Cho cấp số nhân có tổng
số hạng đầu tiên là
với
. Tìm số hạng đầu
và công bội
của cấp số nhân đó?
Ta có:
,
.
Cho cấp số nhân có tổng
số hạng đầu tiên là
với
. Tìm số hạng đầu
và công bội
của cấp số nhân đó?
Ta có:
,
.
Dưới đây là bảng biểu diễn điểm của 140 sinh viên của trường đại học. Tìm trung vị.
Khoảng điểm | Số sinh viên |
(9,5; 19,5) | 7 |
[19,5; 29,5) | 15 |
[29,5; 39,5) | 18 |
[39,5; 49,5) | 25 |
[49,5; 59,5) | 30 |
[59,5; 69,5) | 20 |
[69,5; 79,5) | 16 |
[79,5; 39,5) | 7 |
[89,5; 39,5) | 2 |
Ta có:
Khoảng điểm | Số sinh viên | Tần số tích lũy |
(9,5; 19,5) | 7 | 7 |
[19,5; 29,5) | 15 | 22 |
[29,5; 39,5) | 18 | 40 |
[39,5; 49,5) | 25 | 65 |
[49,5; 59,5) | 30 | 95 |
[59,5; 69,5) | 20 | 115 |
[69,5; 79,5) | 16 | 131 |
[79,5; 39,5) | 7 | 138 |
[89,5; 39,5) | 2 | 140 |
| N = 140 |
|
Ta có:
=> Trung vị nằm trong nhóm (vì 70 nằm giữa hai tần số tích lũy là 65 và 95)
Cho hình chóp tam giác . Gọi điểm
là trung điểm của
, lấy điểm
di động trên đoạn
. Mặt phẳng
qua
song song với
. Xác định hình tạo bởi các giao tuyến của mặt phẳng
với các mặt của tứ diện.
Hình vẽ minh họa
Trong mặt phẳng (SAB), qua M kẻ đường thẳng song song với SI cắt SA tại P.
Trong mặt phẳng (ABC), qua M kẻ đường thẳng song song với IC cắt AC tại N.
Thiết diện là tam giác MNP.
Ta có:
Vậy hình tạo bởi các giao tuyến của mặt phẳng với tứ diện là tam giác MNP cân tại M.
Chị A lập bảng doanh thu bán hải sản của cửa hàng trong 20 ngày (đơn vị: triệu đồng) như sau:
Doanh thu | [5; 7) | [7; 9) | [9; 11) | [11; 13) | [13; 15) |
Số ngày | 2 | 7 | 7 | 3 | 1 |
Xác định nhóm chứa tứ phân vị thứ nhất của mẫu số liệu.
Ta có:
Doanh thu | [5; 7) | [7; 9) | [9; 11) | [11; 13) | [13; 15) |
|
Số ngày | 2 | 7 | 7 | 3 | 1 | N = 20 |
Tần số tích lũy | 2 | 9 | 16 | 19 | 20 |
|
Cỡ mẫu
=> Nhóm chứa tứ phân vị thứ nhất là [7; 9)
(Vì 5 nằm giữa hai tần số tích lũy 2 và 9)
Tìm giới hạn
Ta có:
Cho hình chóp có đáy là hình thang có cạnh đáy là
. Gọi
lần lượt là trung điểm của
, điểm
. Xác định giao tuyến của hai mặt phẳng
.
Hình vẽ minh họa
Ta có:
với
.
Vậy giao tuyến của hai mặt phẳng là đường thẳng qua P và song song với AB.
Tìm tập xác định của hàm số
Hàm số xác định khi
Vậy tập xác định
Cho mẫu số liệu ghép nhóm về thời gian đi làm muộn tháng 10/2023 của các nhân viên trong công ty X như sau:
Thời gian (phút) | Số nhân viên |
[0; 5) | 25 |
[5; 10) | 14 |
[10; 15) | 21 |
[15; 20) | 13 |
[20; 25) | 8 |
[25; 30) | 6 |
Mẫu số liệu được chia thành bao nhiêu nhóm?
Mẫu số liệu được chia thành 7 nhóm.
Cho hàm số . Số nghiệm của phương trình
trên tập số thực là:
Hàm số là hàm đa thức có tập xác định
=> Hàm số liên tục trên
=> Hàm số liên tục trên các khoảng
Ta có:
vậy phương trình có ít nhất một nghiệm trên
vậy phương trình có ít nhất một nghiệm trên
vậy phương trình có ít nhất một nghiệm trên
Vậy phương trình đã cho có ít nhất ba nghiệm thuộc khoảng . Tuy nhiên phương trình
là phương trình bậc ba có nhiều nhất ba nghiệm
Vậy phương trình có đúng ba nghiệm.
