta có \sin \left( {\frac{{2x}}{3} + \frac{\pi }{3}} ight) = 0

    \Leftrightarrow \frac{{2x}}{3} + \frac{\pi }{3} = k\pi

    \Leftrightarrow \frac{{2x}}{3} =  - \frac{\pi }{3} + k\pi

    \Leftrightarrow x =  - \frac{\pi }{2} + \frac{{k3\pi }}{2}\left( {k \in \mathbb{Z}} ight).

  • Câu 13: Vận dụng cao

    Cho hình lập phương ABCD.A'B'C'D' cạnh a. Mặt phẳng (\alpha) đi qua tâm của hình lập phương và song song với (ABC). Xác định các giao tuyến của mặt phẳng (\alpha) và tứ diện AB'CD'. Hình tạo bởi các giao tuyến đó có diện tích bằng bao nhiêu?

    Hình vẽ minh họa:

    Gọi I là tâm của hình lập phương

    => I là trung điểm của AC’.

    Gọi (P) là mặt phẳng qua I và song song với (ABC).

    Khi đó (P) cắt các đường thẳng AB’, B’C, CD’, AD’ lần lượt tại các trung điểm M, N, P, Q.

    Khi đó \left\{ \begin{matrix}MN = QP = \dfrac{1}{2}AC = \dfrac{a\sqrt{2}}{2} \\NP = MQ = \dfrac{1}{2}B'D' = \dfrac{a\sqrt{2}}{2} \\\end{matrix} ight.

    => Hình tạo bởi các giao tuyến của mặt phẳng (\alpha) và tứ diện AB'CD' là hình thoi MNPQ cạnh bằng \frac{a\sqrt{2}}{2}

    Mặt khác NQ = MP = BC = a

    Diện tích hình thoi MNPQ là S =
\frac{1}{2}NQ.MP = \frac{a^{2}}{2}

  • Câu 14: Nhận biết

    Cho đường thẳng a thuộc mặt phẳng (Q), khi đó mệnh đề nào sau đây sai?

     Mệnh đề sai: "a //(Q)".

  • Câu 15: Thông hiểu

    Đồ thị hàm số y = \cos \left( {x - \frac{\pi }{2}} ight) được suy từ đồ thị (C) của hàm số bằng cách:

    Nhắc lại lý thuyết:

    Cho (C) là đồ thị của hàm số y = f\left( x ight)p > 0, ta có:

    + Tịnh tiến (C) lên p trên đơn vị thì được đồ thị của hàm số y = f\left( x ight) + p.

    + Tịnh tiến (C) xuống dưới p đơn vị thì được đồ thị của hàm số y = f\left( x ight) - p

    + Tịnh tiến (C) sang trái p đơn vị thì được đồ thị của hàm số y = f\left( {x + p} ight)

    + Tịnh tiến (C) sang phải p đơn vị thì được đồ thị của hàm số y = f\left( {x - p} ight)

    Vậy đồ thị hàm số y = \cos \left( {x - \frac{\pi }{2}} ight) được suy từ đồ thị hàm số y = \cos x bằng cách tịnh tiến sang phải \frac{\pi }{2} đơn vị.

  • Câu 16: Nhận biết

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O, gọi M,N,P,Q lần lượt là trung điểm của SA,SB,SCSD. Khi đó (MNP) \cap (SAC) là đường thẳng nào?

    Hình vẽ minh họa:

    M ∈ (MNPQ); MSA; M ∈ (SAC)

    Vậy M là điểm chung thứ nhất. P ∈ (MNPQ); PSC; P ∈ (SAC).

    Vậy P là điểm chung thứ hai.

    Vậy giao tuyến của (MNPQ) và (SAC) là: MP

  • Câu 17: Thông hiểu

    Cho mẫu dữ liệu ghép nhóm như sau:

    Đối tượng

    [160; 164)

    [164; 168)

    [168; 172)

    [172; 174)

    Tần số

    8

    x

    12

    6

    Biết rằng nhóm dữ liệu có giá trị đại diện là 166 chiếm 60% tổng tần số của mẫu dữ liệu. Tìm giá trị của x?

