Biết (biết
là các số nguyên dương). Tính
?
Đáp án: 14
Biết (biết
là các số nguyên dương). Tính
?
Đáp án: 14
Ta có:
Do đó
Biết (biết
là các số nguyên dương). Tính
?
Đáp án: 14
Biết (biết
là các số nguyên dương). Tính
?
Đáp án: 14
Ta có:
Do đó
Kết quả khảo sát cân nặng tất cả học sinh trong lớp 11H được ghi trong bảng sau:
Cân nặng (kg) | Số học sinh |
[45; 50) | 5 |
[50; 55) | 12 |
[55; 60) | 10 |
[60; 65) | 6 |
[65; 70) | 5 |
[70; 75) | 8 |
Tính độ dài nhóm số liệu trong mẫu số liệu ghép nhóm trên.
Độ dài nhóm của mẫu số liệu ghép nhóm trên là 5.
Cho hình chóp có đáy là hình thang đáy lớn là
. Gọi
là trung điểm của cạnh
,
là giao điểm của cạnh
và mặt phẳng
. Các mệnh đề sau đúng hay sai?
a) và
cắt nhau.Sai||Đúng
b) .Đúng||Sai
c) và
cắt nhau.Sai||Đúng
d) và
chéo nhau. Sai||Đúng
Cho hình chóp có đáy là hình thang đáy lớn là
. Gọi
là trung điểm của cạnh
,
là giao điểm của cạnh
và mặt phẳng
. Các mệnh đề sau đúng hay sai?
a) và
cắt nhau.Sai||Đúng
b) .Đúng||Sai
c) và
cắt nhau.Sai||Đúng
d) và
chéo nhau. Sai||Đúng
Hình vẽ minh họa
Ta có:
.
Kết luận:
a) Sai |
b) Đúng |
c) Sai |
d) Sai |
Cho cấp số cộng có
. Số 100 là số hạng thứ mấy của cấp số cộng?
Ta có:
Giá trị của bằng:
Ta có:
Tính tổng :
Ta có:
Điều kiện xác định của hàm số là:
Ta có:
Điều kiện xác định của hàm số
Chọn khẳng định đúng.
Ta có: tương ứng với
.
Cho dãy số (un) xác định bởi .
Số nguyên dương n nhỏ nhất sao cho là?
Ta có:
= > un = 1 + 13 + 23 + … + (n−1)3
Ta lại có 13 + 23 + … + (n−1)3
Suy ra
Theo giả thiết ta có
Mà n là số nguyên dương nhỏ nhất nên n = 2020.
Tìm giá trị thực của m để hàm số liên tục tại
.
Tập xác định của hàm số: chứa
Theo giả thiết thì ta phải có:
Vậy
Tìm số trung bình của mẫu dữ liệu cho trong bảng sau:
Khoảng | Tần số |
Nhỏ hơn 20 | 6 |
Nhỏ hơn 40 | 28 |
Nhỏ hơn 60 | 65 |
Nhỏ hơn 80 | 90 |
Nhỏ hơn 100 | 111 |
Ta có:
Khoảng | Đại diện khoảng | Tần số | Tích |
[0; 20) | 10 | 6 | 60 |
[20; 40) | 30 | 28 | 840 |
[40; 60) | 50 | 65 | 3250 |
[60; 80) | 70 | 90 | 6300 |
[80; 100) | 90 | 111 | 9990 |
Tổng |
| N = 300 | 20440 |
Số trung bình là:
Cho cấp số cộng có
và
. Tìm
Ta có:
Cho tứ diện có
. Lấy một điểm
bất kì trên cạnh
. Gọi mặt phẳng
là mặt phẳng qua
song song với
và
. Biết các giao tuyến của mặt phẳng
với tứ diện tạo thành một tứ giác. Khi điểm
di chuyển đến vị trí
hình tứ giác trên trở thành hình thoi. Tính giá trị biểu thức
.
Hình vẽ minh họa:
Giao tuyến của với mặt phẳng
là đường thẳng qua
và song song với
, đường thẳng này cắt
tại
.
=>
Giao tuyến của với mặt phẳng
là đường thẳng qua
và song song với
, đường thẳng này cắt
tại
.
=>
Giao tuyến của với mặt phẳng
là đường thẳng qua
và song song với
, đường thẳng này cắt
tại
.
=>
Vậy các giao tuyến của mặt phẳng với tứ diện tạo thành một tứ giác là hình bình hành
.
Do đó
Chứng minh tương tự ta được
Do đó:
Khi trùng với
ta có:
Suy ra
Vậy
Trong các dãy số sau, dãy số nào là cấp số cộng?
Ta có:
Khi đó theo định nghĩa cấp số cộng dãy số là một cấp số cộng với
Các yếu tố nào sau đây xác định một mặt phẳng duy nhất?
“Ba điểm phân biệt” sai. Trong trường hợp 3 điểm phân biệt thẳng hàng thì sẽ có vô số mặt phẳng chứa 3 điểm thẳng hàng đã cho.
“Một điểm và một đường thẳng” sai. Trong trường hợp điểm thuộc đường thẳng đã cho, khi đó ra chỉ có 1 đường thẳng, có vô số mặt phẳng đi qua đường thẳng đó.
“Bốn điểm phân biệt” sai. Trong trường hợp 4 điểm phân biệt thẳng hàng thì có vô số mặt phẳng đi qua 4 điểm đó hoặc trong trường hợp 4 điểm không đồng phẳng thì sẽ không tạo được mặt phẳng nào đi qua cả 4 điểm.
Tính .
Ta có :
.
Cho tứ diện đều S.ABC. Gọi I là trung điểm của AB, M là một điểm lưu động trên đoạn AI. Qua M vẽ mặt phẳng (∝) // (SIC). Khi đó thiết diện của mặt phẳng (∝) và tứ diện S.ABC là:
Qua M kẻ đường thẳng song song với IC cắt AC tại E và kẻ đường thẳng song song với SI cắt SA tại D.
Khi đó thiết diện của mặt phẳng (α)) với tứ diện S.ABC là tam giác MED
Lại có: MD // SI => (1)
ME // IC => (2)
Từ (1) và (2) suy ra:
Vì S.ABC là tứ diện đều nên SI = CI (vì hai tam giác SAB và CAB là hai tam giác bằng nhau nên hai đường trung tuyến tương ứng bằng nhau)
Suy ra MD = ME
Vậy tam giác MED cân tại M.
Biết giới hạn và
. Khi đó:
a) Đúng||Sai
b) là hoành độ giao điểm của đường thẳng
với trục hoành Đúng||Sai
c) Đúng||Sai
d) Cho cấp số cộng với công sai
và
, thì
Sai||Đúng
Biết giới hạn và
. Khi đó:
a) Đúng||Sai
b) là hoành độ giao điểm của đường thẳng
với trục hoành Đúng||Sai
c) Đúng||Sai
d) Cho cấp số cộng với công sai
và
, thì
Sai||Đúng
Ta có:
Do
Kết luận:
a) Đúng |
b) Đúng |
c) Đúng |
d) Sai |
Cho hàm số xác định trên tập số thực và có đồ thị như hình vẽ:
Hỏi hàm số không liên tục tại điểm nào sau đây?
Quan sát đồ thị hàm số ta thấy:
Vậy nên không tồn tại
. Do đó hàm số gián đoạn tại
.
Tính giá trị biểu thức
Cho hình chóp có đáy là hình bình hành. Qua
kẻ
lần lượt song song với
. Gọi
là giao điểm của
và
. Các mệnh đề sau đúng hay sai?
a) Giao tuyến của và
là đường thẳng
. Sai||Đúng
b) Giao tuyến của và
là đường thẳng
. Sai||Đúng
c) Giao tuyến của và
là đường thẳng
. Đúng||Sai
d) Giao tuyến của và
là đường thẳng
. Sai||Đúng
Cho hình chóp có đáy là hình bình hành. Qua
kẻ
lần lượt song song với
. Gọi
là giao điểm của
và
. Các mệnh đề sau đúng hay sai?
a) Giao tuyến của và
là đường thẳng
. Sai||Đúng
b) Giao tuyến của và
là đường thẳng
. Sai||Đúng
c) Giao tuyến của và
là đường thẳng
. Đúng||Sai
d) Giao tuyến của và
là đường thẳng
. Sai||Đúng
Hình vẽ minh họa
Ta có:
với
.
Kết luận:
a) Sai |
b) Sai |
c) Đúng |
d) Sai |
Cho tổng . Giá trị S10 là
Cách 1:
Ta có
Suy ra
Vậy .
Cách 2:
Ta có
Suy ra .
Cho cấp số nhân có số hạng đầu
và công bội
. Số hạng thứ sáu của
là:
Ta có:
Cho hàm số . Có bao nhiêu giá trị của tham số m thuộc đoạn [0; 10] để giá trị nhỏ nhất của hàm số nhỏ hơn -2?
Ta có:
y.(cosx + 2) = 1 – m.sinx
=> m.sinx + y.cosx = 1 – 2y
Phương trình có nghiệm khi
Nghiệm của phương trình là
=>
=>
Theo yêu cầu bài toán ta có:
Mặt khác m thuộc đoạn [0; 10] nên m = {5; 6; 7; 8; 9; 10}
Cho cấp số nhân với các số hạng lần lượt là a; 12; b; 192. Mệnh đề nào dưới đây đúng?
Ta có: Cấp số nhân với các số hạng lần lượt là a; 12; b; 192
Cho hình chóp có đáy
là hình bình hành. Gọi
lần lượt là trung điểm của
. Chọn khẳng định đúng?
Hình vẽ minh họa
Ta có là đường trung bình tam giác
(1)
Ta có là đường trung bình của tam giác
.
.
Biết rằng hàm số liên tục tại
(a là tham số. Khẳng định nào dưới đây đúng?
Tập xác định
Theo giả thiết ta có:
Phương trình có bao nhiêu nghiệm thuộc khoảng
?
Ta có:
Mà
Vậy phương trình có hai nghiệm thuộc khoảng .
Cho hai hàm số . Mệnh đề nào sau đây đúng?
Xét hàm số có tập xác định
Với mọi x thuộc D => -x thuộc D ta có:
Vậy f(x) là hàm số chẵn
Tương tự xét hàm số
Với mọi x thuộc D => -x thuộc D ta có:
Vậy g(x) là hàm số chẵn.
Cho dãy số với
, trong đó
là tham số thực.
a) Khi thì
Đúng||Sai
b) Khi thì
. Sai||Đúng
c) Khi thì
. Đúng||Sai
d) Khi thì
Đúng||Sai
Cho dãy số với
, trong đó
là tham số thực.
a) Khi thì
Đúng||Sai
b) Khi thì
. Sai||Đúng
c) Khi thì
. Đúng||Sai
d) Khi thì
Đúng||Sai
Ta có
Nhận lượng liên hợp :
Cho hình chóp có
lần lượt là trọng tâm các tam giác
và
. Gọi
là trung điểm cạnh
. Mặt phẳng
cắt
tại
. Tỉ số
bằng:
Hình vẽ minh họa
Ta có: là trọng tâm tam giác
và
là trung điểm của
.
=> thẳng hàng hay
Ta lại có là trọng tâm tam giác
nên
kéo dài cắt
tại trung điểm của
.
Vậy là trung điểm của
suy ra
Cho tứ diện . Trung điểm các cạnh
lần lượt là các điểm
. Giả sử
. Chọn khẳng định đúng.
Hình vẽ minh họa
Ta có:
=> là đường thẳng song song với
và
.
=> song song với
Đổi số đo của góc sang đơn vị radian
Cách 1: Áp dụng công thức với
tính bằng rad và
tính bằng độ.
Khi đó:
Cách 2: Bấm máy tính:
Bước 1. Bấm shift mode 4 để chuyển về chế độ rad.
Bước 2. Bấm 70 shift DRG 1 =
Nghiệm của phương trình là
Ta có: .
Cho tam giác có các góc
thỏa mãn biểu thức
. Khẳng định nào sau đây đúng?
Ta có:
Vậy tam giác cân.
Trong các mệnh đề sau, mệnh đề nào đúng?
Mệnh đề: “Hai đường thẳng không song song thì chéo nhau” sai vì có thể cắt nhau.
Mệnh đề: “Hai đường thẳng chéo nhau thì không có điểm chung” đúng.
Mệnh đề: “Hai đường thẳng không cắt nhau và không song song thì chéo nhau” sai vì có thể trùng nhau.
Mệnh đề: “Hai đường thẳng không có điểm chung thì chéo nhau” sai vì có thể song song.
Khách hàng A gửi 60 triệu đồng vào ngân hàng với kì hạn 1 tháng với lãi suất của loại kì hạn này là . Ngân hàng đó quy định: “Khi kết thúc kỳ hạn gửi tiền mà người gửi không đến rút tiền thì toàn bộ số tiền (bao gồm cả vốn và lãi) sẽ được chuyển gửi tiếp với kỳ hạn như kỳ hạn mà người gửi đã gửi”. Hỏi nếu sau hai năm, kể từ ngày gửi người đó đến ngân hàng để rút tiền thì số tiền rút được (gồm cả vốn và lãi) là bao nhiêu?
Với số nguyên dương , kí hiệu
là số tiền người đó rút được (gồm cả vốn và lãi) sau
tháng kể từ ngày gửi. khi đó, theo giả thiết của bài toán ta có:
Ta có: là một cấp số nhân với số hạng đầu
với công bội
nên
Số tiền rút được sau 2 năm là:
(đồng)
Cho mẫu số liệu ghép nhóm về thống kê điểm số (thang điểm ) của
học sinh tham dự kỳ thi giữa kỳ
của lớp
, ta có bảng số liệu sau:
Điểm |
[0; 2) |
[2; 4) |
[4; 6) |
[6; 8) |
[8; 10) |
Số học sinh |
5 |
7 |
13 |
18 |
7 |
Tìm tứ phân vị thứ nhất của mẫu số liệu ghép nhóm trên. (Kết quả làm tròn đến hàng phần trăm)
Ta có bảng số liệu:
Điểm |
[0; 2) |
[2; 4) |
[4; 6) |
[6; 8) |
[8; 10) |
Số học sinh |
5 |
7 |
13 |
18 |
7 |
Tần số tích lũy |
5 |
12 |
25 |
43 |
50 |
Vì nên nhóm chứa tứ phân vị thứ nhất là
.
Khi đó tứ phân vị thứ nhất là
.
Cường độ dòng điện trong một đoạn mạch là (A). Tại thời điểm
thì cường độ trong mạch có giá trị bằng.
Thay vào biểu thức cường độ dòng điện ta được:
.
Điểm kiểm tra khảo sát môn Tiếng Anh của lớp 11A được ghi trong bảng số liệu ghép nhóm như sau:
Điểm | [0; 20) | [20; 40) | [40; 60) | [60; 80) | [80; 100) |
Số học sinh | 5 | 9 | 12 | 10 | 6 |
Tính giá trị trung vị của mẫu dữ liệu?
Ta có:
Điểm | [0; 20) | [20; 40) | [40; 60) | [60; 80) | [80; 100) |
|
Số học sinh | 5 | 9 | 12 | 10 | 6 | N = 42 |
Tần số tích lũy | 5 | 14 | 26 | 36 | 42 |
|
Cỡ mẫu
=> Nhóm chứa trung vị là [40; 60)
(Vì 21 nằm giữa hai tần số tích lũy 14 và 26)
Do đó:
Khi đó trung vị là:
Cho hình chóp . Trung điểm của các cạnh
lần lượt là
. Chọn khẳng định đúng.
Hình vẽ minh họa
Ta có:
mà
cắt
nên khẳng định
sai.
cắt
tại
nên khẳng định
sai.
cắt
tại trung điểm của
nên khẳng định
sai.
Hàm số không xác định trong khoảng nào trong các khoảng sau đây?
Hàm số xác định khi và chỉ khi:
Chọn k = 3 =>
Nhưng điểm thuộc khoảng
Vậy hàm số không xác định trên
Nhóm chứa tứ phân vị thứ ba của mẫu số liệu đã cho là:
Ta có: ,
,
,
,
Do đó, tứ phân vị thứ ba của mẫu số liệu thuộc nhóm
Cho hình chóp tam giác . Gọi điểm
là trung điểm của
, lấy điểm
di động trên đoạn
. Mặt phẳng
qua
song song với
. Xác định hình tạo bởi các giao tuyến của mặt phẳng
với các mặt của tứ diện.
Hình vẽ minh họa
Trong mặt phẳng (SAB), qua M kẻ đường thẳng song song với SI cắt SA tại P.
Trong mặt phẳng (ABC), qua M kẻ đường thẳng song song với IC cắt AC tại N.
Thiết diện là tam giác MNP.
Ta có:
Vậy hình tạo bởi các giao tuyến của mặt phẳng với tứ diện là tam giác MNP cân tại M.
Cho hàm số . Mệnh đề nào sau đây đúng?
Ta có:
Vậy đáp án đúng là