Cho hàm số . Khi đó hàm số đã cho liên tục trên khoảng nào?
Hàm số có nghĩa khi
Vậy hàm số liên tục trên các khoảng
Cho hình chóp S.ABCD, đáy ABCD là hình bình hành. Giao tuyến của hai mặt phẳng (SAD) và (SBC) là đường thẳng song song với đường thẳng nào sau đây?
Hình vẽ minh họa
Ta có:
, d đi qua S và
.
Nghiệm của phương trình là
Ta có
.
Cho hình lập phương cạnh
. Mặt phẳng
đi qua tâm của hình lập phương và song song với
. Xác định các giao tuyến của mặt phẳng
và tứ diện
. Hình tạo bởi các giao tuyến đó có diện tích bằng bao nhiêu?
Hình vẽ minh họa:
Gọi I là tâm của hình lập phương
=> I là trung điểm của AC’.
Gọi (P) là mặt phẳng qua I và song song với (ABC).
Khi đó (P) cắt các đường thẳng AB’, B’C, CD’, AD’ lần lượt tại các trung điểm M, N, P, Q.
Khi đó
=> Hình tạo bởi các giao tuyến của mặt phẳng và tứ diện
là hình thoi MNPQ cạnh bằng
Mặt khác
Diện tích hình thoi MNPQ là
Cho đường thẳng a thuộc mặt phẳng (Q), khi đó mệnh đề nào sau đây sai?
Mệnh đề sai: "".
Đồ thị hàm số được suy từ đồ thị (C) của hàm số bằng cách:
Nhắc lại lý thuyết:
Cho (C) là đồ thị của hàm số và
, ta có:
+ Tịnh tiến (C) lên p trên đơn vị thì được đồ thị của hàm số .
+ Tịnh tiến (C) xuống dưới p đơn vị thì được đồ thị của hàm số
+ Tịnh tiến (C) sang trái p đơn vị thì được đồ thị của hàm số
+ Tịnh tiến (C) sang phải p đơn vị thì được đồ thị của hàm số
Vậy đồ thị hàm số được suy từ đồ thị hàm số
bằng cách tịnh tiến sang phải
đơn vị.
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O, gọi M,N,P,Q lần lượt là trung điểm của SA,SB,SC và SD. Khi đó là đường thẳng nào?
Hình vẽ minh họa:
M ∈ (MNPQ); M ∈ SA; M ∈ (SAC)
Vậy M là điểm chung thứ nhất. P ∈ (MNPQ); P ∈ SC; P ∈ (SAC).
Vậy P là điểm chung thứ hai.
Vậy giao tuyến của (MNPQ) và (SAC) là: MP
Cho mẫu dữ liệu ghép nhóm như sau:
Đối tượng | [160; 164) | [164; 168) | [168; 172) | [172; 174) |
Tần số | 8 | 12 | 6 |
Biết rằng nhóm dữ liệu có giá trị đại diện là 166 chiếm 60% tổng tần số của mẫu dữ liệu. Tìm giá trị của ?
Nhóm số liệu có độ dài 166 là: [164; 168)
Theo bài ra ta có:
Giá trị của với
bằng:
Với a>0 nhỏ tùy ý, ta chọn
Suy ra:
Vậy .
Cho hình chóp có đáy
là hình thang cân với cạnh bên
, đáy
. Mặt phẳng
song song với
và cắt các cạnh
tại M sao cho
. Tính diện tích thiết diện tạo bởi
và hình chóp
?
Cho hình chóp có đáy
là hình thang cân với cạnh bên
, đáy
. Mặt phẳng
song song với
và cắt các cạnh
tại M sao cho
. Tính diện tích thiết diện tạo bởi
và hình chóp
?
Có bao nhiêu giá trị nguyên của tham số m để phương trình có nghiệm?
Áp dụng điều kiện có nghiệm của phương trình .
- Phương trình có nghiệm khi .
- Phương trình vô nghiệm khi .
Do đó, phương trình có nghiệm khi và chỉ khi
.
Biểu đồ dưới đây thể hiện điểm kiểm tra của 20 học sinh:
Tính điểm trung bình của 20 học sinh trên?