    Nhóm số liệu có độ dài 166 là: [164; 168)

    Theo bài ra ta có:

    \frac{x.100\%}{8 + 12 + x + 6} = 60\%\Rightarrow x = 39

  • Câu 18: Nhận biết

    Giá trị của  \lim\frac{1}{n^{k}} với k \in \mathbb{N^*}bằng:

    Với a>0 nhỏ tùy ý, ta chọn n_{a} >
\sqrt[k]{\frac{1}{a}}

    Suy ra:

    \frac{1}{n^{k}} < \frac{1}{n_{a}^{k}} < a\
\forall n > n_{a}

    Vậy \lim\frac{1}{n^{k}} = 0.

  • Câu 19: Vận dụng

    Cho hình chóp S.ABCD có đáy ABCD là hình thang cân với cạnh bên BC = 2, đáy AB = 6;DC = 4. Mặt phẳng (P) song song với \left( {ABCD} ight) và cắt các cạnh SA tại M sao cho \frac{{SA}}{{SM}} = 3. Tính diện tích thiết diện tạo bởi (P) và hình chóp S.ABCD?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hình chóp S.ABCD có đáy ABCD là hình thang cân với cạnh bên BC = 2, đáy AB = 6;DC = 4. Mặt phẳng (P) song song với \left( {ABCD} ight) và cắt các cạnh SA tại M sao cho \frac{{SA}}{{SM}} = 3. Tính diện tích thiết diện tạo bởi (P) và hình chóp S.ABCD?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 20: Vận dụng cao

    Có bao nhiêu giá trị nguyên của tham số m để phương trình \cos x=m+1 có nghiệm?

     Áp dụng điều kiện có nghiệm của phương trình \cos x =a.

    - Phương trình có nghiệm khi |a| \leq 1.

    - Phương trình vô nghiệm khi |a|>1.

    Do đó, phương trình \cos x=m+1 có nghiệm khi và chỉ khi \left| {m + 1} ight| \leqslant 1

    \Leftrightarrow  - 1 \leqslant m + 1 \leqslant 1 \Leftrightarrow  - 2 \leqslant m \leqslant 0\xrightarrow{{m \in \mathbb{Z}}}m \in \left\{ { - 2; - 1;0} ight\}.

  • Câu 21: Thông hiểu

    Biểu đồ dưới đây thể hiện điểm kiểm tra của 20 học sinh:

    Tính điểm trung bình của 20 học sinh trên?

    Ta có bảng sau:

    Khoảng điểm

    Điểm đại diện

    Tần số

    Tích các giá trị

    (0; 10]

    5

    2

    10

    (10; 20]

    15

    5

    75

    (20; 30]

    25

    6

    150

    (30; 40]

    35

    4

    140

    (40; 50]

    45

    3

    135

    Tổng

     

    N = 20

    510

    Số điểm trung bình:

    \overline{x} = \frac{510}{20} =25,5

  • Câu 22: Thông hiểu

    \mathop {\lim }\limits_{x \to  + \infty } \left[ {x(\sqrt {{x^2} + 5}  - x)} ight] bằng:

    Ta có:

    \begin{matrix}  \mathop {\lim }\limits_{x \to  + \infty } x\left( {\sqrt {{x^2} + 5}  - x} ight) \hfill \\   = \mathop {\lim }\limits_{x \to  + \infty } \dfrac{{x\left( {{x^2} + 5 - {x^2}} ight)}}{{\sqrt {{x^2} + 5}  + x}} \hfill \\   = \mathop {\lim }\limits_{x \to  + \infty } \dfrac{{5x}}{{x\left( {\sqrt {1 + \dfrac{5}{{{x^2}}}}  + 1} ight)}} \hfill \\   = \mathop {\lim }\limits_{x \to  + \infty } \dfrac{5}{{\sqrt 1  + 1}} = \dfrac{5}{2} \hfill \\ \end{matrix}

  • Câu 23: Thông hiểu

    Biết rằng \frac{\sin\dfrac{\pi}{9} +\sin\dfrac{5\pi}{9}}{\cos\dfrac{\pi}{9} + \cos\dfrac{5\pi}{9}} = \tan\left(\dfrac{m\pi}{n} ight) với m,n\in\mathbb{ N} và \frac{m}{n} tối giản. Khi đó kết quả nào sau đây đúng?

