Cho góc được biểu diễn trên đường tròn lượng giác như hình vẽ. Mệnh đề nào dưới đây đúng?
Góc được biểu diễn như hình vẽ, khi đó
.
Tung độ của điểm là
suy ra
Mệnh đề đúng là .
Cho góc được biểu diễn trên đường tròn lượng giác như hình vẽ. Mệnh đề nào dưới đây đúng?
Góc được biểu diễn như hình vẽ, khi đó
.
Tung độ của điểm là
suy ra
Mệnh đề đúng là .
Với là góc bất kì và các biểu thức có nghĩa. Đẳng thức nào dưới đây đúng?
Đẳng thức đúng: .
Cho hàm số có giá trị nhỏ nhất và giá trị lớn nhất lần lượt là
,
. Tính giá trị của biểu thức
.
Ta có:
Nên .
Suy ra .
Số nghiệm trong khoảng của phương trình
là
Ta có:
.
Với thì
.
Suy ra .
Vậy có 1 nghiệm trong khoảng .
Một cấp số cộng gồm số hạng. Hiệu số hạng đầu và số hạng cuối bằng
. Tìm công sai
của cấp số cộng đã cho?
Gọi năm số hạng của cấp số cộng đã cho là:
Theo đề bài ta có:
Vậy công sai của cấp số cộng đã cho là
Cho dãy số xác định bởi
. Tính số hạng thứ
của dãy số đó?
Ta có ,
,
Do đó là cấp số nhân với
,
,
;
.
Cho mẫu số liệu ghép nhóm về thống kê điểm số (thang điểm ) của
học sinh tham dự kỳ thi giữa kỳ
của lớp
, ta có bảng số liệu sau:
Điểm |
[0; 2) |
[2; 4) |
[4; 6) |
[6; 8) |
[8; 10) |
Số học sinh |
5 |
7 |
13 |
18 |
7 |
Tìm mốt của mẫu số liệu ghép nhóm trên. (Kết quả làm tròn đến hàng phần trăm)
Từ bảng số liệu, nhóm chứa mốt sẽ là .
Khi đó mốt là
.
Cho mẫu số liệu ghép nhóm về thống kê điểm số (thang điểm ) của
học sinh tham dự kỳ thi giữa kỳ
của lớp
, ta có bảng số liệu sau:
Điểm |
[0; 2) |
[2; 4) |
[4; 6) |
[6; 8) |
[8; 10) |
Số học sinh |
5 |
7 |
13 |
18 |
7 |
Tìm tứ phân vị thứ nhất của mẫu số liệu ghép nhóm trên. (Kết quả làm tròn đến hàng phần trăm)
Ta có bảng số liệu:
Điểm |
[0; 2) |
[2; 4) |
[4; 6) |
[6; 8) |
[8; 10) |
Số học sinh |
5 |
7 |
13 |
18 |
7 |
Tần số tích lũy |
5 |
12 |
25 |
43 |
50 |
Vì nên nhóm chứa tứ phân vị thứ nhất là
.
Khi đó tứ phân vị thứ nhất là
.
Cho hình chóp có đáy
là hình bình hành tâm
. Gọi
lần lượt là trung điểm
,
. Đường thẳng
song song với đường thẳng nào trong các đường thẳng sau?
Hình vẽ minh họa
Do là đường trung bình của tam giác
.
Cho hình chóp có đáy là hình bình hành. Hình chiếu song song của điểm
theo phương
lên mặt phẳng
là điểm nào sau đây?
Hình vẽ minh họa
Do suy ra hình chiếu song song của điểm
theo phương
lên mặt phẳng
là điểm
.
Cho dãy số với
. Tính
.
Ta có:
Phương trình nào dưới đây có nghiệm trong khoảng ?
Xét phương án :
có
=> Phương trình vô nghiệm.
Xét phương án :
Đặt , phương trình trở thành:
.
=> Phương trình vô nghiệm.
Xét phương án :
Phương trình vô nghiệm.
Xét phương án :
, xét
.
Mặc khác hàm số liên tục trên
do đó liên tục trên
.
Vậy phương trình có ít nhất một nghiệm trong khoảng
.
Cho hình chóp có đáy
là hình bình hành. Gọi
lần lượt là trọng tâm của hai tam giác
và
lần lượt là trung điểm của
và
. Khi đó:
a) . Đúng||Sai
b) . Đúng||Sai
c) song song với mặt phẳng
. Đúng||Sai
d) cắt mặt phẳng
. Sai||Đúng
Cho hình chóp có đáy
là hình bình hành. Gọi
lần lượt là trọng tâm của hai tam giác
và
lần lượt là trung điểm của
và
. Khi đó:
a) . Đúng||Sai
b) . Đúng||Sai
c) song song với mặt phẳng
. Đúng||Sai
d) cắt mặt phẳng
. Sai||Đúng
Hình vẽ minh họa
a) Đúng.
Do lần lượt là trọng tâm của tam giác
và
nên
.
b) Đúng.
Do lần lượt là trọng tâm của tam giác
và
nên
Mà
c) Đúng.
Vì .
Vì là đường trung bình của hình bình hành
nên
d) Sai.
Ta có: mà
.
Cho hai hình bình hành và
nằm trong hai mặt phẳng phân biệt. Xét tính đúng sai của các mệnh đề sau:
a) . Sai||Đúng
b) . Đúng||Sai
c) . Sai||Đúng
d) Sáu điểm là 6 đỉnh của một hình lăng trụ tam giác. Đúng||Sai
Cho hai hình bình hành và
nằm trong hai mặt phẳng phân biệt. Xét tính đúng sai của các mệnh đề sau:
a) . Sai||Đúng
b) . Đúng||Sai
c) . Sai||Đúng
d) Sáu điểm là 6 đỉnh của một hình lăng trụ tam giác. Đúng||Sai
Hình vẽ minh họa
a) Sai: và
cắt nhau tại
.
b) Đúng.
Vì là hình bình hành nên
, suy ra
.
Vì là hình bình hành nên
, suy ra
.
Mà và
cắt nhau nên
.
c) Sai: Vì và
có điểm
chung.
d) Đúng:
Vì và
là hình bình hành nên
đôi một song song
Mặt khác (theo câu b)
Do đó 6 điểm là 6 đỉnh của một hình lăng trụ tam giác
Cho hàm số . Các kết luận dưới đây đúng hay sai?
a). Sai||Đúng
b). Sai||Đúng
c). Đúng||Sai
d) Hàm số liên tục tại
. Đúng||Sai
Cho hàm số . Các kết luận dưới đây đúng hay sai?
a). Sai||Đúng
b). Sai||Đúng
c). Đúng||Sai
d) Hàm số liên tục tại
. Đúng||Sai
a) Sai
.
b) Sai
.
c) Đúng
.
d) Đúng
Ta có:
và
.
.
Vậy nên hàm số
liên tục tại
.
Cho hình chóp có đáy
là hình bình hành tâm
. Gọi
lần lượt là trung điểm các cạnh
và
,
là trung điểm cạnh
. Khi đó:
a) Đúng||Sai
b) Sai||Đúng
c) Đúng||Sai
d) cắt mặt phẳng
Sai||Đúng
Cho hình chóp có đáy
là hình bình hành tâm
. Gọi
lần lượt là trung điểm các cạnh
và
,
là trung điểm cạnh
. Khi đó:
a) Đúng||Sai
b) Sai||Đúng
c) Đúng||Sai
d) cắt mặt phẳng
Sai||Đúng
Hình vẽ minh họa
a) Đúng
Vì lần lượt là trung điểm các cạnh
và
nên
là hình bình hành nên
.
b) Sai
Do không đồng phẳng nên
không thể song song với
c) Đúng
Do mà
.
d) Sai
Do là đường trung bình của tam giác
nên
, mà
nên
.
Hằng ngày, mực nước của một con kênh lên xuống theo thủy triều. Độ sâu (mét) của mực nước trong kênh tính theo thời gian
(giờ) trong một ngày
cho bởi hàm số
có đồ thị như hình bên dưới (
là các số thực dương). Gọi
là tập hợp tất cả các thời điểm
trong ngày để chiều cao của mực nước biển là
mét. Tổng tất cả phần tử của
bằng.
Đáp án: 36
Hằng ngày, mực nước của một con kênh lên xuống theo thủy triều. Độ sâu (mét) của mực nước trong kênh tính theo thời gian
(giờ) trong một ngày
cho bởi hàm số
có đồ thị như hình bên dưới (
là các số thực dương). Gọi
là tập hợp tất cả các thời điểm
trong ngày để chiều cao của mực nước biển là
mét. Tổng tất cả phần tử của
bằng.
Đáp án: 36
Theo đồ thị ta có:
Suy ra: .
Theo đề bài yêu cầu:
Vì: nên
Suy ra:
Một người nhảy bungee (một trò chơi mạo hiểm mà người chơi nhảy từ một nơi có địa thế cao xuống với dây dai an toàn buộc xung quanh người) từ một cây cầu và căng một sợi dây dài 100 m. Sau mỗi lần rơi xuống, nhờ sự đàn hồi của dây, người nhảy dược kéo lên một quãng đường có độ dài bằng so với lần rơi trước đó và lại bị rơi xuống đúng bằng quãng đường vừa dược kéo lên. Tính tổng quãng đường người đó đi được sau 10 lần kéo lên và lại rơi xuống (làm tròn kết quả đến hàng đơn vị của mét)?
Đáp án: 666
Một người nhảy bungee (một trò chơi mạo hiểm mà người chơi nhảy từ một nơi có địa thế cao xuống với dây dai an toàn buộc xung quanh người) từ một cây cầu và căng một sợi dây dài 100 m. Sau mỗi lần rơi xuống, nhờ sự đàn hồi của dây, người nhảy dược kéo lên một quãng đường có độ dài bằng so với lần rơi trước đó và lại bị rơi xuống đúng bằng quãng đường vừa dược kéo lên. Tính tổng quãng đường người đó đi được sau 10 lần kéo lên và lại rơi xuống (làm tròn kết quả đến hàng đơn vị của mét)?
Đáp án: 666
Gọi là quãng dường người đó dược kéo lên ở lần thứ
(đơn vị tính: mét).
Ta có và
.
Vậy là cấp số nhân với số hạng đầu
và công bội
.
Tổng quãng đường người đó đi được sau 10 lần kéo lên và lại rơi xuống là
Cho hình chóp . Gọi
,
lần lượt là trung điểm của
và
,
là điểm trên cạnh
sao cho
. Gọi
là giao điểm của
với mặt phẳng
. Tính
( làm tròn đến hàng phần trăm)
Đáp án: 0,33
Cho hình chóp . Gọi
,
lần lượt là trung điểm của
và
,
là điểm trên cạnh
sao cho
. Gọi
là giao điểm của
với mặt phẳng
. Tính
( làm tròn đến hàng phần trăm)
Đáp án: 0,33
Hình vẽ minh họa
Tìm giao điểm của
với mặt phẳng
Chọn mặt phẳng phụ chứa
Trong gọi
Suy ra . Khi đó
là giao điểm của
và
.
Gọi là trung điểm
Ta có (vì
là trung điểm của
và
nên
)
Mà nên
Mặt khác ta có (vì
)
Mà nên
.
Từ hình vuông có cạnh bằng , người ta chia mỗi cạnh của hình vuông thành ba phần bằng nhau và nối các điểm chia một cách thích hợp để có hình vuông mới (hình vẽ).Tiếp tục quá trình này đến vô hạn. Gọi
là diện tích của hình vuông được tạo thành ở bước thứ n
. Tính tổng
?
Đáp án: 5/4 (kết quả ghi dưới dạng phân số tối giản a/b)
Từ hình vuông có cạnh bằng , người ta chia mỗi cạnh của hình vuông thành ba phần bằng nhau và nối các điểm chia một cách thích hợp để có hình vuông mới (hình vẽ).Tiếp tục quá trình này đến vô hạn. Gọi
là diện tích của hình vuông được tạo thành ở bước thứ n
. Tính tổng
?
Đáp án: 5/4 (kết quả ghi dưới dạng phân số tối giản a/b)
Giả sử cạnh hình vuông bằng a.
Ta có cạnh của hình vuông được tạo ở bước 1 là
Tương tự như trên, ta có:
,
,…,
Nên là tổng của cấp số nhân lùi vô hạn với
.
Khi đó .
Với a = 1 suy ra .
Cho hai số thực thỏa mãn
. Tính giá trị biểu thức
.
Đáp án: -4||- 4
Cho hai số thực thỏa mãn
. Tính giá trị biểu thức
.
Đáp án: -4||- 4
Vì là 1 số hữu hạn và
nên
hay
.
Khi đó:
Suy ra .
Vậy .
Cho hàm số liên tục tại
khi đó giá trị của tham số
bằng bao nhiêu? (Kết quả ghi dưới dạng phân số tối giản a/b).
Đáp án: -1/1012
Cho hàm số liên tục tại
khi đó giá trị của tham số
bằng bao nhiêu? (Kết quả ghi dưới dạng phân số tối giản a/b).
Đáp án: -1/1012
Hàm số xác định tại .
Ta có . Tính
.
Đặt thì
,
thì
.
.
.
Vậy
.
Để hàm số liên tục tại khi
.