Đề thi học kì 1 Toán 12 Đề 3

Mô tả thêm: Đề thi HK1 Toán 12 được biên soạn gồm 50 câu hỏi trắc nghiệm thuộc 4 chuyên đề trọng tâm giúp bạn học có thêm tài liệu ôn thi, củng cố nội dung kiến thức Toán 12.
  • Thời gian làm: 90 phút
  • Số câu hỏi: 50 câu
  • Số điểm tối đa: 50 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Cho hàm số y = f(x) = x^{3} - (2m +
1)x^{2} + (3 - m)x + 2 với m là tham số. Định điều kiện của tham số m để hàm số y = f\left( |x| ight) có ba điểm cực trị?

    Ta có:

    y' = f'(x) = 3x^{2} - 2(2m + 1)x
+ 3 - m

    y' = 0 \Leftrightarrow 3x^{2} - 2(2m
+ 1)x + 3 - m = 0(*)

    Để hàm số y = f\left( |x|
ight) có ba điểm cực trị thì đồ thị hàm số y = f(x) có đúng một cực trị nằm bên phải trục tung => phương trình (*) có 1 nghiệm dương => phương trình (*) có hai nghiệm dươngx_{1};x_{2} thỏa mãn \left\lbrack \begin{matrix}
0 = x_{1} < x_{2} \\
x_{1} < 0 < x_{2} \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
\left\{ \begin{matrix}
3 - m = 0 \\
2m + 1 > 0 \\
\end{matrix} ight.\  \\
3 - m < 0 \\
\end{matrix} ight.\  \Leftrightarrow m \geq 3

  • Câu 2: Thông hiểu

    Tâm tất cả các mặt của một hình lập phương là các đỉnh của hình nào trong các hình sau đây?

     Tâm tất cả các mặt của một hình lập phương là các đỉnh của hình bát diện:

  • Câu 3: Thông hiểu

    Trung điểm các cạnh của một tứ diện đều tạo thành?

     Trung điểm các cạnh của một tứ diện đều tạo thành các đỉnh của một hình bát diện đều:

  • Câu 4: Vận dụng cao

    Cho hàm số y = f(x) liên tục trên tập số thực và \mathop {\lim }\limits_{x \to  - \infty } f\left( x ight) = 1;\mathop {\lim }\limits_{x \to  -  + } f\left( x ight) =  + \infty. Có bao nhiêu giá trị nguyên của tham số m thuộc [-2020; 2020] để đồ thị hàm số g\left( x ight) = \frac{{\sqrt {{x^2} + 3x}  + x}}{{\sqrt {2f\left( x ight) - {f^2}\left( x ight)}  + m}} có tiệm cận ngang nằm bên dưới đường thẳng y = -1.

    Điều kiện \left\{ {\begin{array}{*{20}{c}}  {x \leqslant  - 3;x \geqslant 0} \\   {0 \leqslant f\left( x ight) \leqslant 2} \\   {\sqrt {2f\left( x ight) - {f^2}\left( x ight)}  + m e 0} \end{array}} ight.

    Do \mathop {\lim }\limits_{x \to  - \infty } f\left( x ight) = 1 \Rightarrow \mathop {\lim }\limits_{x \to  - \infty } \sqrt {2f\left( x ight) - {f^2}\left( x ight)}  = \sqrt {\mathop {\lim }\limits_{x \to  - \infty } \left[ {2f\left( x ight) - {f^2}\left( x ight)} ight]}  = 1

    \mathop {\lim }\limits_{x \to  + \infty } \left( {\sqrt {{x^2} + 3x}  + x} ight) = \mathop {\lim }\limits_{x \to  + \infty } \frac{3}{{ - \left( {\sqrt {1 - \dfrac{3}{x}}  + 1} ight)}} =  - \frac{3}{2}

    Từ đó \mathop {\lim }\limits_{x \to  - \infty } g\left( x ight) =  - \frac{3}{{2m + 2}},\left( {m e  - 1} ight)

    Khi đó hàm số g(x) có tiệm cận ngang là đường thẳng y = \frac{{ - 3}}{{2m + 2}}

    Để tiệm cận ngang tìm được ở trên nằm dưới đường thẳng y = - thì \frac{{ - 3}}{{2m + 2}} <  - 1 \Rightarrow  - 1 < m < \frac{1}{2}

    m \in \mathbb{Z} \Rightarrow m = 0

  • Câu 5: Vận dụng

    Cho hình nón đỉnh S có đáy là hình tròn tâm O. Dựng hai đường sinh SA và SB, biết tam giác SAB vuông và có diện tích bằng 4a^2. Góc tạo bởi giữa trục SO và mặt phẳng (SAB) bằng 30^0. Đường cao h của hình nón bằng:

     Tính đường cao nón

    Theo giả thiết ta có tam giác SAB vuông cân tại S.

    Gọi E là trung điểm AB, suy ra\left\{ \begin{array}{l}SE \bot AB\\OE \bot AB\end{array} ight.  và SE = \frac{1}{2}AB.

    Ta có {S_{\Delta SAB}} = \frac{1}{2}AB.SE = 4{a^2} \Leftrightarrow \frac{1}{2}AB.\frac{1}{2}AB = 4{a^2}

    \Rightarrow AB = 4a \Rightarrow SE = 2a.

    Gọi H là hình chiếu của O trên SE, suy ra OH \bot SE.

    Ta có \left\{ \begin{array}{l}AB \bot OE\\AB \bot SO\end{array} ight. \Rightarrow AB \bot \left( {SOE} ight) \Rightarrow AB \bot OH.

    Từ đó suy ra OH \bot \left( {SAB} ight) nên

    {30^0} = \widehat {SO,\left( {SAB} ight)} = \widehat {SO,SH} = \widehat {OSH} = \widehat {OSE}

    Trong tam giác vuông SOE, ta có SO = SE.\cos \widehat {OSE} = a\sqrt 3

  • Câu 6: Nhận biết

    Trong các hàm số sau, hàm số nào nghịch biến trên tập số thực?