    Ta có:

    \frac{\sin\dfrac{\pi}{9} +\sin\dfrac{5\pi}{9}}{\cos\dfrac{\pi}{9} + \cos\dfrac{5\pi}{9}} =\frac{2\sin\dfrac{\pi}{3}\cos\left( - \dfrac{2\pi}{9}ight)}{2\cos\dfrac{\pi}{3}\cos\left( - \dfrac{2\pi}{9} ight)} =\tan\left( \dfrac{\pi}{3} ight)

    \Rightarrow \left\{ \begin{matrix}
m = 1 \\
n = 3 \\
\end{matrix} ight.\  \Rightarrow n - m = 2

  • Câu 24: Nhận biết

    Khẳng định nào sau đây là đúng khi nói về ?

    Mỗi đường tròn trên đó ta đã chọn một chiều chuyển động gọi là chiều dương và chiều ngược lại được gọi là chiều âm là một đường tròn định hướng.

  • Câu 25: Nhận biết

    Cho ba mặt phẳng (\alpha),(\beta),(\gamma) lần lượt giao nhau theo các giao tuyến phân biệt m,n,d. Khẳng định nào dưới đây đúng?

    Theo định lí về giao tuyến của ba mặt phẳng thì m,n,d đôi một song song hoặc đồng quy.

  • Câu 26: Vận dụng

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng 10. N là điểm trên cạnh SB sao cho 3SN = 2SB. Một mặt phẳng (\alpha) đi qua N, song song với ABAD, cắt hình chóp theo một tứ giác. Gọi S là diện tích tứ giác thiết diện và S = \frac{4a}{b}, với \frac{a}{b} là phân số tối giản, a;b\mathbb{\in N}. Tính giá trị của biểu thức P = a + b + 1 ?

    Đáp án: 110

    Đáp án là:

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng 10. N là điểm trên cạnh SB sao cho 3SN = 2SB. Một mặt phẳng (\alpha) đi qua N, song song với ABAD, cắt hình chóp theo một tứ giác. Gọi S là diện tích tứ giác thiết diện và S = \frac{4a}{b}, với \frac{a}{b} là phân số tối giản, a;b\mathbb{\in N}. Tính giá trị của biểu thức P = a + b + 1 ?

    Đáp án: 110

    Hình vẽ minh họa

    Ta kẻ MN\ //\ AB\ \ (M \in SA), NP\ //BC\ \ (P \in SC), MQ\ //\ BC\ //\ AD\ \ (Q \in SD).

    Vì mặt phẳng (\alpha) đi qua N, song song với ABAD nên M,\ \
P,\ \ Q đều thuộc (\alpha) và thiết diện của hình chóp cắt bởi mặt phẳng (\alpha) là tứ giác MNPQ.

    Khi đó MN//AB \Rightarrow \frac{SM}{SA} = \frac{MN}{AB} =\frac{2}{3}.

    Tương tự, ta có được \frac{NP}{BC} =
\frac{PQ}{CD} = \frac{QM}{DA} = \frac{2}{3}.

    Suy ra MN = NP = PQ = QM = \frac{2}{3}AB
= \frac{20}{3}MNPQ là hình vuông.

    Suy ra S_{MNPQ} = \left( \frac{20}{3}
ight)^{2} = \frac{400}{9}.

    Khi đó a = 100,b = 9

    Vậy P = a + b + 1 = 110.

  • Câu 27: Vận dụng

    Tìm số đo góc lớn nhất của một tứ giác, biết số đo các góc đó lập thành một cấp số nhân có số hạng cuối gấp tám lần số hạng đầu tiên?

    Giả sử cấp số nhân có số hạng đầu là u_{1}, công bội q, với q >0

    Theo bài ra ta có:

    u_{4} = 8.u_{1} \Leftrightarrowu_{1}q^{3} = u_{1}.8

    \Leftrightarrow q = 2

    S_{4} = u_{1} + u_{2} + u_{3} + u_{4}= 360^{0}

    \Leftrightarrow u_{1}.\frac{1 - q^{4}}{1- q} = 360^{0} \Rightarrow u_{1} = 24^{0}

    u_{2} = 48^{0};u_{3};96^{0};u_{4} =192^{0}

    Vậy góc lớn nhất có số đo 192^{0}

  • Câu 28: Nhận biết

    Phương án nào sau đây sai với mọi k\in\mathbb{ Z}?

    Ta có:

    \sin x = 0 \Leftrightarrow x =
k\pi;\left( k\mathbb{\in Z} ight)

    Vậy đáp án sai là: \sin x = 0
\Leftrightarrow x = \frac{\pi}{2} + k\pi

  • Câu 29: Thông hiểu

    Cho dãy số \left( u_{n} ight) biết \left\{ \begin{matrix}u_{1} = 3 \\u_{n + 1} = 3u_{n} \\\end{matrix},\forall n \in N^{*} ight.. Tìm số hạng tổng quát của dãy số \left( u_{n}ight).