Ta có bảng sau:
Khoảng điểm | Điểm đại diện | Tần số | Tích các giá trị |
(0; 10] | 5 | 2 | 10 |
(10; 20] | 15 | 5 | 75 |
(20; 30] | 25 | 6 | 150 |
(30; 40] | 35 | 4 | 140 |
(40; 50] | 45 | 3 | 135 |
Tổng |
| N = 20 | 510 |
Số điểm trung bình:
bằng:
Ta có:
Biết rằng với
và
tối giản. Khi đó kết quả nào sau đây đúng?
Ta có:
Khẳng định nào sau đây là đúng khi nói về ?
Mỗi đường tròn trên đó ta đã chọn một chiều chuyển động gọi là chiều dương và chiều ngược lại được gọi là chiều âm là một đường tròn định hướng.
Cho ba mặt phẳng lần lượt giao nhau theo các giao tuyến phân biệt
. Khẳng định nào dưới đây đúng?
Theo định lí về giao tuyến của ba mặt phẳng thì đôi một song song hoặc đồng quy.
Cho hình chóp có đáy
là hình vuông cạnh bằng
là điểm trên cạnh
sao cho
Một mặt phẳng
đi qua
, song song với
và
cắt hình chóp theo một tứ giác. Gọi
là diện tích tứ giác thiết diện và
, với
là phân số tối giản,
. Tính giá trị của biểu thức
?
Đáp án: 110
Cho hình chóp có đáy
là hình vuông cạnh bằng
là điểm trên cạnh
sao cho
Một mặt phẳng
đi qua
, song song với
và
cắt hình chóp theo một tứ giác. Gọi
là diện tích tứ giác thiết diện và
, với
là phân số tối giản,
. Tính giá trị của biểu thức
?
Đáp án: 110
Hình vẽ minh họa
Ta kẻ ,
,
.
Vì mặt phẳng đi qua
, song song với
và
nên
đều thuộc
và thiết diện của hình chóp cắt bởi mặt phẳng
là tứ giác
.
Khi đó //
Tương tự, ta có được .
Suy ra và
là hình vuông.
Suy ra
Khi đó
Vậy
Tìm số đo góc lớn nhất của một tứ giác, biết số đo các góc đó lập thành một cấp số nhân có số hạng cuối gấp tám lần số hạng đầu tiên?
Giả sử cấp số nhân có số hạng đầu là , công bội
, với
Theo bài ra ta có:
Mà
Vậy góc lớn nhất có số đo
Phương án nào sau đây sai với mọi ?
Ta có:
Vậy đáp án sai là:
Cho dãy số biết
. Tìm số hạng tổng quát của dãy số
.
Ta có và
Suy ra dãy số là cấp số nhân với
Do đó
Một người xếp chồng những khúc gỗ có kích thước như nhau thành hàng. Sau khi xếp xong người đó nhận thấy mỗi hàng nằm liền phía trên thì ít hơn hàng dưới
khúc gỗ và hàng trên cùng có
khúc gỗ. Hỏi người đó có tổng cộng bao nhiêu khúc gỗ?
Đáp án: 55
Một người xếp chồng những khúc gỗ có kích thước như nhau thành hàng. Sau khi xếp xong người đó nhận thấy mỗi hàng nằm liền phía trên thì ít hơn hàng dưới
khúc gỗ và hàng trên cùng có
khúc gỗ. Hỏi người đó có tổng cộng bao nhiêu khúc gỗ?
Đáp án: 55
Mỗi hàng liền phía trên ít hơn hàng dưới khúc gỗ và hàng trên cùng có 1 khúc gỗ nên ta có đây là tổng của một cấp số cộng có:
.
Khi đó, tổng số khúc gỗ là:
(khúc gỗ).
Cho hình bình hành ABCD. Qua các đỉnh A, B, C, D ta dựng các nửa đường thẳng song song với nhau và nằm về một phía đối với mặt phẳng (ABCD). Một mặt phẳng (P) cắt bốn đường thẳng nói trên tại A’, B’, C’, D’. Hỏi A’B’C’D’ là hình gì?
Ta có:
=> cắt hai mặt phẳng trên theo hai giao tuyến
và
=>
Chứng minh tương tự ta có:
=> cắt hai mặt phẳng trên theo hai giao tuyến
và
=>
Từ (1) và (2) => là hình bình hành.