     Ta có:

    y = {\log _{\frac{\pi }{4}}}\left( {2{x^2} + 1} ight);y = {\log _{\frac{1}{2}}}x là các hàm số không xác định trên \mathbb{R}

    \frac{2}{e} < 1 \Rightarrow y = {\left( {\frac{2}{e}} ight)^x} nghịch biến trên \mathbb{R}

  • Câu 7: Vận dụng

    Tổng các góc ở đỉnh của tất cả các mặt của khối đa diện đều loại \left\{ {3;5} ight\} là:

    Khối đa diện đều loại \left\{ {3;5} ight\} là khối hai mươi mặt đều:

    Gồm 20 mặt là các tam giác đều nên tổng các góc bằng: 20.\pi  = 20\pi

  • Câu 8: Vận dụng cao

    Cho hàm số y = x^{4} - 2mx^{2} +2. Giả sử S là tổng bình phương các giá trị của tham số m để hàm số có ba cực trị và đường tròn đi qua ba cực trị đó có bán kính bằng 4. Tính giá trị S? (Kết quả làm tròn đến chữ số thập phân thứ ba).

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y = x^{4} - 2mx^{2} +2. Giả sử S là tổng bình phương các giá trị của tham số m để hàm số có ba cực trị và đường tròn đi qua ba cực trị đó có bán kính bằng 4. Tính giá trị S? (Kết quả làm tròn đến chữ số thập phân thứ ba).

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 9: Thông hiểu

    Tìm tập xác định của hàm số y = {\left( {3x - {x^2}} ight)^{\frac{2}{3}}}

     Vì \frac{2}{3} otin \mathbb{Z} nên hàm số xác định khi 3x - {x^2} > 0 \Leftrightarrow 0 < x < 3

  • Câu 10: Nhận biết

    Cho hàm số y = f(x) có đồ thị như hình vẽ sau. Hàm số đã cho đồng biến trên khoảng nào dưới đây?

    Dựa vào đồ thị ta có hàm số đồng biến trên khoảng ( - 1;\ 0).

  • Câu 11: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S):x^{2} + y^{2} + z^{2} - 2x + 4y - 6z + 5 =
0 và mặt phẳng (\alpha):2x + y + 2z
- 15 = 0. Mặt phẳng (P) song song với (\alpha) và tiếp xúc với (S)

    Ta có:

    (S) có tâm I (1; −2; 3), bán kính R = 3. (P) song song với (α)

    (P):2x + y + 2z + m = 0, với m eq - 15

    Do mặt phẳng (P) tiếp xúc với (S) nên d\left( I;(P) ight) = R \Leftrightarrow
\left\lbrack \begin{matrix}
m = - 15 \\
m = 3 \\
\end{matrix} ight., so với điều kiện ta nhận m = 3.

    Vậy (P):2x + y + 2z + 3 = 0.

  • Câu 12: Thông hiểu

    Cho x,y là các số thực thỏa mãn f(x,y) = \log_{4}(x + y) + \log_{4}(x - y)\geq 1\ \ (*) . Các khẳng định sau đúng hay sai?

    a) Điều kiện xác định của hàm số f(x,y)\left\{ \begin{matrix}
x + y > 0 \\
x - y > 0 \\
\end{matrix} ight. . Đúng||Sai

    b) Với cặp số x,y thỏa mãn điều kiện xác định của hàm số f(x,y) , ta có: f(x,y) = x^{2} - y^{2} . Sai||Đúng

    c) Cặp số \left\{ \begin{matrix}
x = 8 \\
y = 16 \\
\end{matrix} ight. thỏa mãn f(x,y) = \log_{4}(x + y) + \log_{4}(x - y) \geq 1 . Sai||Đúng

    d) Với P = 2x - y thì P_{\min} = 2\sqrt{3} . Đúng||Sai

    Đáp án là:

    Cho x,y là các số thực thỏa mãn f(x,y) = \log_{4}(x + y) + \log_{4}(x - y)\geq 1\ \ (*) . Các khẳng định sau đúng hay sai?

    a) Điều kiện xác định của hàm số f(x,y)\left\{ \begin{matrix}
x + y > 0 \\
x - y > 0 \\
\end{matrix} ight. . Đúng||Sai

    b) Với cặp số x,y thỏa mãn điều kiện xác định của hàm số f(x,y) , ta có: f(x,y) = x^{2} - y^{2} . Sai||Đúng

    c) Cặp số \left\{ \begin{matrix}
x = 8 \\
y = 16 \\
\end{matrix} ight. thỏa mãn f(x,y) = \log_{4}(x + y) + \log_{4}(x - y) \geq 1 . Sai||Đúng

    d) Với P = 2x - y thì P_{\min} = 2\sqrt{3} . Đúng||Sai

    a) Điều kiện để bất phương trình có nghĩa là \left\{ \begin{matrix}
x + y > 0 \\
x - y > 0 \\
\end{matrix} ight., suy ra mệnh đề đúng.

    b) Ta có f(x,y) = \log_{4}(x + y) +\log_{4}(x - y) = \log_{4}\left( x^{2} - y^{2} ight), suy ra mệnh đề sai.

    c) Ta thấy x - y = 8 - 16 = - 8 <
0, suy ra mệnh đề sai.

    d) Ta có: \log_{4}(x + y) + \log_{4}(x - y)\geq 1

    \Leftrightarrow x^{2} - y^{2} \geq 4
\Rightarrow x \geq \sqrt{y^{2} + 4}

    Do đó P \geq 2\sqrt{y^{2} + 4} - y =
f(y).

    Khi đó P' = \frac{2y}{\sqrt{y^{2} +
4}} - 1 = 0\overset{y > 0}{ightarrow}y =
\frac{2}{\sqrt{3}}

    Suy ra P_{\min} = 2\sqrt{3}. suy ra mệnh đề đúng.

  • Câu 13: Nhận biết

    Thiết diện qua trục hình nón là một tam giác vuông cân có cạnh góc vuông bằng a.  Diện tích toàn phần và thể tích hình nón có giá trị lần lượt là:

     Diện tích toàn phần

    Gọi S, O là đỉnh và tâm đường tròn đáy của hình nón,

    Khi đó, ta có thiết diện qua đỉnh là tam giác SAB.

    Theo đề bài, ta có tam giác SAB vuông cân tại S nên AB = SB\sqrt 2  = a\sqrt 2, SO = \frac{{SB\sqrt 2 }}{2} = \frac{{a\sqrt 2 }}{2}.

    Suy ra h = SO = \frac{{a\sqrt 2 }}{2},  l = SA = a  và SB\sqrt 2  = 2R \Rightarrow R = \frac{{SB\sqrt 2 }}{2} = \frac{{\sqrt 2 a}}{2}.

     

    Diện tích toàn phần của hình nón: {S_{tp}} = \pi R\ell  + \pi {R^2} = \frac{{\left( {1 + \sqrt 2 } ight)\pi {a^2}}}{2}(đvdt).

    Thể tích khối nón là: V = \frac{1}{3}\pi {R^2}h = \frac{{\sqrt 2 \pi {a^3}}}{{12}} (đvtt). 

  • Câu 14: Thông hiểu

    Cho hàm số y = \frac{x + 1}{x^{2} - 2x -
3}. Khi đó tổng số tiệm cận đứng và tiệm cận ngang của đồ thị hàm số đã cho là:

    Ta có:

    \lim_{x ightarrow 3^{+}}y = \lim_{xightarrow 3^{+}}\dfrac{x + 1}{x^{2} - 2x - 3} = \lim_{x ightarrow3^{+}}\dfrac{\dfrac{1}{x} + \dfrac{1}{x^{2}}}{1 - \dfrac{2}{x} -\dfrac{3}{x^{2}}} = + \infty suy ra đồ thị hàm số có tiệm cận đứng là x = 3

    \lim_{x ightarrow ( - 1)^{+}}y =
\lim_{x ightarrow ( - 1)^{+}}\frac{x + 1}{x^{2} - 2x - 3} = \lim_{x
ightarrow ( - 1)^{+}}\frac{x + 1}{(x + 1)(x - 3)} = -
\frac{1}{4}

    \lim_{x ightarrow \pm \infty}y =\lim_{x ightarrow \pm \infty}\left( \dfrac{x + 1}{x^{2} - 2x - 3}ight) = \lim_{x ightarrow \pm \infty}\left( \dfrac{\dfrac{1}{x} +\dfrac{1}{x^{2}}}{1 - \dfrac{2}{x} - \dfrac{3}{x^{2}}} ight) = 0 suy ra đồ thị hàm số có tiệm cận ngang là y
= 0

    Vậy đồ thị hàm số có tổng số đường tiệm cận đứng và đườn tiệm cận ngang bằng 2.

  • Câu 15: Nhận biết

    Cho hình chóp S.ABC có tam giác SBC là tam giác vuông cân tại S, SB=2a  và khoảng cách từ A đến mặt phẳng (SBC) bằng 3a. Tính theo a thể tích V của khối chóp S.ABC.

     Ta chọn (SBC) làm mặt đáy suy ra chiều cao khối chóp là d\left[ {A,\left( {SBC} ight)} ight] = 3a

    Tam giác SBC vuông cân tại  S nên {S_{\Delta SBC}} = \frac{1}{2}S{B^2} = 2{a^2}

    Vậy thể tích khối chóp V = \frac{1}{3}{S_{\Delta SBC}}.d\left[ {A,\left( {SBC} ight)} ight] = 2{a^3}

  • Câu 16: Thông hiểu

    Đặt a = {\log _7}11;b = {\log _2}7. Hãy biểu diễn {\log _{\sqrt[3]{7}}}\frac{{121}}{8} theo a và b.

    Ta có: 

    {\log _{\sqrt[3]{7}}}\frac{{121}}{8} = 3\left( {{{\log }_7}121 - {{\log }_7}8} ight) = 6{\log _7}11 - 9.\frac{1}{{{{\log }_2}7}} = 6a - \frac{9}{b}

  • Câu 17: Thông hiểu

    Dân số thế giới được tính theo công thức S = A. e \
^{nr} trong đó A là dân số của năm lấy làm mốc tính, S là dân số sau n năm, r là tỉ lệ tăng dân số hằng năm. Cho biết năm 2005 Việt Nam có khoảng 80902400 người và tỉ lệ tăng dân số là 1,47\% một năm. Như vậy, nếu tỉ lệ tăng dân số hàng năm không đổi thì tối thiểu đến năm bao nhiêu dân của Việt Nam có khoảng 93713000 người?

    Ta có:

    S = A \cdot e^{nr} \Leftrightarrow
e^{nr} = \frac{S}{A} \Leftrightarrow nr = \ln\frac{S}{A} \Leftrightarrow
n = \frac{1}{r}\ln\frac{S}{A}

    Với S = 93713700 người; A = 80902400 người; r = \frac{1,47}{100} = 0,0147/năm.

    Suy ra n =
\frac{1}{0,0147}\ln\frac{93713000}{80902400} \approx 10.

    Vậy tối thiểu đến năm 2015 thì dân số của Việt Nam có khoảng 93713000 người.

  • Câu 18: Vận dụng cao

    Một hộp sữa hình trụ có thể tích V (không đổi) được làm từ một tấm tôn có diện tích đủ lớn. Nếu hộp sữa chỉ kín một đáy thì để tốn ít vật liệu nhất, hệ thức giữa bán kính đáy R và đường cao h bằng:

    Công thức tính thể tích V = \pi {R^2}h , suy ra h = \frac{V}{{\pi {R^2}}}

    Hộp sữa chỉ kín một đáy nên diện tích tôn cần dùng là:

    {S_{tp}} = {S_{xq}} + {S_{{m{day}}}} = 2\pi Rh + \pi {R^2} = \frac{{2V}}{R} + \pi {R^2}

    Xét hàm f\left( R ight) = \frac{{2V}}{R} + \pi {R^2}  trên \left( {0; + \infty } ight) , ta được \mathop {\min }\limits_{\left( {0; + \infty } ight)} f\left( R ight) đạt tại R=h.

  • Câu 19: Thông hiểu

    Cho một hình trụ có bán kính đáy bằng R và có chiều cao bằng R\sqrt 3. Hai điểm A, B lần lượt nằm trên hai đường tròn đáy sao cho góc giữa AB và trục của hình trụ bằng 30^0. Khoảng cách giữa AB và trục của hình trụ bằng:

    Tính khoảng cách

    Từ hình vẽ kết hợp với giả thiết, ta có OA = O'B = R.

    Gọi AA’ là đường sinh của hình trụ thì O'A' = R,{m{ }}AA' = R\sqrt 3\widehat {BAA'} = {30^0}.

    OO'\parallel \left( {ABA'} ight) nên d\left[ {OO',\left( {AB} ight)} ight] = d\left[ {OO',\left( {ABA'} ight)} ight] = d\left[ {O',\left( {ABA'} ight)} ight].

    Gọi H là trung điểm A’B, suy ra \left. \begin{array}{l}O'H \bot A'B\\O'H \bot AA'\end{array} ight\} \Rightarrow O'H \bot \left( {ABA'} ight)

    nên O'H = \frac{{R\sqrt 3 }}{2}h.

    Tam giác ABA’ vuông tại A’ nên BA' = AA'\tan {30^0} = R

    Suy ra tam giác A’BO đều có cạnh bằng R nên O'H = \frac{{R\sqrt 3 }}{2}.h

  • Câu 20: Vận dụng cao

    Một hòn đảo nằm trong một hồ nước. Biết rằng đường cong tạo nên hòn đảo được mô hình hóa vào hệ trục tọa độ Oxy là một phần của đồ thị hàm số bậc ba f(x).

    Vị trí điểm cực đại là (2;5) với đơn vị của hệ trục là 100m và vị trí điểm cực tiểu là (0;1). Mặt đường chạy trên một đường thẳng có phương trình y = 36 - 9x. Người ta muốn làm một cây cầu có dạng một đoạn thẳng nối từ hòn đảo ra mặt đường. Độ dài ngắn nhất của cây cầu bằng bao nhiêu mét? (Kết quả làm tròn đến chữ số thập phân thứ nhất).

    Đáp án: 88,3 m

    Đáp án là:

    Một hòn đảo nằm trong một hồ nước. Biết rằng đường cong tạo nên hòn đảo được mô hình hóa vào hệ trục tọa độ Oxy là một phần của đồ thị hàm số bậc ba f(x).

    Vị trí điểm cực đại là (2;5) với đơn vị của hệ trục là 100m và vị trí điểm cực tiểu là (0;1). Mặt đường chạy trên một đường thẳng có phương trình y = 36 - 9x. Người ta muốn làm một cây cầu có dạng một đoạn thẳng nối từ hòn đảo ra mặt đường. Độ dài ngắn nhất của cây cầu bằng bao nhiêu mét? (Kết quả làm tròn đến chữ số thập phân thứ nhất).

    Đáp án: 88,3 m

    Gọi hàm số bậc ba y = f(x) = ax^{3} +
bx^{2} + cx + d

    \Rightarrow f'(x) = 3ax^{2} + 2bx +
c.

    Vì đồ thị hàm số đi qua hai điểm (0;1)
\Rightarrow d = 1.

    Vì đồ thị hàm số đi qua hai điểm A(2;5)
\Rightarrow 8a + 4b + 2c + 1 = 5.

    Vì hàm số có hai điểm cực trị x = 0;x =
2

    \Rightarrow \left\{ \begin{matrix}
f'(0) = 0 \\
f'(2) = 0 \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
c = 0 \\
12a + 4b = 0 \\
\end{matrix} ight. .

    \Rightarrow \left\{ \begin{matrix}
a = - 1 \\
b = 3 \\
\end{matrix} ight.\  \Rightarrow f(x) = - x^{3} + 3x^{2} + 1f'(x) = - 3x^{2} + 6x.

    Gọi M\left( x_{0};y_{0} ight),\ x_{0}
> 0, là điểm nằm trên hòn đảo và nối với mặt đường và d là tiếp tuyến của đồ thị hàm số song song với mặt đường.

    Suy ra M là tiếp điểm của d với y = f(x).

    Đường thẳng y = 36 - 9x có hệ số góc k = - 9

    \Rightarrow f'\left( x_{0} ight) =
- 9 \Leftrightarrow - 3x_{0}^{2} + 6x_{0} = - 9

    \Leftrightarrow \left\lbrack
\begin{matrix}
x_{0} = 3 \\
x_{0} = - 1 \\
\end{matrix} ight.\  \Rightarrow M(3;1).

    Độ dài cây cầu ngắn nhất bằng khoảng cách từ điểm M đến đường thẳng 9x + y - 36 = 0.

    h = \frac{|9.3 + 1 - 36|}{\sqrt{9^{2} +
1^{2}}} \approx 0,883.

    Vì đơn vị của hệ trục là 100m nên độ dài ngắn nhất của cây cầu là 88,3m.

  • Câu 21: Thông hiểu

    Cho hàm số y = f(x) có đạo hàm liên tục trên \mathbb{R} và có đồ thị hàm số y = f'(x) như sau:

    Xét hàm số g(x) = f\left( x^{2} - 3
ight) và các mệnh đề sau:

    (i) Hàm số g(x) có ba điểm cực trị.

    (ii) Hàm số g(x) đạt cực tiểu tại x = 0.

    (iii) Hàm số g(x) đạt cực đại tại x = 2.

    (iv) Hàm số g(x) đồng biến trên khoảng ( - 2;0).

    (v) Hàm số g(x) nghịch biến trên khoảng ( - 1;1).

    Có bao nhiêu mệnh đề đúng trong các mệnh đề đã cho?

    Ta có: g'(x) = 2x.f'\left( x^{2}
- 3 ight)

    g'(x) = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
x = 0 \\
f'\left( x^{2} - 3 ight) = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x^{2} - 3 = - 2 \\
x^{2} - 3 = 1 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x^{2} = 1 \\
x^{2} = 4 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = \pm 1 \\
x = \pm 2 \\
\end{matrix} ight.

    Từ đồ thị ta nhận thấy x = \pm 1 là nghiệm kép nên ta có bảng biến thiên

    Dựa vào bảng biến thiên ta có hàm số g(x) ta thấy hàm số có 3 cực trị và đồng biến trên khoảng ( - 2;0).

    Vậy có tất cả 2 mệnh đề đúng.

  • Câu 22: Vận dụng cao

    Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S):(x-1)^2+(y-2)^2+(z-3)^2=9  tâm I và mặt phẳng (P):2x+2y-z+24=0. Gọi H là hình chiếu vuông góc của I trên (P). Điểm M thuộc (S) sao cho đoạn MH có độ dài lớn nhất. Tìm tọa độ điểm M.

     Ta có tâm I(1;2;3)  và bán kính R=3. Do d(I;(P))=9>R  nên mặt phẳng (P) không cắt mặt cầu (S) . Do H là hình chiếu của I lên (P) và MH lớn nhất nên M là giao điểm của đường thẳng IH với mp (P) .

    \overrightarrow {IH} =\vec n_{(P)}=(2;2;-1).

    Phương trình đường thẳng IH là \left\{\begin{matrix} x=1+2t \\ y=2+2t \\ z=3-t \end{matrix}ight..

    Giao điểm của IH với (S): 9t^2=9 \Leftrightarrow t=\pm 1 \Rightarrow M_1 (3;4;2) \mbox{  và } M_2 (-1;0;4)

    Suy ra:

    M_1H=d(M_1;(P))=12;

    M_2H=d(M_2;(P))=6.

    Vậy điểm cần tìm là M(3;4;2).

  • Câu 23: Nhận biết

    Cho hàm số y = x^{4} - mx^{2} +
m có đồ thị (C). Tìm tham số m để (C) đi qua điểm M(2;16)?

    Ta có: M(2;16) \in (C) \Leftrightarrow 16
= 2^{4} - m.2^{2} + m \Leftrightarrow 3m = 0 \Leftrightarrow m =
0

    Vậy m = 0.

  • Câu 24: Nhận biết

    Đồ thị sau đây là của hàm số nào?

    Dựa vào đồ thị hàm số ta thấy tiệm cận ngang của đồ thị hàm số là y = 2 và tiệm cận đứng của đồ thị hàm số x = - 1.

    Đồ thị hàm số cắt trục tung tại điểm A(0;1)

    Vậy hàm số cần tìm là y = \frac{2x + 1}{x
+ 1}.

  • Câu 25: Vận dụng

    Cho các hàm số y = {\log _a}x;{\text{ }}y = {\log _b}x có đồ thị như hình vẽ. Đường thẳng x = 5 cắt trục hoành, đồ thị hàm số y = {\log _a}xy = {\log _b}x lần lượt tại A,B,C. Biết rằng CB = 2AB. Mệnh đề nào sau đây đúng?

    Mệnh đề nào sau đây đúng

    Ta có: A\left( {5;0} ight),B\left( {5;{{\log }_a}5} ight),C\left( {5;{{\log }_b}5} ight)

    Theo bài ra ta có: CB = 2AB

    \begin{matrix}   \Leftrightarrow {\log _b}5 - {\log _a}5 = 2{\log _a}5 \hfill \\   \Leftrightarrow {\log _b}5 = 3{\log _a}5 \hfill \\   \Leftrightarrow {\log _b}5 = \dfrac{1}{3}{\log _5}a \hfill \\   \Leftrightarrow a = {b^3} \hfill \\ \end{matrix}

  • Câu 26: Nhận biết

    Cho hàm số y = x^{4} - x^{2} +
6. Xác định số điểm cực trị của hàm số?

    Ta có: y = x^{4} - x^{2} + 6

    a.b = - 1 < 0 nên hàm số đã cho có 3 cực trị.

  • Câu 27: Vận dụng

    Cho hàm số f\left( x ight) = \frac{{{2^x}}}{{{x^x} + 2}}. Tính tổng f\left( 0 ight) + f\left( {\frac{1}{{10}}} ight) + ... + f\left( {\frac{{18}}{{10}}} ight) + f\left( {\frac{{19}}{{10}}} ight) là:

    Với a + b = 2 ta có:

    f\left( a ight) + f\left( b ight) = \frac{{{2^a}}}{{{2^a} + 2}} + \frac{{{2^b}}}{{{2^b} + 2}} = \frac{{{{2.2}^{a + b}} + {{2.2}^a} + {{2.2}^b}}}{{{2^{a + b}} + {{2.2}^a} + {{2.2}^b} + 4}} = 1

    Nhận thấy \frac{1}{{10}} + \frac{{19}}{{10}} = 2... \Rightarrow P = f\left( 0 ight) + f\left( 1 ight) + 9.1 = \frac{{59}}{6}

  • Câu 28: Vận dụng

    Cho hàm số y = a{x^3} + b{x^2} + cx + d;\left( {a e 0} ight) có bảng biến thiên như hình vẽ dưới đây:

    Số nghiệm của phương trình

    Số nghiệm của phương trình f\left( {f\left( x ight)} ight) = 0 là:

    Ta có: f\left( {f\left( x ight)} ight) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {f\left( x ight) = a\left( 1 ight)} \\   {f\left( x ight) = b\left( 2 ight)} \\   {f\left( x ight) = c\left( 3 ight)} \end{array}} ight.;\left( {a < b < c} ight)

    Khi đó \left\{ {\begin{array}{*{20}{c}}  {a < 2} \\   {b \in \left( { - 2;2} ight)} \\   {c > 2} \end{array}} ight. suy ra phương trình (1) có 1 nghiệm; phương trình (2) có 3 nghiệm và phương trình (3) có 1 nghiệm.

    => Phương trình f\left( {f\left( x ight)} ight) = 0 có 5 nghiệm

  • Câu 29: Vận dụng cao

    Cho hàm số y = f(x) có đạo hàm f'\left( x ight) = x\left( {x - 1} ight)\left( {x - 2} ight),\forall x \in \mathbb{R}. Hàm số g\left( x ight) = f\left( {\frac{{5x}}{{{x^2} + 4}}} ight) đồng biến trên khoảng nào trong các khoảng sau?

    Ta có: f'\left( x ight) = 0 \Leftrightarrow x{\left( {x - 1} ight)^2}\left( {x - 2} ight) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = 0} \\   {x = 1} \\   {x = 2} \end{array}} ight.

    Ta có: g'\left( x ight) = \frac{{ - 5{x^2} + 20}}{{{{\left( {{x^2} + 4} ight)}^2}}}.f'\left( {\frac{{5x}}{{{x^2} + 4}}} ight)

    Cho g’(x) = 0 => \frac{{ - 5{x^2} + 20}}{{{{\left( {{x^2} + 4} ight)}^2}}}.f'\left( {\frac{{5x}}{{{x^2} + 4}}} ight) = 0

    Dựa vào f’(x) ta có:

    \left[ {\begin{array}{*{20}{c}}  { - 5{x^2} + 20 = 0} \\   {\dfrac{{5x}}{{{x^2} + 4}} = 0} \\   {\dfrac{{5x}}{{{x^2} + 4}} = 1} \\   {\dfrac{{5x}}{{{x^2} + 4}} = 2} \end{array}} ight. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x =  \pm 2} \\   {x = 0} \\   {x = 1} \\   {x = 4} \end{array}} ight.

    Lập bảng xét dấu như sau:

    Xét khoảng đồng biến của hàm số

    Quan sát bảng xét dấy ta suy ra hàm số đồng biến trên khoảng (2; 4)

  • Câu 30: Vận dụng cao

    Cho hàm số f\left( x ight) = \frac{{{{2018}^x}}}{{{{2018}^x} + \sqrt {2018} }}. Tính tổng

    S = f\left( {\frac{1}{{2019}}} ight) + f\left( {\frac{2}{{2019}}} ight) + ... + f\left( {\frac{{2018}}{{2019}}} ight)

    Với hàm số

    f\left( {1 - x} ight) = \frac{{\sqrt {2018} }}{{{{2018}^x} + \sqrt {2018} }} \Rightarrow f\left( x ight) + f\left( {1 - x} ight) = 1

    Khi đó:

    \begin{matrix}  S = f\left( {\dfrac{1}{{2019}}} ight) + f\left( {\dfrac{2}{{2019}}} ight) + ... + f\left( {\dfrac{{2018}}{{2019}}} ight) \hfill \\   \Rightarrow S = f\left( {\dfrac{1}{{2019}}} ight) + f\left( {\dfrac{{2018}}{{2019}}} ight) + f\left( {\dfrac{2}{{2019}}} ight) + f\left( {\dfrac{{2017}}{{2019}}} ight) \hfill \\+ ... + f\left( {\dfrac{{1009}}{{2019}}} ight) + f\left( {\dfrac{{1010}}{{2019}}} ight) = 1009 \hfill \\ \end{matrix}

  • Câu 31: Thông hiểu

    Hình đa diện nào dưới đây không có tâm đối xứng?

     Mọi hình chóp đều không có tâm đối xứng (tứ diện đều, hình chóp tứ giác đều,….)

    Hình lăng trụ tam giác cũng không có tâm đối xứng.

    Mọi hình hộp chữ nhật, hình lập phương đều có tâm đối xứng

    Bát diện đều cũng có tâm đối xứng.

  • Câu 32: Thông hiểu

    Cho khối chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA vuông góc với đáy và khoảng cách từ A đến mặt phẳng (SBC) bằng \frac{{a\sqrt 2 }}{2}. Tính thể tích V của khối chóp đã cho. 

     

    Gọi H là hình chiếu của A trên SB \Rightarrow AH \bot SB

    Ta có \left\{ \begin{gathered}  SA \bot \left( {ABCD} ight) \Rightarrow SA \bot BC \hfill \\  AB \bot BC \hfill \\ \end{gathered}  ight.

    \Rightarrow BC \bot \left( {SAB} ight) \Rightarrow AH \bot BC

    Suy ra AH \bot \left( {SBC} ight) \Rightarrow d\left[ {A,\left( {SBC} ight)} ight] = AH = \frac{{a\sqrt 2 }}{2}

    Tam giác SAB vuông tại A, có \frac{1}{{A{H^2}}} = \frac{1}{{S{A^2}}} + \frac{1}{{A{B^2}}} \Rightarrow SA = a

    Vậy V = \frac{1}{3}.SA.{S_{ABCD}} = \frac{{{a^3}}}{3}.

  • Câu 33: Nhận biết

    Cho {\log _2}a = x;{\log _2}b = y biết , biểu thức {\log _2}\left( {4{a^2}{b^3}} ight) có giá trị là:

    Ta có: 

    {\log _2}\left( {4{a^2}{b^3}} ight) = {\log _2}4 + {\log _2}{a^2} + {\log _2}{b^3} = 2 + 2{\log _2}a + 3{\log _2}b = 2x + 3y + 2

  • Câu 34: Thông hiểu

    Hàm số nào sau đây phù hợp với hình vẽ:

    Tìm hàm số tương ứng với đồ thị hàm số

     Ta có: y\left( 1 ight) = 0 và hàm số đồng biến trên \left( {0; + \infty } ight) nên chỉ có hàm số y = {\log _{\sqrt 6 }}x thỏa mãn

  • Câu 35: Vận dụng

    Giá trị của tham số m để bất phương trình (x - 2 - m)\sqrt{x - 1} \leq m - 4 có nghiệm là:

    Đặt t = \sqrt{x - 1};(t \geq
0)

    Khi đó bất phương trình ban đầu trở thành:

    \left( t^{2} - m - 1 ight).t \leq m - 4
\Leftrightarrow m \geq \frac{t^{3} - t + 4}{t + 1}

    Xét hàm số f(t) = \frac{t^{3} - t + 4}{t
+ 1} trên \lbrack 0; +
\infty)

    Ta có: f'(t) = \frac{2t^{3} + 3t^{2}
- 5}{(t + 1)^{2}} = \frac{(t - 1)\left( 2t^{2} + 5t + 5 ight)}{(t +
1)^{2}}

    f'(t) = 0 \Leftrightarrow t =
1

    Bảng biến thiên của f(t) = \frac{t^{3} -
t + 4}{t + 1};t \in \lbrack 0; + \infty)

    Từ bảng biến thiên suy ra để bất phương trình có nghiệm thì m \geq 2.

  • Câu 36: Vận dụng

    Bất phương trình {\log _2}\left( {{x^2} - x - 2} ight) \geqslant {\log _{0,5}}\left( {x - 1} ight) + 1 có tập nghiệm là:

     Điều kiện: {\log _2}\left( {{x^2} - x - 2} ight) \geqslant {\log _{0,5}}\left( {x - 1} ight) + 1 \Leftrightarrow {\log _2}\left[ {\left( {{x^2} - x - 2} ight)\left( {x - 1} ight)} ight] \geqslant 1

    \Leftrightarrow \left( {{x^2} - x - 2} ight)\left( {x - 1} ight) - 2 \geqslant 0 \Leftrightarrow {x^3} - 2{x^2} - x \geqslant 0 \Leftrightarrow \left[ \begin{gathered}  1 - \sqrt 2  \leqslant x \leqslant 0 \hfill \\  x \geqslant 1 + \sqrt 2  \hfill \\ \end{gathered}  ight.

    Vậy BPT có tập nghiệm là S = \left[ {1 + \sqrt 2 ; + \infty } ight).

     

  • Câu 37: Nhận biết

    Đồ thị hàm số nào có đường tiệm cận đứng đi qua điểm M( - 4;5)?

    Xét hàm số y = \frac{5x + 1}{x +
4}

    Ta có: \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to {{\left( { - 4} ight)}^ + }} \frac{{5x + 1}}{{x + 4}} =  + \infty  \hfill \\
  \mathop {\lim }\limits_{x \to {{\left( { - 4} ight)}^ - }} \frac{{5x + 1}}{{x + 4}} =  - \infty  \hfill \\ 
\end{gathered}  ight. suy ra x = -
4 là tiệm cận đứng của đồ thị hàm số.

    Tiệm cận đứng đi qua điểm M( -
4;5).

  • Câu 38: Thông hiểu

    Cho hàm số y =
f(x) có đồ thị như hình vẽ:

    Hàm số y = f( - x) nghịch biến trên khoảng nào dưới đây?

    Từ đồ thị hàm số y = f(x) ta thấy hàm số đồng biến trên khoảng (0;2)

    \Leftrightarrow f'(x) > 0
\Leftrightarrow 0 < x < 2

    Xét hàm số y = f( - x) ta có: y' = - f'( - x)

    y' < 0 \Leftrightarrow - f'(
- x) < 0 \Leftrightarrow f'( - x) > 0

    \Leftrightarrow 0 < - x < 2
\Leftrightarrow - 2 < x < 0

    Suy ra hàm số y = f( - x) nghịch biến trên khoảng ( - 2;0).

  • Câu 39: Vận dụng

    Phương trình {9^{{{\sin }^2}x}} + {9^{{{\cos }^2}x}} = 6 có họ nghiệm là ?

     Ta có: {9^{{{\sin }^2}x}} + {9^{{{\cos }^2}x}} = 6

    \Leftrightarrow {9^{1 - {{\cos }^2}x}} + {9^{{{\cos }^2}x}} = 6 \Leftrightarrow \frac{9}{{{9^{{{\cos }^2}x}}}} + {9^{{{\cos }^2}x}} - 6 = 0{\text{   }}\left( * ight)

    Đặt t = {9^{{{\cos }^2}x}},{\text{ }}\left( {1 \leqslant t \leqslant 9} ight).

    Khi đó: \left( * ight) \Leftrightarrow \frac{9}{t} + t - 6 = 0 \Leftrightarrow {t^2} - 6t + 9 = 0 \Leftrightarrow t = 3.

    Với t = 3 \Rightarrow {9^{{{\cos }^2}x}} = 3 \Leftrightarrow {3^{2{{\cos }^2}x}} = {3^1} \Leftrightarrow 2{\cos ^2}x - 1 = 0

    \Leftrightarrow \cos 2x = 0 \Leftrightarrow \boxed{x = \frac{\pi }{4} + \frac{{k\pi }}{2}},{\text{ }}\left( {k \in \mathbb{Z}} ight).

  • Câu 40: Thông hiểu

    Nếu đặt t = {\log _2}x thì bất phương trình \log _2^4x - \log _{\frac{1}{2}}^2\left( {\frac{{{x^3}}}{8}} ight) + 9{\log _2}\left( {\frac{{32}}{{{x^2}}}} ight) < 4\log _{{2^{ - 1}}}^2\left( x ight) trở thành bất phương trình nào?

     Điều kiện: x >0

    Ta có:

    \begin{gathered}  \log _2^4x - \log _{\frac{1}{2}}^2\left( {\frac{{{x^3}}}{8}} ight) + 9{\log _2}\left( {\frac{{32}}{{{x^2}}}} ight) < 4\log _{{2^{ - 1}}}^2\left( x ight) \hfill \\   \Leftrightarrow \log _2^4x - {\left( {3{{\log }_2}x - 3} ight)^2} + 9\left( {5 - 2{{\log }_2}x} ight) - 4\log _2^2x < 0 \hfill \\   \Leftrightarrow \log _2^4x - 13\log _2^2x + 36 < 0 \hfill \\ \end{gathered}

    Vậy thay t = {\log _2}x, ta được  {t^4} - 13{t^2} + 36 < 0.

  • Câu 41: Nhận biết

    Giá trị của biểu thức P = {\left( {1 + \sqrt 3 } ight)^{2016}}.{\left( {3 - \sqrt 3 } ight)^{2016}} bằng:

    Ta có:

    P = {\left( {1 + \sqrt 3 } ight)^{2016}}.{\left( {3 - \sqrt 3 } ight)^{2016}}

    = {\left[ {\left( {1 + \sqrt 3 } ight)\left( {3 - \sqrt 3 } ight)} ight]^{2016}} = {\left( {2\sqrt 3 } ight)^{2016}} = {12^{1008}}

  • Câu 42: Nhận biết

    Điều kiện xác định của phương trình {\log _x}(2{x^2} - 7x - 12) = 2 là:

     Biểu thức {\log _x}(2{x^2} - 7x - 12) = 2 xác định 

    \Leftrightarrow \left\{ \begin{gathered}  x > 0 \hfill \\  x e 1 \hfill \\  2{x^2} - 7x + 12 > 0 \hfill \\ \end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}  x > 0 \hfill \\  x e 1 \hfill \\  2\left[ {{{(x - \frac{7}{4})}^2} + \frac{{47}}{{16}}} ight] > 0 \hfill \\ \end{gathered}  ight.

    \Leftrightarrow x \in (0;1) \cup (1; + \infty )

  • Câu 43: Vận dụng

    Để chuẩn bị cho hoạt động cắm trại, bạn An tìm hiểu các mẫu lều cắm trại có kích thước như trong hình vẽ.

    Bạn An muốn biết thể tích chênh lệch của hai lều nên thực hiện tính V_{1} -
V_{2}, trong đó V_{1},V_{2} lần lượt là thể tích của mẫu lều cắm trại ở hình a, hình b. Giá trị của V_{1} - V_{2} bằng bao nhiêu decimét khối (làm tròn kết quả đến hàng đơn vị)?

    Đáp án: 961 dm3

    Đáp án là:

    Để chuẩn bị cho hoạt động cắm trại, bạn An tìm hiểu các mẫu lều cắm trại có kích thước như trong hình vẽ.

    Bạn An muốn biết thể tích chênh lệch của hai lều nên thực hiện tính V_{1} -
V_{2}, trong đó V_{1},V_{2} lần lượt là thể tích của mẫu lều cắm trại ở hình a, hình b. Giá trị của V_{1} - V_{2} bằng bao nhiêu decimét khối (làm tròn kết quả đến hàng đơn vị)?

    Đáp án: 961 dm3

    Cả hai lều đều có dạng khối lăng trụ đứng ngũ giác.

    Xét khối lăng trụ ở hình a. Chia mặt đáy thành hai phần bao gồm: hình chữ nhật có chiều rộng 180\ cm, chiều dài 350\ cm; tam giác cân có cạnh đáy dài 350\ cm, chiều cao 40\ cm như hình dưới đây.

    Diện tích mặt đáy của lăng trụ đó là:

    S_{1} = 180 \cdot 350 + \frac{1}{2} \cdot
40 \cdot 350 = 70000\left( \ cm^{2} ight)

    Vậy thể tích của khối lăng trụ ngũ giác đó là:

    V_{1} = S_{1} \cdot h_{1} = 70000.460 =
32200000\left( \ cm^{3} ight).

    Xét khối lăng trụ ở hình b. Chia mặt đáy thành hai phần bao gồm: hình thang cân có đáy lớn đài 370\ cm, đáy nhỏ dài 260\ cm , chiều cao 210\ cm; tam giác cân có cạnh đáy dài 260\ cm, chiều cao 50\ cm như hình vẽ .

    Diện tích mặt đáy của lăng trụ đó là:

    S_{2} = \frac{1}{2}(370 + 260) \cdot 210
+ \frac{1}{2} \cdot 260 \cdot 50 = 72650\left( \ cm^{2}
ight)

    Vậy thể tích của khối lăng trụ ngũ giác đó là:

    V_{2} = S_{2} \cdot h_{2} = 72650.430 =
31239500\left( \ cm^{3} ight)

    Do đó V_{1} - V_{2} = 960500\left( \
cm^{3} ight) \approx 961\left( dm^{3} ight).

  • Câu 44: Vận dụng

    Cho hàm số đa thức bậc bốn f(x). Đồ thị hàm số y = f'(3 - 2x) được biểu thị trong hình vẽ sau:

    Hàm số y = f(x) nghịch biến trong khoảng nào?

    Đặt t = 3 - 2x. Ta có bảng xét dấu của f'(3 - 2x) được mô tả lại như sau:

    Từ đó suy ra bảng xét dấu của f'(t)

    Vậy hàm số y = f(x) nghịch biến trên các khoảng ( - \infty; -
1),(3;5).

  • Câu 45: Thông hiểu

    Cho hàm số y = \frac{x^{2} - 4x}{2x +
1}. Tính giá trị nhỏ nhất của hàm số đã cho trên đoạn \lbrack 0;3brack?

    Hàm số y = \frac{x^{2} - 4x}{2x +
1} liên tục trên đoạn \lbrack
0;3brack

    Ta có: y' = \frac{2x^{2} + 2x -
4}{(2x + 1)^{2}} \Rightarrow y' = 0 \Leftrightarrow \left\lbrack
\begin{matrix}
x = 1 \\
x = - 2 \\
\end{matrix} ight.

    Khi đó \left\{ \begin{matrix}
f(0) = 0 \\
f(1) = - 1 \\
f(3) = - \frac{3}{7} \\
\end{matrix} ight.\  \Rightarrow f(1) < f(3) < f(0) nên \min_{\lbrack 0;3brack}y = y(1) = -
1.

  • Câu 46: Nhận biết

    Trong các hình dưới đây hình nào không phải khối đa diện lồi?

     

    Đường nối đoạn MN không thuộc khối hình 4 nên hình 4 không phải khối đa diện lồi.

  • Câu 47: Thông hiểu

    Tìm giá trị thực của tham số m để hàm số f\left( x ight) =  - {x^2} + 4x - m có giá trị lớn nhất trên đoạn \left[ { - 1;3} ight] bằng 10?

    Xét hàm số f\left( x ight) =  - {x^2} + 4x - m trên đoạn \left[ { - 1;3} ight] ta có:

    f'\left( x ight) =  - 2x + 4

    Phương trình f'\left( x ight) = 0

    \begin{matrix}   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  { - 1 \leqslant x \leqslant 3} \\   { - 2x + 4 = 0} \end{array} \Leftrightarrow x = 2} ight. \hfill \\  f\left( { - 1} ight) =  - 5 - m \hfill \\  f\left( 2 ight) = 4 - m \hfill \\  f\left( 3 ight) = 3 - m \hfill \\ \end{matrix}

    \begin{matrix}  \mathop {\max f\left( x ight)}\limits_{\left[ { - 1;3} ight]}  = f\left( 2 ight) = 4 - m \hfill \\   \Rightarrow 4 - m = 10 \Rightarrow m =  - 6 \hfill \\ \end{matrix}

  • Câu 48: Nhận biết

    Cho hàm số y = f(x) liên tục trên đoạn \lbrack - 1;4brack và có đồ thị như hình vẽ:

    Giả sử M,m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên đoạn \lbrack - 1;4brack. Khi đó giá trị của biểu thức S = M + m bằng bao nhiêu?

    Từ đồ thị hàm số y = f(x) liên tục trên \lbrack - 1;4brack

    \Rightarrow \left\{ \begin{matrix}
M = 3 \\
m = - 1 \\
\end{matrix} ight.\  \Rightarrow S = M + m = 2

  • Câu 49: Nhận biết

    Giá trị của biểu thức A = {\log _{{2^{2018}}}}4 - \frac{1}{{1009}} + \ln {e^{2018}}

    Ta có:

    A = {\log _{{2^{2018}}}}4 - \frac{1}{{1009}} + \ln {e^{2018}} = {\log _{{2^{2018}}}}{2^2} - \frac{1}{{1009}} + 2018.\ln e

    = \frac{1}{{1009}} - \frac{1}{{1009}} + 2018 = 2018

  • Câu 50: Nhận biết

    Trong không gian Oxyz, viết phương trình mặt cầu (S) đường kính AB biết A(2; - 1; - 3),B(0;3; - 1)?

    Gọi I là trung điểm của AB khi đó I(1;1; - 2) là tâm mặt cầu (S).

    Bán kính R = \frac{1}{2}AB =
\frac{1}{2}\sqrt{4 + 16 + 4} = \frac{\sqrt{24}}{2}

    Vậy phương trình mặt cầu cần tìm là: (S):(x + 1)^{2} + (y + 1)^{2} + (z - 2)^{2} =
6.

Chúc mừng Bạn đã hoàn thành bài!

Đề thi học kì 1 Toán 12 Đề 3 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 1 lượt xem
Sắp xếp theo