    Ta có u_{1} = 3\frac{u_{n+1}}{u_{n}}=3

    Suy ra dãy số \left( u_{n}ight)là cấp số nhân với \left\{\begin{matrix}u_{1} = 3 \\q = 3 \\\end{matrix} ight.

    Do đó u_{n} = u_{1}.q^{n - 1} = 3.3^{n -1} = 3^{n}

  • Câu 30: Thông hiểu

    Một người xếp chồng những khúc gỗ có kích thước như nhau thành 10 hàng. Sau khi xếp xong người đó nhận thấy mỗi hàng nằm liền phía trên thì ít hơn hàng dưới 1 khúc gỗ và hàng trên cùng có 1 khúc gỗ. Hỏi người đó có tổng cộng bao nhiêu khúc gỗ?

    Đáp án: 55

    Đáp án là:

    Một người xếp chồng những khúc gỗ có kích thước như nhau thành 10 hàng. Sau khi xếp xong người đó nhận thấy mỗi hàng nằm liền phía trên thì ít hơn hàng dưới 1 khúc gỗ và hàng trên cùng có 1 khúc gỗ. Hỏi người đó có tổng cộng bao nhiêu khúc gỗ?

    Đáp án: 55

    Mỗi hàng liền phía trên ít hơn hàng dưới 1 khúc gỗ và hàng trên cùng có 1 khúc gỗ nên ta có đây là tổng của một cấp số cộng có: u_{1} = 1;d = 1;n = 10.

    Khi đó, tổng số khúc gỗ là:

    S_{10} = \frac{n\left( 2u_{1} + (n - 1)d
ight)}{2}

    = \frac{10\left( 2.1 + (10 - 1)1
ight)}{2} = 55 (khúc gỗ).

  • Câu 31: Thông hiểu

    Cho hình bình hành ABCD. Qua các đỉnh A, B, C, D ta dựng các nửa đường thẳng song song với nhau và nằm về một phía đối với mặt phẳng (ABCD). Một mặt phẳng (P) cắt bốn đường thẳng nói trên tại A’, B’, C’, D’. Hỏi A’B’C’D’ là hình gì?

    Ta có: (ABB'A') // (CDD'C')

    => (A'B'C'D') cắt hai mặt phẳng trên theo hai giao tuyến A'B'C'D'

    => A'B' // C'D' (1)

    Chứng minh tương tự ta có: (AA'D'D) // (BB'C'C)

    => (A'B'C'D') cắt hai mặt phẳng trên theo hai giao tuyến A'D'B'C'

    => A'D' // B'C' (2)

    Từ (1) và (2) => A'B'C'D' là hình bình hành.

  • Câu 32: Nhận biết

    Cho dãy số (u_{n}), biết u_{n}=\frac{-n}{n+1}. Năm số hạng đầu tiên của dãy số đó lần lượt là:

    Ta có:

    \begin{matrix}  {u_1} = \dfrac{{ - 1}}{{1 + 1}} = \dfrac{{ - 1}}{2} \hfill \\  {u_2} = \dfrac{{ - 2}}{{2 + 1}} = \dfrac{{ - 2}}{3} \hfill \\  {u_3} = \dfrac{{ - 3}}{{3 + 1}} = \dfrac{{ - 3}}{4} \hfill \\  {u_4} = \dfrac{{ - 4}}{{4 + 1}} = \dfrac{{ - 4}}{5} \hfill \\  {u_5} = \dfrac{{ - 5}}{{5 + 1}} = \dfrac{{ - 5}}{6} \hfill \\ \end{matrix}

    Vậy 5 số hạng đầu tiên của dãy số là: -\frac{1}{2};-\frac{2}{3};-\frac{3}{4};-\frac{4}{5};-\frac{5}{6}

  • Câu 33: Thông hiểu

    Nhận định sự đúng sai của các kết luận sau?

    a) \lim_{x ightarrow 1}\frac{3x + 2}{2
- x} = 5 . Đúng||Sai

    b) Phương trình x^{3} - 3x^{2} + 3 =
0 có đúng 3 nghiệm phân biệt. Đúng||Sai

    c) Nếu \lim_{x ightarrow 0}f(x) =
5 thì \lim_{x ightarrow
0}\left\lbrack 3x - 4f(x) ightbrack bằng - 15. Sai||Đúng

    d) Hàm số f(x) = \left\{ \begin{matrix}\dfrac{\sqrt{1 + 2x} - 1}{x}\ \ \ khi\ x\  > \ 0 \\1 + 3x\ \ \ \ \ \ \ \ \ khi\ x \leq 0 \\\end{matrix} ight. gián đoạn tại x = 0. Sai||Đúng

    Đáp án là:

    Nhận định sự đúng sai của các kết luận sau?

    a) \lim_{x ightarrow 1}\frac{3x + 2}{2
- x} = 5 . Đúng||Sai

    b) Phương trình x^{3} - 3x^{2} + 3 =
0 có đúng 3 nghiệm phân biệt. Đúng||Sai

    c) Nếu \lim_{x ightarrow 0}f(x) =
5 thì \lim_{x ightarrow
0}\left\lbrack 3x - 4f(x) ightbrack bằng - 15. Sai||Đúng

    d) Hàm số f(x) = \left\{ \begin{matrix}\dfrac{\sqrt{1 + 2x} - 1}{x}\ \ \ khi\ x\  > \ 0 \\1 + 3x\ \ \ \ \ \ \ \ \ khi\ x \leq 0 \\\end{matrix} ight. gián đoạn tại x = 0. Sai||Đúng

    Ta có: \lim_{x ightarrow 1}\frac{3x +
2}{2 - x} = \frac{3.1 + 2}{3 - 1} = 5

    Xét phương trình x^{2} - 3x^{2} + 3 =
0. Đặt x^{2} - 3x^{2} + 3 =
f(x) là hàm số liên tục trên \mathbb{R} suy ra hàm số cũng liên tục trên \lbrack - 1;3brack.

    Ta có: f( - 1) = - 1;f(1) = 1;f(2) = -
1;f(3) = 3

    Khi đó: \left\{ \begin{matrix}
f( - 1).f(1) < 0 \\
f(1).f(2) < 0 \\
f(2).f(3) < 0 \\
\end{matrix} ight. nên phương trình f(x) = 0 có ít nhất 3 nghiệm

    f(x) = 0 là phương trình bậc 3 có tối đa 3 nghiệm

    Vậy phương trình đã cho có đúng 3 nghiệm.

    Ta có:

    Nếu \lim_{x ightarrow 0}f(x) =
5 suy ra

    \lim_{x ightarrow 0}\left\lbrack 3x -
4f(x) ightbrack

    = \lim_{x ightarrow 0}(3x) - 4\lim_{x
ightarrow 0}f(x) = 3.0 - 4.5 = - 20

    Ta có:

    \lim_{x ightarrow 0^{+}}\frac{\sqrt{1
+ 2x} - 1}{x} = \lim_{x ightarrow 0^{+}}\frac{\left( \sqrt{1 + 2x} - 1
ight)\left( \sqrt{1 + 2x} + 1 ight)}{x\left( \sqrt{1 + 2x} + 1
ight)}

    = \lim_{x ightarrow
0^{+}}\frac{2}{\sqrt{1 + 2x} + 1} = 1

    \lim_{x ightarrow 0^{-}}f(x) = \lim_{x
ightarrow 0^{-}}(1 + 3x) = 1

    Vậy hàm số đã cho liên tục tại x = 0.

  • Câu 34: Vận dụng

    Cho bảng dữ liệu như sau

    Đại diện A

    Tần số

    [0; 10)

    6

    [10; 20)

    24

    [20; 30)

    x

    [30; 40)

    16

    [40; 50)

    9

    Tính giá trị của x. Biết trung vị của mẫu dữ liệu ghép nhóm bằng 24.

    Ta có:

    Đại diện A

    Tần số

    Tần số tích lũy

    [0; 10)

    6

    6

    [10; 20)

    24

    30

    [20; 30)

    x

    30 + x

    [30; 40)

    16

    46 + x

    [40; 50)

    9

    55 + x

     

    N = 55 + x

     

    Trung vị là 24 => Nhóm chứa trung vị là [20; 30)

    \Rightarrow l = 20;\frac{N}{2} =\frac{55 + x}{2};m = 30;f = x,c = 10

    M_{e} = l + \dfrac{\left( \dfrac{N}{2} - might)}{f}.c

    \Leftrightarrow 24 = 20 + \dfrac{\left(\dfrac{55 + x}{2} - 30 ight)}{x}.10

    \Leftrightarrow 4 = \frac{5(x -5)}{x}

    \Leftrightarrow 4x = 5x -25

    \Leftrightarrow 25 = 5x -4x

    \Leftrightarrow 25 = x

  • Câu 35: Nhận biết

    Hình chiếu song song của hai đường thẳng chéo nhau có thể song song với nhau không?

    Hình chiếu song song của hai đường thẳng chéo nhau có thể song song với nhau.

  • Câu 36: Vận dụng cao

    Tổng Sn = 1.3 + 2.5 + 3.7 + … + n(2n+1) có công thức thu gọn là?

    Sn = Σi = 1ni(2i+1) = Σi = 1n (2i2+1)

    = 2\Sigma_{i = 1}^{n}\mspace{2mu} i^{2}
+ \Sigma_{i = 1}^{n}\mspace{2mu} i = \frac{2n(n + 1)(2n +
1)}{6}

    = \frac{n(n + 1)}{2} = \frac{n(n + 1)(4n
+ 5)}{6}

  • Câu 37: Vận dụng

    Phương trình \sin2x + 3\cos x = 0 có bao nhiêu nghiệm trong khoảng (0;2018)?

    Ta có:

    \sin2x + 3\cos x = 0

    \Rightarrow 2\sin x\cos x + 3\cos x =0

    \Rightarrow \cos x(2\sin x + 3) =0

    \Rightarrow \left\lbrack \begin{matrix}\cos x = 0 \\2\cos x + 3 = 0 \\\end{matrix} ight.\  \Rightarrow \left\lbrack \begin{matrix}x = \dfrac{\pi}{2} + k\pi;\left( k\mathbb{\in Z} ight) \\\sin x = - \dfrac{3}{2}(L) \\\end{matrix} ight.

    Theo bài ra ta có: x \in
(0;2018)

    \Rightarrow 0 < \frac{\pi}{2} + k\pi
< 2018

    \Rightarrow - \frac{1}{2} < k <
641,849...

    \Rightarrow k \in \lbrack
0;641brack

    Vậy phương trình có 642 nghiệm.

  • Câu 38: Vận dụng

    Cho cấp số nhân \left( u_{n}
ight) có công bội nguyên và các số hạng thoả mãn \left\{ \begin{matrix}
u_{4} - u_{2} = 54 \\
u_{5} - u_{3} = 108 \\
\end{matrix} ight.. Các khẳng định dưới đây là đúng hay sai?

    a) Số hạng đầu của cấp số nhân bằng 9. Đúng||Sai

    b) Tổng của 9 số hạng đầu tiên bằng 4599. Đúng||Sai

    c) Số 576 là số hạng thứ 6 của cấp số nhân. Sai||Đúng

    d) Gọi dãy số \left( v_{n} ight):\ \
v_{n} = u_{3n}, với n \in
\mathbb{N}^{*}. Khi đó tổng v_{1} +
v_{2} + v_{3} + ... + v_{10} = 12\left( 4^{10} - 1 ight). Sai||Đúng

    Đáp án là:

    Cho cấp số nhân \left( u_{n}
ight) có công bội nguyên và các số hạng thoả mãn \left\{ \begin{matrix}
u_{4} - u_{2} = 54 \\
u_{5} - u_{3} = 108 \\
\end{matrix} ight.. Các khẳng định dưới đây là đúng hay sai?

    a) Số hạng đầu của cấp số nhân bằng 9. Đúng||Sai

    b) Tổng của 9 số hạng đầu tiên bằng 4599. Đúng||Sai

    c) Số 576 là số hạng thứ 6 của cấp số nhân. Sai||Đúng

    d) Gọi dãy số \left( v_{n} ight):\ \
v_{n} = u_{3n}, với n \in
\mathbb{N}^{*}. Khi đó tổng v_{1} +
v_{2} + v_{3} + ... + v_{10} = 12\left( 4^{10} - 1 ight). Sai||Đúng

    a) Đúng

    Ta có:

    \left\{ \begin{matrix}
u_{4} - u_{2} = 54 \\
u_{5} - u_{3} = 108 \\
\end{matrix} \Leftrightarrow \left\{ \begin{matrix}
u_{1}q^{3} - u_{1}q = 54 \\
u_{1}q^{4} - u_{1}q^{2} = 108 \\
\end{matrix} ight.\  ight.

    \Leftrightarrow \left\{ \begin{matrix}
u_{1}q\left( q^{2} - 1 ight) = 54 \\
u_{1}q^{2}\left( q^{2} - 1 ight) = 108 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
u_{1} = \frac{54}{q(q^{2} - 1)} \\
\frac{1}{q} = \frac{54}{108} \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
u_{1} = \frac{54}{2(2^{2} - 1)} \\
q = 2 \\
\end{matrix} \Leftrightarrow \left\{ \begin{matrix}
u_{1} = 9 \\
q = 2 \\
\end{matrix} ight.\  ight..

    b) Đúng.

    Ta có: S_{9} = \frac{u_{1} \cdot \left( 1
- q^{9} ight)}{1 - q} = \frac{9 \cdot \left( 1 - 2^{9} ight)}{1 - 2}
= 4599

    Vậy tổng của 9 số hạng đầu tiên bằng 4599 nên mệnh đề đúng.

    c) Sai.

    Ta có:

    u_{k} = 576 \Leftrightarrow u_{1} \cdot
q^{k - 1} = 576 \Leftrightarrow 9.2^{k - 1} = 576

    \Leftrightarrow 2^{k - 1} = 64
\Leftrightarrow k - 1 = 6 \Leftrightarrow k = 7

    Vậy số 576 là số hạng thứ 7 của cấp số nhân nên mệnh đề sai.

    d) Sai.

    Ta có v_{n} = u_{3n}, nên \left( v_{n} ight) là cấp số nhân với v_{1} = u_{3} = 36 và công bội q = \frac{v_{2}}{v_{1}} =
\frac{u_{6}}{u_{3}} = \frac{9.2^{5}}{9.2^{2}} = 8.

    Nên S_{10} = 36.\frac{8^{10} -
1}{7}.

  • Câu 39: Vận dụng

    Biết rằng \lim\frac{\sqrt[3]{an^{3} +
5n^{2} - 7}}{\sqrt{3n^{2} - n + 2}} = b\sqrt{3} + c với a,b,c là các tham số. Tính giá trị của biểu thức P = \frac{a + c}{b^{3}} .

    Ta có:

    \lim\frac{\sqrt[3]{an^{3} + 5n^{2} -
7}}{\sqrt{3n^{2} - n + 2}}

    = \lim\dfrac{\sqrt[3]{a + \dfrac{5}{n} -\dfrac{7}{n^{3}}}}{\sqrt{3 - \dfrac{1}{n} + \dfrac{2}{n^{2}}}} =\dfrac{\sqrt[3]{a}}{\sqrt{3}} =\dfrac{\sqrt{3}.\sqrt[3]{a}}{3}

    \begin{matrix}
   \Rightarrow \dfrac{{\sqrt 3 .\sqrt[3]{a}}}{3} = b\sqrt 3  + c \hfill \\
   \Rightarrow \left\{ {\begin{array}{*{20}{c}}
  {\sqrt[3]{a} = \dfrac{b}{3}} \\ 
  {c = 0} 
\end{array}} ight. \Rightarrow P = \dfrac{1}{3} \hfill \\ 
\end{matrix}

  • Câu 40: Vận dụng cao

    Có tất cả bao nhiêu giá trị nguyên của tham số a thuộc khoảng (0; 2019) để\lim\sqrt{\frac{9^{n} + 3^{n +
1}}{5^{n} + 9^{n + a}}} \leq \frac{1}{2187}.

    Ta có: \dfrac{9^{n} + 3^{n + 1}}{5^{n} +9^{n + a}} > 0;\forall n \in \mathbb{N}^{*}nên

    \lim\sqrt{\dfrac{9^{n} + 3^{n + 1}}{5^{n}+ 9^{n + a}}} = \sqrt{\lim\dfrac{9^{n} + 3^{n + 1}}{5^{n} + 9^{n +a}}}

    = \sqrt{\lim\dfrac{1 + 3.\left(\dfrac{1}{3} ight)^{n}}{\left( \dfrac{5}{9} ight)^{n} + 9^{a}}} =\sqrt{\dfrac{1}{9^{a}}} = \dfrac{1}{3^{a}}

    Theo đề bài ta có

    \lim\sqrt{\dfrac{9^{n} + 3^{n + 1}}{5^{n}+ 9^{n + a}}} \leq \dfrac{1}{2187}

    \begin{matrix}
   \Leftrightarrow \dfrac{1}{{{3^a}}} \leqslant \dfrac{1}{{2187}} \Leftrightarrow {3^a} \geqslant 2187 \hfill \\
   \Leftrightarrow a \geqslant 7 \hfill \\ 
\end{matrix}

    Mặt khác \left\{ \begin{matrix}
a\mathbb{\in Z} \\
a \in (0;2019) \\
\end{matrix} \Rightarrow a \in \left\{ 7;8;9;...;2018 ight\} ight.

    Vậy có tất cả 2012 giá trị nguyên thỏa mãn.

  • Câu 41: Thông hiểu

    Giá trị của C =\lim\frac{\sqrt[4]{3n^{3} + 1} - n}{\sqrt{2n^{4} + 3n + 1} + n} bằng:

    Chia cả tử và mẫu cho n^{2} ta có được.

    C = \lim\frac{\sqrt[4]{\dfrac{3}{n^{5}} +\dfrac{1}{n^{8}}} - \dfrac{1}{n}}{\sqrt{2 + \dfrac{3}{n^{3}} +\dfrac{1}{n^{4}}} + \dfrac{1}{n}} = 0

  • Câu 42: Vận dụng cao

    Tìm giá trị lớn nhất M của hàm số y =4sin^{2}x + \sqrt{2}\sin\left( 2x + \frac{\pi}{4} ight).

    Ta có

    \begin{matrix}y = 4sin^{2}x + \sqrt{2}\sin\left( 2x + \dfrac{\pi}{4} ight) \\= 4\left( \dfrac{1 - cos2x}{2} ight) + sin2x + cos2x \\\end{matrix}

    = sin2x - cos2x + 2 = \sqrt{2}\sin\left(2x - \frac{\pi}{4} ight) + 2.

    - 1 \leq \sin\left( 2x - \frac{\pi}{4}ight) \leq 1

    \Rightarrow - \sqrt{2} + 2 \leq\sqrt{2}\sin\left( 2x - \frac{\pi}{4} ight) + 2 \leq \sqrt{2} +2.

    Vậy giá trị lớn nhất của hàm số là 2 +\sqrt{2}.

  • Câu 43: Thông hiểu

    Tìm giá trị thực của tham số m để hàm số f(x) = \left\{ \begin{matrix}\dfrac{x^{3} - x^{2} + 2x - 2}{x - 1}\ khi\ x eq 1 \\3x + m\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ khi\ x = 2 \\\end{matrix} ight.liên tục tại x = 1.

    Tập xác định D\mathbb{= R}

    Theo giả thiết ta có:

    3 + m = f(1) = \lim_{x ightarrow
1}f(x)

    \Rightarrow 3 + m = \lim_{x ightarrow
1}\left( \frac{x^{3} - x^{2} + 2x - 2}{x - 1} ight)

    \Leftrightarrow 3 + m = \lim_{x
ightarrow 1}\frac{(x - 1)\left( x^{2} + 2 ight)}{x - 1}

    \Leftrightarrow 3 + m = \lim_{x
ightarrow 1}\left( x^{2} + 2 ight)

    \Leftrightarrow 3 + m = 3

    \Leftrightarrow m = 0

  • Câu 44: Nhận biết

    Cho cấp số cộng \left( u_{n}
ight)u_{1} = - 0,1;d = 0,1. Số hạng thứ 7 của cấp số cộng là

    Ta có: u_{7} = u_{1} + 6d = - 0,1 + 6.0,1
= 0,5

  • Câu 45: Nhận biết

    Cho cấp số nhân (un) có u1 = 1; q = 2. Hỏi số 1024 là số hạng thứ mấy?

    Ta có:

    \begin{matrix}  {u_n} = {u_1}.{q^{n - 1}} \hfill \\   \Leftrightarrow {1.2^{n - 1}} = 1024 \hfill \\   \Leftrightarrow {2^{n - 1}} = {2^{10}} \hfill \\   \Rightarrow n - 1 = 10 \hfill \\   \Rightarrow n = 11 \hfill \\ \end{matrix}

Chúc mừng Bạn đã hoàn thành bài!

Đề thi học kì 1 Toán 11 Kết nối tri thức Đề 1 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 5 lượt xem
Sắp xếp theo