Cho dãy số , biết
. Năm số hạng đầu tiên của dãy số đó lần lượt là:
Ta có:
Vậy 5 số hạng đầu tiên của dãy số là:
Nhận định sự đúng sai của các kết luận sau?
a) . Đúng||Sai
b) Phương trình có đúng 3 nghiệm phân biệt. Đúng||Sai
c) Nếu thì
bằng
. Sai||Đúng
d) Hàm số gián đoạn tại
. Sai||Đúng
Nhận định sự đúng sai của các kết luận sau?
a) . Đúng||Sai
b) Phương trình có đúng 3 nghiệm phân biệt. Đúng||Sai
c) Nếu thì
bằng
. Sai||Đúng
d) Hàm số gián đoạn tại
. Sai||Đúng
Ta có:
Xét phương trình . Đặt
là hàm số liên tục trên
suy ra hàm số cũng liên tục trên
.
Ta có:
Khi đó: nên phương trình
có ít nhất 3 nghiệm
là phương trình bậc 3 có tối đa 3 nghiệm
Vậy phương trình đã cho có đúng 3 nghiệm.
Ta có:
Nếu suy ra
Ta có:
Vậy hàm số đã cho liên tục tại x = 0.
Cho bảng dữ liệu như sau
Đại diện A | Tần số |
[0; 10) | 6 |
[10; 20) | 24 |
[20; 30) | x |
[30; 40) | 16 |
[40; 50) | 9 |
Tính giá trị của x. Biết trung vị của mẫu dữ liệu ghép nhóm bằng 24.
Ta có:
Đại diện A | Tần số | Tần số tích lũy |
[0; 10) | 6 | 6 |
[10; 20) | 24 | 30 |
[20; 30) | x | 30 + x |
[30; 40) | 16 | 46 + x |
[40; 50) | 9 | 55 + x |
| N = 55 + x |
|
Trung vị là 24 => Nhóm chứa trung vị là
Hình chiếu song song của hai đường thẳng chéo nhau có thể song song với nhau không?
Hình chiếu song song của hai đường thẳng chéo nhau có thể song song với nhau.
Tổng Sn = 1.3 + 2.5 + 3.7 + … + n(2n+1) có công thức thu gọn là?
Sn = Σi = 1n i(2i+1) = Σi = 1n (2i2+1)
Phương trình có bao nhiêu nghiệm trong khoảng
?
Ta có:
Theo bài ra ta có:
Vậy phương trình có 642 nghiệm.
Cho cấp số nhân có công bội nguyên và các số hạng thoả mãn
. Các khẳng định dưới đây là đúng hay sai?
a) Số hạng đầu của cấp số nhân bằng . Đúng||Sai
b) Tổng của 9 số hạng đầu tiên bằng 4599. Đúng||Sai
c) Số 576 là số hạng thứ 6 của cấp số nhân. Sai||Đúng
d) Gọi dãy số , với
. Khi đó tổng
. Sai||Đúng
Cho cấp số nhân có công bội nguyên và các số hạng thoả mãn
. Các khẳng định dưới đây là đúng hay sai?
a) Số hạng đầu của cấp số nhân bằng . Đúng||Sai
b) Tổng của 9 số hạng đầu tiên bằng 4599. Đúng||Sai
c) Số 576 là số hạng thứ 6 của cấp số nhân. Sai||Đúng
d) Gọi dãy số , với
. Khi đó tổng
. Sai||Đúng
a) Đúng
Ta có:
.
b) Đúng.
Ta có:
Vậy tổng của 9 số hạng đầu tiên bằng 4599 nên mệnh đề đúng.
c) Sai.
Ta có:
Vậy số 576 là số hạng thứ 7 của cấp số nhân nên mệnh đề sai.
d) Sai.
Ta có , nên
là cấp số nhân với
và công bội
.
Nên .
Biết rằng với
là các tham số. Tính giá trị của biểu thức
.
Ta có:
Có tất cả bao nhiêu giá trị nguyên của tham số a thuộc khoảng (0; 2019) để.
Ta có: nên
Theo đề bài ta có
Mặt khác
Vậy có tất cả 2012 giá trị nguyên thỏa mãn.
Giá trị của bằng:
Chia cả tử và mẫu cho ta có được.
Tìm giá trị lớn nhất M của hàm số
Ta có
Mà
.
Vậy giá trị lớn nhất của hàm số là
Tìm giá trị thực của tham số m để hàm số liên tục tại
.
Tập xác định
Theo giả thiết ta có:
Cho cấp số cộng có
. Số hạng thứ
của cấp số cộng là
Ta có:
Cho cấp số nhân (un) có u1 = 1; q = 2. Hỏi số 1024 là số hạng thứ mấy?
Ta có: